Exercises (Householder reflectors and QR factorization)

1. In Matlab, choose a suitable sequence of points in the plane $\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right], i=$ $1,2, \ldots, n$, store them in a matrix $A \in \mathbb{R}^{2 \times n}$, and plot them to create a recognizable picture; for instance
```
A = [llllllllllllllllllllllll
    1 1 0 0 1 1.5 1.3 1.4 1.4 1.2 1 0 0 0.3 0.3 0];
plot(A(1,:), A(2,:))
```

2. Now take a Householder reflector $H=I-\frac{2}{u^{*} u} u u^{*}$ (with a vector u of your choice), compute the points $H\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ and plot them in the same way. How is the picture transformed? Note that the orientation of the picture is reversed.
3. (Can you compute all the points $H\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ in one instruction without a for cycle?)
4. Now take any other matrix at your choice $M \in \mathbb{R}^{2 \times 2}$ instead of H, and repeat the exercise. Typically M will not be orthogonal (check by computing $\left.\mathrm{M}^{\prime} * \mathrm{M}\right)$. How is the picture transformed?
5. The matrix $G=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ represents a rotation in the 2×2 plane. Compute and plot the points $G\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$. Is the orientation reversed this time?
6. Compute the eigenvalues of a Householder reflector $H=I-\frac{2}{u^{*} u} u u^{*}$ with Matlab's instruction eig. Do this both for $u \in \mathbb{R}^{2}$ and for larger dimensions.
7. Think about the geometrical picture of a Householder reflector: can you identify an eigenvector associated to the eigenvalue -1 , i.e., a vector v such that $H v=-v$? Can you identify some vectors z associated to the eigenvalue 1 ?
8. Choose a point of the sequence you created in the first exercise, for instance A (1:end, 7). Construct a Householder reflector \hat{H} that transforms this point into a multiple of e_{1}, and plot the points $\hat{H}\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ as you did before. Check graphically that the chosen point ends up on the x axis.
9. As you know, there are two real Householder reflectors that transform a point into a multiple of e_{1}. Repeat the previous exercise with the other reflector.
10. Think about the QR factorization of a 'short fat' matrix $M \in \mathbb{R}^{m \times n}$, $m<n$. How must the zero pattern of R be?
11. Let M be a 'short fat' matrix $M \in \mathbb{R}^{m \times n}$, and partition it as $\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$, where M_{1} is square. What is the size of M_{2}, as a function of m and n ? Show that a QR factorization $M=Q R$ is given by $Q=\hat{Q}, R=$ $\left[\begin{array}{ll}\hat{R} & \hat{Q}^{*} M_{2}\end{array}\right]$, where \hat{Q}, \hat{R} are the QR factors of M_{1}.
