Exercises (Householder reflectors and QR factorization)

1. In Matlab, choose a suitable sequence of points in the plane $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$, $i = 1, 2, \ldots, n$, store them in a matrix $A \in \mathbb{R}^{2 \times n}$, and plot them to create a recognizable picture; for instance

 $A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0.5 & 0.7 & 0.7 & 0.8 & 0.8 & 1 & 1 & 0.6 & 0.6 & 0.4 & 0.4; \\ 1 & 1 & 0 & 0 & 1 & 1.5 & 1.3 & 1.4 & 1.4 & 1.2 & 1 & 0 & 0 & 0.3 & 0.3 & 0 \end{bmatrix};$ plot(A(1,:), A(2,:))

- 2. Now take a Householder reflector $H = I \frac{2}{u^*u}uu^*$ (with a vector u of your choice), compute the points $H\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ and plot them in the same way. How is the picture transformed? Note that the orientation of the picture is reversed.
- 3. (Can you compute all the points $H\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ in one instruction without a for cycle?)
- 4. Now take any other matrix at your choice M ∈ ℝ^{2×2} instead of H, and repeat the exercise. Typically M will not be orthogonal (check by computing M'*M). How is the picture transformed?
- 5. The matrix $G = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ represents a rotation in the 2 × 2 plane. Compute and plot the points $G\begin{bmatrix} x_i \\ y_i \end{bmatrix}$. Is the orientation reversed this time?
- 6. Compute the eigenvalues of a Householder reflector $H = I \frac{2}{u^*u} uu^*$ with Matlab's instruction eig. Do this both for $u \in \mathbb{R}^2$ and for larger dimensions.
- 7. Think about the geometrical picture of a Householder reflector: can you identify an eigenvector associated to the eigenvalue -1, i.e., a vector v such that Hv = -v? Can you identify some vectors z associated to the eigenvalue 1?
- 8. Choose a point of the sequence you created in the first exercise, for instance A(1:end, 7). Construct a Householder reflector \hat{H} that transforms this point into a multiple of e_1 , and plot the points $\hat{H}\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ as you did before. Check graphically that the chosen point ends up on the x axis.

- 9. As you know, there are *two* real Householder reflectors that transform a point into a multiple of e_1 . Repeat the previous exercise with the other reflector.
- 10. Think about the QR factorization of a 'short fat' matrix $M \in \mathbb{R}^{m \times n}$, m < n. How must the zero pattern of R be?
- 11. Let M be a 'short fat' matrix $M \in \mathbb{R}^{m \times n}$, and partition it as $\begin{bmatrix} M_1 & M_2 \end{bmatrix}$, where M_1 is square. What is the size of M_2 , as a function of m and n? Show that a QR factorization M = QR is given by $Q = \hat{Q}, R = \begin{bmatrix} \hat{R} & \hat{Q}^* M_2 \end{bmatrix}$, where \hat{Q}, \hat{R} are the QR factors of M_1 .