
Lab class (Householder reflectors and QR
factorization)

Householder reflectors

Recall that a Householder reflector is the matrixH = I− 2
u∗uuu

∗. Given a vector
x, if we make the choice u = x±‖x‖e1, then Hx is a multiple of e1 (which is the
vector

[
1 0 0 · · · 0

]∗
). Normally we choose u = x+ sgn(x1)‖x‖e1, where

sgn(x) is the sign of x, so that we don’t have to subtract two numbers with the
same sign to compute it.

The QR factorization of a square matrix A can be obtained with R =
Qn−1 . . . Q3Q2Q1A, where

Qk =

[
I(k−1)×(k−1) 0

0 Hk

]
,

and Hk ∈ C(n−k+1)×(n−k+1) is a Householder reflector that transforms the first
column of Ak:end,k:end into a multiple of e1.

The factorQ is given byQ = Q∗1Q
∗
2 · · ·Q∗n−1 (or can be represented implicitly

be the vectors u1, u2, . . . , un−1).

1. Write a function u = householder(x) that takes a vector x and com-
putes the Householder reflector that turns it into a multiple of e1. Choose
sgn(x) as the sign.

2. Test the function on a few vectors: compute y = Hx, and check that
norm(y(2:end)) is small.

You may use the instruction format(’long’, ’e’) to display vectors in
exponential notation, which shows a higher number of significant digits
and makes it easier to display their content.

3. Test the function on the vector given by x = 1e-10*randn(10, 1); x(1) = 2e8.

4. Now change your function to produce “wrong-sign Householder” with u =
x− sgn(x)‖x‖e1, and test the function on the vector in the previous point.
Check that y is no closer to e1 than x was, in this case.

5. Use your Householder function to implement a function R = my_qr(A)

that computes the QR factorization of a square matrix A. Don’t call it qr
or it would conflict with Matlab’s built-in function, and we want to test
them together later.

1



2

6. Make sure that you put parentheses correctly in your function (so that
the computational cost isn’t higher than necessary), and that the R you
return is truly upper triangular (you’ll have to set the sub-diagonal entries
to 0 manually, or, even better, not compute them at all. . . ).

7. Test your function against Matlab’s builtin [Q, R] = qr(A). Do they
return the same result?1

8. Check that ‖R‖ = ‖A‖ (using the norm-2). Can you explain why, using
the definition of norm-2 of a matrix?

You can modify later your function my_qr to return Q as well, and to make it
work for rectangular matrices, too. These points are more tricky. But first, we
want to test in practice the stability of QR factorization and system solving,
and for that we will use Matlab’s built-in functions.

Stability of QR factorization

The exercises in this section are based on Lecture 16 of the Trefethen-Bau book.
We first create a random matrix of which we know the exact QR factoriza-

tion: compute

n = 5

R = triu(randn(n)); % random upper triangular R

[Q, dummy_variable] = qr(randn(n)); % random orthogonal Q

A = Q*R;

Now the factors of A are Q and R. (Almost, because of rounding errors in Q*R,
but that is enough for our purposes. We ignore the error in matrix products, in
this experiment. You can check that norm(Q*R - A) is small, anyway).

1. Compute the QR factorization of A with [Q2, R2] = qr(A). Check
that Q2 is orthogonal, that norm(Q-Q2), norm(R-R2) are small, and that
norm(Q2*R2 - A) are small.

2. Now let’s scale up! Change n to larger values: 10, 30, 50. Put all these
instructions in a script (.m file) so that you can re-run them more easily
and test several (random) examples.

3. Notice what happens to the various error measures. You should see that
norm(Q2*R2 - A) stays small (of the order of 10−15). Can you come up
with an explanation?

Hint: backward stability of Q2, R2.

1 Several students in the lab noticed that their implementation returned a matrix R2 which
was equal to Matlab’s one apart from the last entry Rend,end. This happened because of
different handling of the last step: when it arrives to the last step (1 × 1 reflector), Matlab
simply does nothing because it is already upper triangular. If your for cycle goes from 1 to
n, instead, you are applying an additional 1 × 1 reflector that swaps the sign of Rend,end.



3

4. Instead, norm(Q-Q2), norm(R-R2) grow wildly. Can you come up with
an explanation?

Hint: what does this tell us about the condition number of QR factoriza-
tion?

5. We have studied only the condition number of linear system solving, but it
turns out that the condition number of the QR factorization is the same,
κ(A) = ‖A‖‖A−1‖. Try several examples, and check that the relative

errors ‖Q−Q2‖
‖Q‖ and ‖R−R2‖

‖R‖ are of the order of κ(A) times the machine
precision.

You can use cond(A) to return κ(A), and eps to return the machine
precision.

So, moral of the story: sometimes your algorithms return inaccurate results,
but if you won’t notice unless you have already the true result available (because
Q2*R2-A is always small and does not reveal the errors; we needed Q and R to
check). Who tells you when it’s right or wrong? Condition number and error
analysis!

Matrix norms

If you still have time, you can try to check that Matlab’s norm(A) computes the
correct value using the definition of matrix norms. Recall that the norm of a
matrix is defined as

‖A‖ = max
v∈Cn

‖Av‖
‖v‖

.

1. Write a function function M = checknorm(A, k) that generates k ran-

dom vectors and for each of them computes ‖Av‖
‖v‖ . Return the maximum

of the computed values. Note that the norms that appear in the formula
are norms of vectors.

2. Choose a matrix A, for instance A = randn(5), a large value of k, and
test if your function returns something close to ‖A‖ or not.

Testing vectors at random is not a great method to find the maximum of
a function (and indeed it converges very slowly. . . ). You will see with prof.
Passacantando much better methods to find the maximum of a function.

(And in fact, this problem has a closed-form solution: ‖A‖2 is the largest
eigenvalue of A∗A. We will prove this later when we study a different decom-
position, the SVD).

Linear system solving with QR

If you still have time, you can move on to test the stability of solving linear
systems with QR. Recall that if A = QR, then the solution of a linear system
Ax = b is given by x = R−1Q∗b. (Do you remember why?)



4

Matlab has a built-in operator to solve linear systems, x = A \ b. If we
just write R \ b, it is smart enough to recognize that R is upper triangular and
solve it by backward substitution (in time O(n2)). So we can use this instead
of implementing our own back-substitution function (which is not complicated
anyway).

1. Create a system with known solution by choosing a random x, a random A
(of the right size), and computing b = A * x. (As usual, we shall ignore
the errors in this product.)

2. Choose a perturbation f = 1e-8 * randn(size(b)), and compute the

solution of the linear system Ax̃ = b+f . Check that ‖x̃−x‖‖x‖ is of the order

of κ(A)‖f‖‖b‖ .

3. If you choose A = randn(n, n), you will only get matrices with small-ish
condition number. Try with hand-made matrices with unbalanced entries:
for instance, A = [1000 1; 1 1]. Or also A = [1+1e-8 1; 1 1], which
is very close to a singular matrix. Try several sizes of the perturbation f .

Timings

If you have finished the two-output version of [Q, R] = my_qr(A), you can
check how fast it is with respect to Matlab’s built-in one. You can measure
timings in Matlab with the functions tic and toc.

tic()

[Q, R] = my_qr(A)

time_elapsed = toc()

It is difficult to beat the built-in functions, since they are implemented in com-
piled libraries.


