
Lab class (large-scale linear systems)

1 Testing methods for sparse linear systems

Katz centrality

Let A ∈ Rn×n be the adjacency matrix of an undirected graph, i.e.,

Aij =

{
1 if there is an edge between i and j,

0 otherwise,

and e ∈ Rn be the column vector of all ones, ei = 1 for i = 1, 2, . . . , n.
Let moreover α ∈ R be such that α > 0 and |λ|α < 1 for each eigenvalue

λ of A, and set x = (I − αA)−1e. We have argued during the lectures that xi
provides a measure of centrality of the node i of the graph; it is higher the more
node i is ‘well-connected’.

We are interested in comparing the efficiency of various numerical methods
of computing this vector of centrality indices x. Since the matrix M = (I −
αA) is symmetric and positive definite with our choice of α, the more natural
competitors are:

• The dense Cholesky factorization A = LL∗, with L lower triangular.

• Its analogue for sparse matrices, using heuristics to increase the sparsity
of the factor L.

• The conjugate gradient method (CG), which is a Krylov subspace method.

In the next sections you will just need to follow along using Matlab’s predefined
library functions, not code the algorithms yourself.

If something confuses you about the Matlab syntax or you don’t know how
to do something, feel free to ask me.

Dense Cholesky

1. Download the text file karate_ascii.mat from the course web page. This
is a 34×34 matrix coming from a famous paper in network theory from the
1970s. Load it in Matlab with A = load(’karate_ascii.mat’, ’-ascii’).
You may inspect the resulting matrix by typing A, or with spy(A).

If your Matlab version is recent enough, you can also display the graph
with plot(graph(A)),

1

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

1 Testing methods for sparse linear systems 2

2. Check using the eig(A) command that α = 0.1 satisfies the condition that
we required above on α.

3. Compute the Cholesky factor with the command R = chol(M). This func-
tion returns the upper triangular matrix R = L∗ for which M = R∗R.
Check that this equality holds approximately by computing in Matlab
‖M −R∗R‖.

4. Look at the sparsity pattern of R with spy(R); then and use the command
nnz(R) to count how many nonzero entries it has. Are they more or less
than the nonzero entries of M?

5. Solve the systemMx = e using the Cholesky factor that we have computed
(how?). Recall that Matlab’s operator Matrix \ vector can be used
to solve linear systems, and that it requires time O(n2) if the matrix is
triangular.

6. Check the residual ‖Mx̃ − e‖ for the solution x̃ returned by Matlab. It
should be of the order of 10−15; you can check that the condition number
cond(M) is very small (about 4.4).

Sparse Cholesky

1. Now we shall convert A to a sparse matrix object with the command
A = sparse(A). Note that Matlab outputs sparse matrices by default
with a different notation,

(2,1) 1

(3,1) 1

(4,1) 1

...

We also need to recreate M as a sparse matrix object, with

M = speye(size(A)) - 0.1*A;

You can check that the commands that you gave earlier, such as chol(M),
still work with sparse matrix objects, and return essentially the same
matrices but as sparse matrix objects. Since the matrix is small, the
difference in time between the various algorithms is not so relevant.

2. The function p = symrcm(M) returns a permutation of the vertices that
has the aim to reduce the number of zeros generated by Cholesky factor-
ization — it is the order returned by a sort of breadth-first visit of the
graph (reverse Cuthill-McKee order). Check that Rp = chol(M(p, p))

has fewer nonzeros than R, and that the system M(p,p)*y=e(p) has solu-
tion y=x(p).

(Note that permuting the entries of e with e(p) would not be necessary
here, because they are all ones anyway.)

1 Testing methods for sparse linear systems 3

Conjugate gradient

1. Solve the system Mx = e using conjugate gradient, stopping when the
residual goes below 10−6, with the command x = pcg(M, e, 1e-6). Check

that the relative residual ‖Mx̃−e‖
‖e‖ of the solution x̃ is indeed below 10−6.

2. Calling the function with more return values, one can get a vector resvec
containing the residuals obtained at each iteration of CG:

[x, useless1, useless2, useless3, resvec] = pcg(M, e);

We can plot this residual vector using a logarithmic scale on the y axis
using semilogy(resvec). The method converges quite fast; indeed, this
is a very favorable matrix for Krylov subspace methods, because the eigen-
values of M contain 1 with multiplicity 10, and the other eigenvalues are
not too far from 1. (Check this with eig(M)).

Scaling up

Now it’s time to try examples with larger n. Let us generate a random symmetric
sparse matrix of size n = 4000 with density 0.001 (i.e., only one out of 1000
entries is nonzero, or about 4 per row).

A = sprandsym(4000, 0.001); M = speye(length(A)) - 0.1*A;

This command already returns A in the form of a sparse matrix object. If you
want the full array, use full(A).

Note that α = 0.1 might not be small enough to guarantee |λ|α < 1. It
is not a good idea to use eig(A) to check, because it would take a while on a
4000 × 4000 matrix. There is a function eigs(A) that returns approximations
to the largest (in modulus) eigenvalues of A, instead.

(We shall see later in this course which numerical methods are available to
compute eigenvalues.)

1. Test the algorithms we have seen above (dense Cholesky, sparse Cholesky,
sparse Cholesky with symrcm reordering, CG) on this new matrix. You
can compare timings with the functions tic() (starts a timer) and toc()

(stops it and returns the result); for instance,

tic(); R = chol(M); x = R \ (R’ \ e); time_elapsed = toc()

Who is the winner?

2. You can try using x = inv(M)*e as well. Is it as fast as the other methods?

3. We have chosen a family of matrices that is particularly favorable for
Krylov subspace methods. At home, you can try generating matrices with
the command

2 Coding the Arnoldi iteration 4

n = 4000;

k = 5;

A = spdiags(rand(n, 2*k+1), -k:k, n, n);

A = (A+A’)/2;

This creates a matrix with nonzero entries only in a ‘band’ of 5 diagonals
above and below the main diagonal. On these matrices, sparse factoriza-
tion methods work at their best.

4. You can also try larger matrices. Dense methods are already at their limit
with n = 4000; sparse direct methods and Krylov subspace methods can
scale to larger sizes (with their performance depending on the zero pattern
and eigenvalue location of M).

2 Coding the Arnoldi iteration

We want to write a function [Q, Hhat] = arnoldi(A, b, m) that runs m
steps of the Arnoldi process and returns two matrices Q = Qm+1 ∈ Cn×(m+1)

with orthonormal columns (i.e., Q∗Q = Im+1) and Ĥ = Ĥm ∈ C(m+1)×m such
that AQm = QĤ. Recall that we called Qm ∈ Cn×m the matrix obtained by
removing the last column of Qm+1, and Hm ∈ Cm×m the matrix obtained by
removing the last row of Ĥm.

Recall that the pseudocode for the Arnoldi iteration is

Ĥ = zeros(m+ 1,m);
q1 = b/‖b‖;
for k = 1, 2, . . . ,m do

r = Aqk;
for j = 1, 2, . . . , k do

Ĥ(j, k) = (qj)∗r;

r = r − qjĤ(j, k);

end

Ĥ(k + 1, k) = ‖r‖;
qk+1 = r/Ĥ(k + 1, k);

end

Q =
[
q1 q2 · · · qm+1

]
;

For your convenience, in this pseudocode the rows and columns of Q and H
are indexed starting from 1 — which is what you need in Matlab.

1. Choose a matrix A and a right-hand side b; for instance, use as A the
34× 34 matrix that we used in the previous exercise, and b = e.

2. Compute the first couple of iterations directly at the command prompt,
just to experiment with the method: for instance, write

q1 = b / norm(b);

r = A*q1;

3 If you still have time 5

r = r - (q1’*r)*q1;

q2 = r / norm(r);

and then check that q1 and q2 are orthogonal (up to machine precision).

3. Write the full procedure, and check that the columns of Q are orthonor-
mal, and that norm(A*Q(1:end, 1:end-1) - Q*Hhat) is of the order of
machine precision.

4. Check that the matrix Ĥ has the zeros below the first subdiagonal, as
it should. Actually, for the matrix A that we have suggested above, Ĥ
should be tridiagonal: we have said during the lecture that this is what
happens when A is symmetric. Is it the case?

5. Check that Q∗e = ‖e‖e1 (at least up to machine precision).

6. Now let us use the Arnoldi factorization that we have constructed to solve
a linear system. Set M = I − 0.1A, as above, and compute Q9 and Ĥ8

with arnoldi(M, e, 8). Now compute an approximation of the solution
to Mx = e as

x̃ = Q8H
−1
8 (Q8)∗e = Q8H

−1
8 ‖e‖e1.

Is the residual Mx̃−e small? Is x̃ close to the solution that you computed
earlier with the other algorithms?

3 If you still have time

Additional activities if you still have time:

• Like we did with Arnoldi, compute the first couple of iterations of conju-
gate gradient directly from the command prompt. Check that the choices
of βk and tk given in the lectures produce the orthogonality properties
that we have claimed, i.e., (rj)∗rk = (dj)∗Adk = 0 for each j 6= k.

• Theoretical exercise: let A be a Hessenberg matrix, and b = e1. What is
the basis Q produced by the Arnoldi process?

	Testing methods for sparse linear systems
	Coding the Arnoldi iteration
	If you still have time

