C H A P TE R

4
BASIC ITERATIVE METHODS

The first iterative methods used for solving large linear systems were based
on relaxation of the coordinates. Beginning with a given approximate solu-
tion, these methods modify the components of the approximation, one or a
few at a time and in a certain order, until convergence is reached. Each of
these modifications, called relaxation steps, is aimed at annihilating one or
a few components of the residual vector. Now, these techniques are rarely
used separately. However, when combined with the more efficient methods
described in later chapters, they can be quite successful. Moreover, there
are a few application areas where variations of these methods are still quite
popular.

—
JACOBI, GAUSS-SEIDEL, AND SOR

L

This chapter begins by reviewing the basic iterative methods for solving linear systems.
Given an n x n real matrix A and a real n-vector b, the problem considered is: Find z
belonging to R™ such that

Az = b (4.1)

Equation (4.1) is a linear system, A is the coefficient matrix, b is the right-hand side vector,
and z is the vector of unknowns. Most of the methods covered in this chapter involve pass-
ing from one iterate to the next by modifying one or a few components of an approximate
vector solution at a time. This is natural since there are simple criteria when modifying a
component in order to improve an iterate. One example is to annihilate some component(s)
of the residual vector b— Az. The convergence of these methods is rarely guaranteed for all
matrices, but a large body of theory exists for the case where the coefficient matrix arises
from the finite difference discretization of Elliptic Partial Differential Equations.
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We begin with the decomposition
A=D—-E-F, (4.2)

in which D is the diagonal of A, —F its strict lower part, and — F' its strict upper part, as
illustrated in Figure 4.1. It is always assumed that the diagonal entries of A are all nonzero.

Figure 4.1 Initial partitioning of matrix A.

The Jacobi iteration determines the i-th component of the next approximation so as
to annihilate the i-th component of the residual vector. In the following, §§k) denotes the
i-th component of the iterate z; and 3; the i-th component of the right-hand side b. Thus,
writing

(b— Axpy1); =0, (4.3)

in which (y); represents the i-th component of the vector y, yields

ait ) = - > aij@('k) + Bi,
i
or

n
k1 1 k .
é‘z( ):a— ﬁ,—Za”{;) 1=1,...,n. (44)
(41 o

o
This is a component-wise form of the Jacobi iteration. All components of the next iterate
can be grouped into the vector z,1. The above notation can be used to rewrite the Jacobi

iteration (4.4) in vector form as
Tpy1 = DY (E + F)xy + D7 'b. (4.5)

Similarly, the Gauss-Seidel iteration corrects the i-th component of the current ap-
proximate solution, in the order i = 1,2, ..., n, again to annihilate the i-th component of
the residual. However, this time the approximate solution is updated immediately after the
new component is determined. The newly computed components gg’”, i1 =1,2,...,ncan
be changed within a working vector which is redefined at each relaxation step. Thus, since
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the orderisi = 1,2, .. ., the result at the 4-th step is

i—1 n
Bi — Z%’EJ(‘HH —aue - > aijfj(-k) =0, (4.6)
j=1 j=it1

which leads to the iteration,

i—1 n
1 .
g = - (‘2 ai T = Y az-jsj(-’“’wz-) Gi=lom (a7)

j=1 j=i+1
The defining equation (4.6) can be written as
b+ Exgy1 — Dxgyq + Fzp, =0,
which leads immediately to the vector form of the Gauss-Seidel iteration
Try1 = (D —E)'Fx, + (D - E)™'b. (4.8)

Computing the new approximation in (4.5) requires multiplying by the inverse of the
diagonal matrix D. In (4.8) a triangular system must be solved with D — E, the lower
triangular part of A. Thus, the new approximation in a Gauss-Seidel step can be determined
either by solving a triangular system with the matrix D — E or from the relation (4.7).

A backward Gauss-Seidel iteration can also be defined as

(D — F)xyy1 = Exp, + b, (4.9)
which is equivalent to making the coordinate corrections in the order n,n — 1,...,1. A
Symmetric Gauss-Seidel Iteration consists of a forward sweep followed by a backward
sweep.
The Jacobi and the Gauss-Seidel iterations are both of the form

Mzpy1 = Nxp +b= (M — Az + b, (4.10)

in which
A=M-N (4.11)

is a splitting of A, with M = D for Jacobi, M = D — E for forward Gauss-Seidel,
and M = D — F for backward Gauss-Seidel. An iterative method of the form (4.10) can
be defined for any splitting of the form (4.11) where M is nonsingular. Overrelaxation is
based on the splitting

wA = (D —wE)— (wF + (1 —w)D),
and the corresponding Successive Over Relaxation (SOR) method is given by the recursion
(D —wE)xp41 = [WF + (1 — w) D]z, + wb. (4.12)
The above iteration corresponds to the relaxation sequence

e = S 4 (1 —w)e® i=1,2,...n,

K3

in which £ is defined by the expression in the right-hand side of (4.7). A backward SOR
sweep can be defined analogously to the backward Gauss-Seidel sweep (4.9).
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A Symmetric SOR (SSOR) step consists of the SOR step (4.12) followed by a back-
ward SOR step,

(D = wE)xpi1/2 = [WF + (1 —w)Dlzy + wb
(D —wF)zpq1 = [WE + (1 —w)D]xg /2 +wb
This gives the recurrence
Trt1 = Gur + fu,
where
Gy, = (D -wF) Y (wE+ (1 -w)D) x
(D —wE) Y (wF + (1 — w)D), (4.13)
fo=wD-wF)™ (I+wE+ (1-w)D|(D—-wE)™") b. (4.14)
Observing that
[WE+ (1 —w)D)(D —wE)™! = [-(D —wE) + (2 - w)D](D —wE)™*
=TI+ (2-w)D(D—-wE)™,
f. can be rewritten as
fo=w?2—-w) (D —-wF) 'D(D —-wE) b

4.1.1 BLOCK RELAXATION SCHEMES

Block relaxation schemes are generalizations of the “point” relaxation schemes described
above. They update a whole set of components at each time, typically a subvector of the
solution vector, instead of only one component. The matrix A and the right-hand side and
solution vectors are partitioned as follows:

A A Az - Ay & B
Asr Asg Asz --- Ay, & B2

A=| A A Az -+ Ay ,z=|8&|,b=]|0s ], (4.15)
Ay Ay oo oo Ay, & By

in which the partitionings of b and x into subvectors 3; and &; are identical and compatible
with the partitioning of A. Thus, for any vector x partitioned as in (4.15),

p
(Az); = > Aij§,
j=1
in which (y); denotes the i-th component of the vector i according to the above partitioning.

The diagonal blocks in A are square and assumed nonsingular.
Now define, similarly to the scalar case, the splitting

A=D-E-F
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with
All
D= Az , (4.16)
AI’P
0 O A - A
E—-|* 9 R
Ay Ay e O 0

With these definitions, it is easy to generalize the previous three iterative procedures de-
fined earlier, namely, Jacobi, Gauss-Seidel, and SOR. For example, the block Jacobi it-
eration is now defined as a technique in which the new subvectors §§k) are all replaced
according to

Aii€§k+1) = ((E+ F)zx); + Bi
or,
&MY = AZH (B + F)aw); + A7 B, i=1,....p,
which leads to the same equation as before,
Try1 = D7Y(E + F)xy, + D71,

except that the meanings of D, E, and F' have changed to their block analogues.

With finite difference approximations of PDEs, it is standard to block the variables
and the matrix by partitioning along whole lines of the mesh. For example, for the two-
dimensional mesh illustrated in Figure 2.5, this partitioning is

U1 U21 U3y
U12 U22 U3z2
SG=ws |, &=|uxs |, &= uss
Ui4 U24 U34
Uis U2s5 U3s

This corresponds to the mesh 2.5 of Chapter 2, whose associated matrix pattern is shown
in Figure 2.6. A relaxation can also be defined along the vertical instead of the horizontal
lines. Techniques of this type are often known as line relaxation techniques.

In addition, a block can also correspond to the unknowns associated with a few con-
secutive lines in the plane. One such blocking is illustrated in Figure 4.2 for a 6 x 6 grid.
The corresponding matrix with its block structure is shown in Figure 4.3. An important
difference between this partitioning and the one corresponding to the single-line partition-
ing is that now the matrices A;; are block-tridiagonal instead of tridiagonal. As a result,
solving linear systems with A;; may be much more expensive. On the other hand, the num-
ber of iterations required to achieve convergence often decreases rapidly as the block-size
increases.
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3——E—E——B—3
@B——20——C)——e——9——0)
B———lo—W—1
o
O———0—6—0®
Figure 4.2 Partitioning of a 6 x 6 square mesh into three sub-

domains.

Figure 4.3 Matrix associated with the mesh of Figure 4.2.

Finally, block techniques can be defined in more general terms. First, by using blocks
that allow us to update arbitrary groups of components, and second, by allowing the blocks
to overlap. Since this is a form of the domain-decomposition method which will be seen
later, we define the approach carefully. So far, our partition has been based on an actual
set-partition of the variable set S = {1,2,...,n} into subsets S1, Sa,...,Sp, with the
condition that two distinct subsets are disjoint. In set theory, this is called a partition of S.

More generally, a set-decomposition of S removes the constraint of disjointness. In other
words it is required that the union of the subsets .S;’s be equal to S:

sics, (U si=s.
i=1,-,p
In the following, n; denotes the size of S; and the subset .S; is of the form,

Si = {mi(1),mi(2), ... mi(n;)}
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A general block Jacobi iteration can be defined as follows. Let V; be the n x n; matrix

‘/i = [emi(l)a emi(2)7 B eml(nl)]

and

Wi = [N, (1) €mi(1) s Mmi (2)€mi(2) > - - - > T (ns) €mis (ni) s

where each e; is the j-th column of the n x n identity matrix, and 7,,,(; represents a
weight factor chosen so that

When there is no overlap, i.e., when the S;’s form a partition of the whole set {1, 2, ...,n},
then define n,,,, ;) = 1.
Let A;; be the n; x n; matrix
Aij = WAV

and define similarly the partitioned vectors
& = Wz'T'r7 Bi = Win-

Note that V;WT is a projector from R™ to the subspace K; spanned by the columns m; (1),
..., m;(n;). In addition, we have the relation

T = zs: Vi&i.
=1

The n;-dimensional vector W1z represents the projection V; Wz of = with respect to
the basis spanned by the columns of V;. The action of V; performs the reverse operation.
That means V;y is an extension operation from a vector y in K; (represented in the basis
consisting of the columns of V;) into a vector V;y in R™. The operator W' is termed a
restriction operator and V; is an prolongation operator.

Each component of the Jacobi iteration can be obtained by imposing the condition that
the projection of the residual in the span of S; be zero, i.e.,

W b= A | ViW[ g + > VW] zy || =0.
J#i
Remember that &; = Wz, which can be rewritten as
§§k+1) — €z(k) +A;1W1T(b—A.'L'k) (4_17)

This leads to the following algorithm:

ALGORITHM 4.1: General Block Jacobi lteration

1. Fork=0,1,..., until convergence Do:
2 Fori=1,2,...,pDo:

3 Solve A;id; = W,lT(b — A.’Ek)

4, Setxpy1 =z + Vi,

5 EndDo

6. EndDo
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As was the case with the scalar algorithms, there is only a slight difference between
the Jacobi and Gauss-Seidel iterations. Gauss-Seidel immediately updates the component
to be corrected at step ¢, and uses the updated approximate solution to compute the residual
vector needed to correct the next component. However, the Jacobi iteration uses the same
previous approximation z, for this purpose. Therefore, the block Gauss-Seidel iteration
can be defined algorithmically as follows:

ALGORITHM 4.2: General Block Gauss-Seidel lteration

1. Until convergence Do:

2 Fori=1,2,...,p Do:

3. Solve A”(Sl = WZT(b — A.'E)
4 Setx :=x + V;0;

5 EndDo

6. EndDo

From the point of view of storage, Gauss-Seidel is more economical because the new ap-
proximation can be overwritten over the same vector. Also, it typically converges faster. On
the other hand, the Jacobi iteration has some appeal on parallel computers since the second
Do loop, corresponding to the p different blocks, can be executed in parallel. Although the
point Jacobi algorithm by itself is rarely a successful technique for real-life problems, its
block Jacobi variant, when using large enough overlapping blocks, can be quite attractive
especially in a parallel computing environment.

4.1.2 ITERATION MATRICES AND PRECONDITIONING

The Jacobi and Gauss-Seidel iterations are of the form

Tpe1 = Gz + f, (4.18)

in which
Gja(A)=I1-D 1A, (4.19)
Ggs(A)=1— (D —E)™'A, (4.20)

for the Jacobi and Gauss-Seidel iterations, respectively. Moreover, given the matrix split-
ting
A=M—-N, (4.21)

where A is associated with the linear system (4.1), a linear fixed-point iteration can be
defined by the recurrence

Tpe1 = M 1Nz + M tb, (4.22)
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which has the form (4.18) with
G=MIIN=MYM-A)=I-M"1A, f=M"1b (4.23)

For example, for the Jacobi iteration, M = D, N = A — D, while for the Gauss-Seidel
iterationn M =D -E,N=M - A=F.
The iteration z+1 = Gz + f can be viewed as a technique for solving the system

(I-G)x=f.
Since G has the form G = I — M ' A, this system can be rewritten as
M~ Az = M~ 'b.

The above system which has the same solution as the original system is called a precon-
ditioned system and M is the preconditioning matrix or preconditioner. In other words, a
relaxation scheme is equivalent to a fixed-point iteration on a preconditioned system.

For example, for the Jacobi, Gauss-Seidel, SOR, and SSOR iterations, these precon-
ditioning matrices are, respectively,

Mjs =D, (4.24)
Mgs =D - E, (4.25)
1
Msor = Z(D - {./.)E), (4.26)
1
M =—— _ (D—-wE)D YD —wF). 4.27
SSOR w(2—w) ( wE) ( wF) (4.27)

Thus, the Jacobi preconditioner is simply the diagonal of A, while the Gauss-Seidel pre-
conditioner is the lower triangular part of A. The constant coefficients in front of the matri-
ces Msor and Mgsor only have the effect of scaling the equations of the preconditioned
system uniformly. Therefore, they are unimportant in the preconditioning context.

Note that the “preconditioned” system may be a full system. Indeed, there is no reason
why M~ should be a sparse matrix (even though M may be sparse), since the inverse
of a sparse matrix is not necessarily sparse. This limits the number of techniques that can
be applied to solve the preconditioned system. Most of the iterative techniques used only
require matrix-by-vector products. In this case, to compute w = M ~! Av for a given vector
v, first compute » = Awv and then solve the system Mw = r:

r = Av,
w=M"1r

In some cases, it may be advantageous to exploit the splitting A = M — N and compute
w= M"1Avasw = (I — M~1N)v by the procedure

r = No,
w= M,
wi=v—w.

The matrix N may be sparser than A and the matrix-by-vector product Nv may be less
expensive than the product Av. A number of similar but somewhat more complex ideas
have been exploited in the context of preconditioned iterative methods. A few of these will
be examined in Chapter 9.
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—
CONVERGENCE

All the methods seen in the previous section define a sequence of iterates of the form

Tp41 = Gop + f, (4.28)

in which G is a certain iteration matrix. The questions addressed in this section are: (a) if
the iteration converges, then is the limit indeed a solution of the original system? (b) under
which conditions does the iteration converge? (c) when the iteration does converge, how
fast is it?

If the above iteration converges, its limit 2 satisfies

z=Gzr+f. (4.29)

In the case where the above iteration arises from the splitting A = M — N, it is easy to see
that the solution z to the above system is identical to that of the original system Az = b.
Indeed, in this case the sequence (4.28) has the form

Thy1 = M_INIUk + M~
and its limit satisfies
Mz = Nz +b,

or Ax = b. This answers question (a). Next, we focus on the other two questions.

4.2.1 GENERAL CONVERGENCE RESULT

If I — G is nonsingular then there is a solution z . to the equation (4.29). Subtracting (4.29)
from (4.28) yields

Thp1 — T = Glop —x) = -+ = G (z0 — x). (4.30)

Standard results seen in Chapter 1 imply that if the spectral radius of the iteration matrix G
is less than unity, then x;, — x. converges to zero and the iteration (4.28) converges toward
the solution defined by (4.29). Conversely, the relation

Tr1 — T = Gg —zp-1) = -+ = G*(f — (I — G)ao).

shows that if the iteration converges for any z, and f then G*v converges to zero for any
vector v. As a result, p(G) must be less than unity and the following theorem is proved:

THEOREM 4.1 Let G be a square matrix such that p(G) < 1. Then I — G is nonsin-
gular and the iteration (4.28) converges for any f and xq. Conversely, if the iteration (4.28)
converges for for any f and xq, then p(G) < 1.

Since it is expensive to compute the spectral radius of a matrix, sufficient conditions that
guarantee convergence can be useful in practice. One such sufficient condition could be
obtained by utilizing the inequality, p(G) < |G|, for any matrix norm.
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COROLLARY 4.1 LetG be a square matrix such that ||G|| < 1 for some matrix norm
||-||. Then I — G is nonsingular and the iteration (4.28) converges for any initial vector .

Apart from knowing that the sequence (4.28) converges, it is also desirable to know
how fast it converges. The error dj, = = — x, at step k satisfies

dr = G*d,.

The matrix G can be expressed in the Jordan canonical formas G = X JX ~—'. Assume for
simplicity that there is only one eigenvalue of G of largest modulus and call it A\. Then

J k
dp = \FX (X) X d,.

A careful look at the powers of the matrix JJ/A shows that all its blocks, except the block
associated with the eigenvalue A, converge to zero as & tends to infinity. Let this Jordan
block be of size p and of the form

A=A+ E,
where E is nilpotent of index p, i.e., EP = 0. Then, for k& > p,

p—1
JE= (M +Ef =) I+ X 1E)F =)k (Z A (’;) E) :
i=0

If k& is large enough, then for any A the dominant term in the above sum is the last term,
ie.,

k
k k—p+1 -1
~AYTP EP~.
i (p - 1)
Thus, the norm of d;, = G*dy has the asymptotical form
k
di|| = C x [Ne—PH
ldell = Cx NP (T ),
where C'is some constant. The convergence factor of a sequence is the limit

o=t ()"
koo \ ||do]|

It follows from the above analysis that p = p(G). The convergence rate 7 is the (natural)
logarithm of the inverse of the convergence factor

T=—lnp.

The above definition depends on the initial vector z¢, so it may be termed a specific
convergence factor. A general convergence factor can also be defined by

p 1/k
¢ = lim (max I k”) .

k=00 \ goer” [ldoll
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This factor satisfies

i 1/k
¢ = lim | max G do
k—oo \ goer” ol

(I6*)"* = p(@).

= lim
k—o0
Thus, the global asymptotic convergence factor is equal to the spectral radius of the it-
eration matrix G. The general convergence rate differs from the specific rate only when
the initial error does not have any components in the invariant subspace associated with
the dominant eigenvalue. Since it is hard to know this information in advance, the general
convergence factor is more useful in practice.

Example 4.1 Consider the simple example of Richardson’s Iteration,

Tpt1 = xp + a (b— Azxyg), (4.31)
where « is a nonnegative scalar. This iteration can be rewritten as

ZTpt1 = (I — aA)zy + ab. (4.32)

Thus, the iteration matrix is G, = I — a.A and the convergence factor is p(I — aA).
Assume that the eigenvalues \;,7 = 1, ..., n, are all real and such that,

)‘min S /\z S )‘maw-
Then, the eigenvalues y; of G, are such that
1 - adpas <pi < 1 = admin-

In particular, if A < 0and Apaz > 0, at least one eigenvalue is > 1, and so p(G,) > 1
for any a. In this case the method will always diverge for some initial guess. Let us assume
that all eigenvalues are positive, i.e., Amsn > 0. Then, the following conditions must be
satisfied in order for the method to converge:

1 — adpin < 1,

1 — alpae > —1.
The first condition implies that @ > 0, while the second requires that & < 2/Apqz. In
other words, the method converges for any scalar a which satisfies

O<a<

)\maw
The next question is: What is the best value a,,¢ for the parameter ¢, i.e., the value of a
which minimizes p(G,)? The spectral radius of G is

p(Gy) = max{|l — aApin|, |1 — @Amaz|}-

This function of « is depicted in Figure 4.4. As the curve shows, the best possible « is
reached at the point where the curve |1 — A,,q,c| With positive slope crosses the curve
|1 — Aminc| With negative slope, i.e., when

=1+ Angz@ =1 — Apina.
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|1 = Apazl
|1 - )\mina|

’
’

Amin

Figure 4.4 The curve p(G,) as a function of a.

This gives
2

min T )\maz

Qopt = h (4.33)

Replacing this in one of the two curves gives the corresponding optimal spectral radius

p _ /\ma:c — )‘min
ort /\maw + )\min ’

This expression shows the difficulty with the presence of small and large eigenvalues. The
convergence rate can be extremely small for realistic problems. In addition, to achieve
good convergence, eigenvalue estimates are required in order to obtain the optimal or a
near-optimal «, and this may cause difficulties. Finally, since \,,,, can be very large, the
curve p(G,) can be extremely sensitive near the optimal value of «. These observations
are common to many iterative methods that depend on an acceleration parameter.

4.2.2 REGULAR SPLITTINGS

DEFINITION 4.1 Let A, M, N be three given matrices satisfying A = M — N. The
pair of matrices M, N is a regular splitting of A, if M is nonsingular and M —* and N are
nonnegative.
With a regular splitting, we associate the iteration

Thy1 = M Nz + M~ b, (4.34)
The question asked is: Under which conditions does such an iteration converge? The fol-
lowing result, which generalizes Theorem 1.15, gives the answer.

THEOREM 4.2 Let M, N be a regular splitting of a matrix A. Then p(M~1N) < 1 if
and only if A is nonsingular and A=! is nonnegative.
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Proof. Define G = M~ N. From the fact that p(G) < 1, and the relation
A=M{I-G) (4.35)

it follows that A is nonsingular. The assumptions of Theorem 1.15 are satisfied for the
matrix G since G = M~'N is nonnegative and p(G) < 1. Therefore, (I — G)~ ! is
nonnegative as is A~! = (I —G) ™" ML,

To prove the sufficient condition, assume that A is nonsingular and that its inverse is
nonnegative. Since A and M are nonsingular, the relation (4.35) shows again that I — G is
nonsingular and in addition,

ATIN = (M(IT - M7'N))'N

=(I-M'N)y'M'N
= (I -G)'G. (4.36)
Clearly, G = M~!N is nonnegative by the assumptions, and as a result of the Perron-
Frobenius theorem, there is a nonnegative eigenvector z associated with p(G) which is an
eigenvalue, such that
Gz = p(G)z.
From this and by virtue of (4.36), it follows that
.ol
1-p(G)
Since z and A~ N are nonnegative, this shows that
p(G)
— >0
1-p(G) —

and this can be true only when 0 < p(G) < 1. Since I — G is nonsingular, then p(G) # 1,
which implies that p(G) < 1. [

A7 INz =

This theorem establishes that the iteration (4.34) always converges, if M, N is a regu-
lar splitting and A is an M-matrix.

4.2.3 DIAGONALLY DOMINANT MATRICES

We begin with a few standard definitions.
DEFINITION 4.2 A matrix A is

e (weakly) diagonally dominant if

i=n
laj;| > Z laijl, j=1,...,n.
i=1

i#]
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e strictly diagonally dominant if

lajil > > lasl, i=1,...,n.
i
e irreducibly diagonally dominant if A is irreducible, and

i=n
laj;| > Z laijl, j=1,...,n.
P
with strict inequality for at least one j.

Often the term diagonally dominant is used instead of weakly diagonally dominant.

Diagonal dominance is related to an important result in Numerical Linear Algebra
known as Gershgorin’s theorem. This theorem allows rough locations for all the eigenval-
ues of A to be determined. In some situations, it is desirable to determine these locations
in the complex plane by directly exploiting some knowledge of the entries of the matrix A.
The simplest such result is the bound

A < [1A]

for any matrix norm. Gershgorin’s theorem provides a more precise localization result.

THEOREM 4.3 (Gershgorin) Any eigenvalue X of a matrix A is located in one of the
closed discs of the complex plane centered at a;; and having the radius

j=n
pi =Y lai]-
j=1

i

In other words,
j=n
VX €o(4), i suchthat [X—aul < lagl- (4.37)
j=1
J#i
Proof. Let x be an eigenvector associated with an eigenvalue ), and let m be the index
of the component of largest modulus in z. Scale « so that |£,| = 1, and |§;| < 1, for
1 # m. Since z is an eigenvector, then

()‘ - amm)fm = - Z amj§j>

jm
which gives
n n
A — amm| < Z lam;|&5] < Z lamj| = pm.- (4.38)
j=1 j=1
j#Am j#m

This completes the proof. ]
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Since the result also holds for the transpose of A, a version of the theorem can also be
formulated based on column sums instead of row sums.

The n discs defined in the theorem are called Gershgorin discs. The theorem states that
the union of these n discs contains the spectrum of A. It can also be shown that if there are
m Gershgorin discs whose union S is disjoint from all other discs, then S contains exactly
m eigenvalues (counted with their multiplicities). For example, when one disc is disjoint
from the others, then it must contain exactly one eigenvalue.

An additional refinement which has important consequences concerns the particular
case when A is irreducible.

THEOREM 4.4 et A be an irreducible matrix, and assume that an eigenvalue \ of A
lies on the boundary of the union of the n. Gershgorin discs. Then A lies on the boundary
of all Gershgorin discs.

Proof. As in the proof of Gershgorin’s theorem, let = be an eigenvector associated with
A, with |€,| = 1, and || < 1, for i # m. Start from equation (4.38) in the proof of
Gershgorin’s theorem which states that the point A belongs to the m-th disc. In addition, A
belongs to the boundary of the union of all the discs. As a result, it cannot be an interior
point to the disc D(\, p,,). This implies that |[A — ap,m| = pm. Therefore, the inequalities
in (4.38) both become equalities:

n n

IA = @mm| = Z lam;|€;] = Z lam;i| = pm- (4.39)
j=1 =1
j#m j#m

Let j beany integer 1 < j < n. Since A isirreducible, its graph is connected and, therefore,
there exists a path from node m to node j in the adjacency graph. Let this path be

m,mi,Ma,. .., Mg = j.

By definition of an edge in the adjacency graph, a,,,,», # 0. Because of the equality in
(4.39), it is necessary that |¢;| = 1 for any nonzero &;. Therefore, |¢,,, | must be equal to
one. Now repeating the argument with m replaced by m; shows that the following equality
holds:

n n
A= amymi| = Z |am, ;11&] = Z lamy,;| = pm- (4.40)
semy Smy
The argument can be continued showing each time that
IA = @mimi| = pmas (4.41)
andthisisvalidfori = 1,..., k. Inthe end, it will be proved that \ belongs to the boundary
of the j-th disc for an arbitrary ;. [ ]

An immediate corollary of the Gershgorin theorem and the above theorem follows.

COROLLARY 4.2 If a matrix A is strictly diagonally dominant or irreducibly diago-
nally dominant, then it is nonsingular.
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Proof. If amatrix is strictly diagonally dominant, then the union of the Gershgorin disks
excludes the origin, so A = 0 cannot be an eigenvalue. Assume now that it is only irre-
ducibly diagonal dominant. Then if it is singular, the zero eigenvalue lies on the boundary
of the union of the Gershgorin disks. In this situation, according to the previous theorem,
this eigenvalue should lie on the boundary of all the disks. This would mean that

n
lajjl => lai| for j=1,....n,
P
which contradicts the assumption of irreducible diagonal dominance. ]

The following theorem can now be stated.

THEOREM 4.5 If A isastrictly diagonally dominant or an irreducibly diagonally dom-
inant matrix, then the associated Jacobi and Gauss-Seidel iterations converge for any x.

Proof. We first prove the results for strictly diagonally dominant matrices. Let A be
the dominant eigenvalue of the iteration matrix M; = D~'(E + F) for Jacobi and
Mg = (D — E)~'F for Gauss-Seidel. As in the proof of Gershgorin’s theorem, let =
be an eigenvector associated with A, with |¢,,| = 1, and |&;| < 1, for i # 1. Start from
equation (4.38) in the proof of Gershgorin’s theorem which states that for M ;,

n n
|am,| |am; |
<D gl < 0 e <L
o |@mm| - @
i#Em i#Em
This proves the result for Jacobi’s method.
For the Gauss-Seidel iteration, write the m-th row of the equation Fz = A(D — E)x

in the form

Z amjfj =A ammgm + Z amjé‘j 3

j<m j>m
which yields the inequality
2 j<m lamjll&] < 2 j<m |am;l
|amm| — Zj>m lam;11&] ~ lamm| — Zj>m |am;|

The last term in the above equation has the form o5 /(d — 01) with d, o1, o2 all nonnegative
and d — o1 — o2 > 0. Therefore,

1Al <

1Al <

g2

s+ (d— 03 —01)

In the case when the matrix is only irreducibly diagonally dominant, the above proofs
only show that p(M~'N) < 1, where M 1N is the iteration matrix for either Jacobi or
Gauss-Seidel. A proof by contradiction will be used to show that in fact p(M ~1N) < 1.
Assume that X is an eigenvalue of A~ N with |A\| = 1. Then the matrix M 1N — X\I
would be singular and, as a result, A’ = N — AM would also be singular. Since |A\| = 1,
it is clear that A’ is also an irreducibly diagonally dominant matrix. This would contradict
Corollary 4.2. ]

<1
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4.2.4 SYMMETRIC POSITIVE DEFINITE MATRICES

It is possible to show that when A4 is Symmetric Positive Definite, then SOR will converge
for any w in the open interval (0, 2) and for any initial guess xo. In fact, the reverse is also
true under certain assumptions.

THEOREM 4.6 If A is symmetric with positive diagonal elements and for0 < w < 2,
SOR converges for any x if and only if A is positive definite.

4.2.5 PROPERTY A AND CONSISTENT ORDERINGS

A number of properties which are related to the graph of a finite difference matrix are
now defined. The first of these properties is called Property A. A matrix has Property A
if its graph is bipartite. This means that the graph is two-colorable in the sense defined in
Chapter 3: Its vertices can be partitioned in two sets in such a way that no two vertices in
the same set are connected by an edge. Note that, as usual, the self-connecting edges which
correspond to the diagonal elements are ignored.

DEFINITION 4.3 A matrix has Property A if the vertices of its adjacency graph can be
partitioned in two sets S1 and S», so that any edge in the graph links a vertex of S to a
vertex of Ss.

In other words, nodes from the first set are connected only to nodes from the second set
and vice versa. This definition is illustrated in Figure 4.5.

Figure 4.5 Graph illustration of Property A.

An alternative definition is that a matrix has Property A if it can be permuted into a
matrix with the following structure:

(D1 —-F
A = (—E D, ) , (4.42)
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where D, and D, are diagonal matrices. This structure can be obtained by first labeling
all the unknowns in Sy from 1 to ny, in which n; = |S;| and the rest from n; + 1 to n.
Note that the Jacobi iteration matrix will have the same structure except that the Dy, D,
blocks will be replaced by zero blocks. These Jacobi iteration matrices satisfy an important
property stated in the following proposition.

PROPOSITION 4.1 Let B be a matrix with the following structure:

_ O Blg
B = <321 0 ) ) (4.43)

and let L and U be the lower and upper triangular parts of B, respectively. Then

1. If u is an eigenvalue of B, then so is — p.
2. The eigenvalues of the matrix

1
B(a) =aL+ -U
a

defined for o # 0 are independent of ..

Proof. The first property is shown by simply observing that if (i) is an eigenvector
associated with , then (fv) is an eigenvector of B associated with the eigenvalue —p.

Consider the second property. For any «, the matrix B(«) is similar to B, i.e., B(a) =
XBX ' with X defined by
1 0O
X = (O a) :

This proves the desired result ]

A definition which generalizes this important property is consistently ordered matrices.
Varga [213] calls a consistently ordered matrix one for which the eigenvalues of B(«) are
independent of .. Another definition given by Young [232] considers a specific class of
matrices which generalize this property. We will use this definition here. Unlike Property
A, the consistent ordering property depends on the initial ordering of the unknowns.

DEFINITION 4.4 A matrix is said to be consistently ordered if the vertices of its adja-
cency graph can be partitioned in p sets Sy, Sa, ..., Sp with the property that any two
adjacent vertices i and j in the graph belong to two consecutive partitions Sy, and Sy, with
K=k-1ifj<i,andk'=k+1,ifj > 1.

It is easy to show that consistently ordered matrices satisfy property A: the first color is
made up of all the partitions S; with odd 4 and the second with the partitions S; with even
1.
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Example 4.2 Block tridiagonal matrices of the form

D, Ty
To1 Dy T
T = T32 D3
. : Tp—l,p
Tp,p—l Dp

whose diagonal blocks D; are diagonal matrices are called T-matrices. Clearly, such ma-
trices are consistently ordered. Note that matrices of the form (4.42) are a particular case
withp = 2.

Consider now a general, consistently ordered matrix. By definition, there is permuta-
tion 7 of {1,2,...,n} which is the union of p disjoint subsets

7T=7r1U7r2...U7rp (4.44)

with the property that if a;; # 0, 7 # ¢ and ¢ belongs to m;, then j belongs to 741
depending on whether i < j or 4« > j. This permutation = can be used to permute A
symmetrically. If P is the permutation matrix associated with the permutation s, then
clearly

A = PTAP

is a T-matrix.

Not every matrix that can be symmetrically permuted into a 7-matrix is consistently
ordered. The important property here is that the partition {m;} preserves the order of the
indices 4, j of nonzero elements. In terms of the adjacency graph, there is a partition of
the graph with the property that an oriented edge 4, j from s to j always points to a set
with a larger index if j > 4, or a smaller index otherwise. In particular, a very important
consequence is that edges corresponding to the lower triangular part will remain so in
the permuted matrix. The same is true for the upper triangular part. Indeed, if a nonzero
element in the permuted matrix is ajs j; = ar-1(3).-1(; # 0 with &' > j', then by
definition of the permutation 7(i') > 7(5"), ori = m(7~1(:)) > j = m(x~1(j)). Because
of the order preservation, it is necessary that « > j. A similar observation holds for the
upper triangular part. Therefore, this results in the following proposition.

PROPOSITION 4.2 Ifamatrix A is consistently ordered, then there exists a permuta-
tion matrix P such that PT AP is a T-matrix and

(PTAP), = PTALP, (PTAP)y = PTAyP (4.45)
in which Xy, represents the (strict) lower part of X and X the (strict) upper part of X

With the above property it can be shown that for consistently ordered matrices the
eigenvalues of B(«) as defined in Proposition 4.1 are also invariant with respect to a.

PROPOSITION 4.3 Let B be the Jacobi iteration matrix associated with a consistently
ordered matrix A, and let L and U be the lower and upper triangular parts of B, respec-
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tively. Then the eigenvalues of the matrix
1
B(a) =aL+—-U
a
defined for o # 0 do not depend on «.

Proof. First transform B(«) into a T-matrix using the permutation 7 in (4.44) provided
by the previous proposition

1
PTB(a)P = aPTLP + —PTUP.
6]

From the previous proposition, the lower part of PTBP is precisely L' = PTLP. Simi-
larly, the upper part is U’ = PTU P, the lower and upper parts of the associated 7'-matrix.
Therefore, we only need to show that the property is true for a T-matrix.

In this case, for any «, the matrix B(«) is similar to B. This means that B(a) =
XBX ! with X being equal to

1

ol 1T

where the partitioning is associated with the subsets 71, . . ., 7, respectively. ]

Note that 7T-matrices and matrices with the structure (4.42) are two particular cases
of matrices which fulfill the assumptions of the above propaosition. There are a number of
well known properties related to Property A and consistent orderings. For example, it is
possible to show that,

e Property A is invariant under symmetric permutations.
e A matrix has Property A if and only if there is a permutation matrix P such that
A" = P~1 AP is consistently ordered.

Consistently ordered matrices satisfy an important property which relates the eigenval-
ues of the corresponding SOR iteration matrices to those of the Jacobi iteration matrices.
The main theorem regarding the theory for SOR is a consequence of the following result
proved by Young [232]. Remember that

Msogr = (D —wE) ' (wF + (1 —w)D)
= -wD'E)"" (wDT'F + (1 - w)I).
THEOREM 4.7 Let A be a consistently ordered matrix such that a;; # 0 fori =

1,...,n, and letw # 0. Then if X is a nonzero eigenvalue of the SOR iteration matrix
Mgsor, any scalar p such that

A+ w—1)% = A?p? (4.46)

is an eigenvalue of the Jacobi iteration matrix B. Conversely, if u is an eigenvalue of the
Jacobi matrix B and if a scalar \ satisfies (4.46), then X is an eigenvalue of M sog.
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Proof. Denote D~'E by L and D='F by U, so that

Msor = (I —wL) ' (WU + (1 = w)I)
and the Jacobi iteration matrix is merely L 4+ U. Writing that ) is an eigenvalue yields

det (A — (I —wL) ™ (wU + (1 —w)I)) =0

which is equivalent to

det (MI —wL) — (WU 4+ (1 —w)I)) =0
or

det (A +w—-1)I—-w(AL+U)) =0.

Since w # 0, this can be rewritten as
-1
det ()\%I — (AL + U)) —0,

which means that (A + w — 1)/w is an eigenvalue of AL + U. Since A is consistently
ordered, the eigenvalues of AL + U which are equal to A'/2(AY/2L + A~1/2U) are the
same as those of A'/2(L + U), where L + U is the Jacobi iteration matrix. The proof
follows immediately. ]

This theorem allows us to compute an optimal value for w, which can be shown to be
equal to

2
Wopt = m (4.47)
A typical SOR procedure starts with some w, for example, w = 1, then proceeds with a
number of SOR steps with this w. The convergence rate for the resulting iterates is esti-
mated providing an estimate for p(B) using Theorem 4.7. A better w is then obtained from
the formula (4.47), and the iteration restarted. Further refinements of the optimal w are
calculated and retrofitted in this manner as the algorithm progresses.

—
ALTERNATING DIRECTION METHODS

The Alternating Direction Implicit (ADI) method was introduced in the mid-1950s by
Peaceman and Rachford [162] specifically for solving equations arising from finite dif-
ference discretizations of elliptic and parabolic Partial Differential Equations. Consider a
partial differential equation of elliptic type

2 (ae D)+ 2 () 28D = o) s

on a rectangular domain with Dirichlet boundary conditions. The equations are discretized
with centered finite differences using n + 2 points in the z direction and m + 2 points in
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the y direction, This results in the system of equations
Hu + Vu = b, (4.49)

in which the matrices H and V' represent the three-point central difference approximations

to the operators
0 0 0 0
% (a($7y)%> and 6_]/ (b(x7y)8_y) )

respectively. In what follows, the same notation is used to represent the discretized version
of the unknown function w.

The ADI algorithm consists of iterating by solving (4.49) in the z and y directions
alternatively as follows.

ALGORITHM 4.3: Peaceman-Rachford (PR) ADI

Fork =0.,1, ..., until convergence Do:
Solve: (H + ka)uk+% = (pr] —V)ur +b
Solve: (V + prl)uks1 = (pxd — H)upyy +b
EndDo

AW DNhR

Here, pi, k = 1,2,.. ., is a sequence of positive acceleration parameters.
The specific case where py, is chosen to be a constant p deserves particular attention.
In this case, we can formulate the above iteration in the usual form of (4.28) with
G = (V+pIl)~'(H - pI)(H + pI)~(V = pI), (4.50)
f=WV+pl) ' [I-(H—-pI)(H+pI) ']b (4.51)
or, when p > 0, in the form (4.22) with

1 1
M = %(H—FpI)(V-}-pI), N = %(H —pD)(V = pI). (4.52)

Note that (4.51) can be rewritten in a simpler form; see Exercise 5.
The ADI algorithm is often formulated for solving the time-dependent Partial Differ-

ential Equation
ou 0 ou 0 ou
5% om (a(xay)%) + oy (b(xay)a—y) (4.53)

on the domain (z,y,t) € @ x [0,T] = (0,1) x (0,1) x [0,7]. The initial and boundary
conditions are:

u($7y70) = xg(m,y), V(m,y) € Qa (4'54)
where 9 is the boundary of the unit square €. The equations are discretized with respect

to the space variables x and y as before, resulting in a system of Ordinary Differential
Equations:
du

— =H 4.
7 u+ Vu, (4.56)
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in which the matrices H and V' have been defined earlier. The Alternating Direction Im-
plicit algorithm advances the relation (4.56) forward in time alternately in the z and y
directions as follows:

1 1

1 1
(I = 58t V)ugrs = (I + 3A¢ Hyug g

The acceleration parameters p;, of Algorithm 4.3 are replaced by a natural time-step.

Horizontal ordering Vertical ordering
90— @6 GO0 6O
W—@W—B—6w—0—Ww OO WO~
O—E—90—0—uW—w O—E—WV—WVW—GB—=®
O—0——C0—60—"06B—"~06B OO0 0B—O«

Figure 4.6 The horizontal and vertical orderings for the un-
knowns in ADI.

Assuming that the mesh-points are ordered by lines in the z-direction, then the first
step of Algorithm 4.3 constitutes a set of m independent tridiagonal linear systems of size n
each. However, the second step constitutes a large tridiagonal system whose three diagonals
are offset by —m, 0, and m, respectively. This second system can also be rewritten as a set
of n independent tridiagonal systems of size m each by reordering the grid points by lines,
this time in the y direction. The natural (horizontal) and vertical orderings are illustrated
in Figure 4.6. Whenever moving from one half step of ADI to the next, we must implicitly
work with the transpose of the matrix representing the solution onthe n x m grid points.
This data operation may be an expensive task on parallel machines and often it is cited as
one of the drawbacks of Alternating Direction Methods in this case.

ADI methods were extensively studied in the 1950s and 1960s for the particular case
of positive definite systems. For such systems, H and V' have real eigenvalues and the
following is a summary of the main results in this situation. First, when H and V are
Symmetric Positive Definite, then the stationary iteration (o, = p > 0, for all k) converges.
For the model problem, the asymptotic rate of convergence of the stationary ADI iteration
using the optimal p is the same as that of SSOR using the optimal w. However, each ADI
step is more expensive than one SSOR step. One of the more important results in the
ADI theory is that the rate of convergence of ADI can be increased appreciably by using
a cyclic sequence of parameters, pi. A theory for selecting the best sequence of p;’s is
well understood in the case when H and V' commute [26]. For the model problem, the
parameters can be selected so that the time complexity is reduced to O(n? logn), for
details see [162].
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— e—
EXERCISES

N

1. Consider an n x n tridiagonal matrix of the form

a -1
-1 a -1
-1 a -1
To = -1 a -1 ’ (4.57)
-1 o -1
-1 «

where « is a real parameter.
a. Verify that the eigenvalues of T, are given by

Aj=a—2cos(j0) j=1,...,n,

where
7T
T n+1
and that an eigenvector associated with each A; is

gj = [sin(j8),sin(246), . .. ,sin(nj6)]" .

Under what condition on « does this matrix become positive definite?

b. Now take a = 2. How does this matrix relate to the matrices seen in Chapter 2 for one-
dimensional problems?

1. Will the Jacobi iteration converge for this matrix? If so, what will its convergence factor
be?

2¢.  Will the Gauss-Seidel iteration converge for this matrix? If so, what will its convergence
factor be?

1¢¢. For which values of w will the SOR iteration converge?

2. Prove that the iteration matrix G, of SSOR, as defined by (4.13), can be expressed as
Go=I-w?2-w)(D-wF)"'D(D-wE) 'A.
Deduce the expression (4.27) for the preconditioning matrix associated with the SSOR iteration.

3. Let A be a matrix with a positive diagonal D.

a. Obtain an expression equivalent to that of (4.13) for G, but which involves the matrices
S =D Y?2ED Y2 and Sp = D" Y/2FD /2,

b. Show that
D'?G,D™"? = (I —wSr) "I —wSr)  (wSr + (1 —w)I)(wSF + (1 —w)I)

c. Now assume that in addition to having a positive diagonal, A is symmetric. Prove that the
eigenvalues of the SSOR iteration matrix G, are real and nonnegative.
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4. Let
D, —F
—FE, D —F3
A= —FE3 Ds )
. —F,
—E, Dy

where the D; blocks are nonsingular matrices which are not necessarily diagonal.
a. What are the block Jacobi and block Gauss-Seidel iteration matrices?
b. Show a result similar to that in Proposition 4.3 for the Jacobi iteration matrix.

c. Show also that for w = 1 (1) the block Gauss-Seidel and block Jacobi iterations either both
converge or both diverge, and (2) when they both converge, then the block Gauss-Seidel
iteration is (asymptotically) twice as fast as the block Jacobi iteration.

5. According to formula (4.23), the f vector in iteration (4.22) should be equal to M ~'b, where b
is the right-hand side and M is given in (4.52). Yet, formula (4.51) gives a different expression
for f. Reconcile the two results, i.e., show that the expression (4.51) can also be rewritten as

£ =2p(V +pI)" (H + pI) ™.

6. Show that a matrix has Property A if and only if there is a permutation matrix P such that
A’ = P 1 AP is consistently ordered.

7. Consider a matrix A which is consistently ordered. Show that the asymptotic convergence rate
for Gauss-Seidel is double that of the Jacobi iteration.

0 E 0
B=|0 0 F
H 0 0

a. What are the eigenvalues of B? (Express them in terms of eigenvalues of a certain matrix
which depends on E, F', and H.)

b. Assume that a matrix A has the form A = D+ B, where D is a nonsingular diagonal matrix,
and B is three-cyclic. How can the eigenvalues of the Jacobi iteration matrix be related to
those of the Gauss-Seidel iteration matrix? How does the asymptotic convergence rate of the
Gauss-Seidel iteration compare with that of the Jacobi iteration matrix in this case?

8. A matrix of the form

is called a three-cyclic matrix.

c. Answer the same questions as in (2) for the case when SOR replaces the Gauss-Seidel itera-
tion.

d. Generalize the above results to p-cyclic matrices, i.e., matrices of the form
0 E:
0 E,
B = 0 .
0 Ep_
E, 0

NOTES AND REFERENCES. Two good references for the material covered in this chapter are Varga
[213] and and Young [232]. Although relaxation-type methods were very popular up to the 1960s,
they are now mostly used as preconditioners, a topic which will be seen in detail in Chapters 9
and 10. One of the main difficulties with these methods is finding an optimal relaxation factor for
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general matrices. Theorem 4.4 is due to Ostrowski. For details on the use of Gershgorin’s theorem in
eigenvalue problems, see [180]. The original idea of the ADI method is described in [162] and those
results on the optimal parameters for ADI can be found in [26]. A comprehensive text on this class of
techniques can be found in [220]. Not covered in this book is the related class of multigrid methods;
see the reference [115] for a detailed exposition. Closely related to the multigrid approach is the
Aggregation-Disaggregation technique which is popular in Markov chain modeling. A recommended
book for these methods and others used in the context of Markov chain modeling is [203]. |
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5
PROJECTION METHODS

Most of the existing practical iterative techniques for solving large linear
systems of equations utilize a projection process in one way or another.
A projection process represents a canonical way for extracting an approx-
imation to the solution of a linear system from a subspace. This chapter
describes these techniques in a very general framework and presents some
theory. The one-dimensional case is covered in detail at the end of the chap-
ter, as it provides a good preview of the more complex projection processes
to be seen in later chapters.

—
BASIC DEFINITIONS AND ALGORITHMS

Consider the linear system

Az = b, (5.1)

where A is an n x n real matrix. In this chapter, the same symbol A is often used to de-
note the matrix and the linear mapping in R" that it represents. The idea of projection
techniques is to extract an approximate solution to the above problem from a subspace of
R". If K is this subspace of candidate approximants, or search subspace, and if m is its
dimension, then, in general, m constraints must be imposed to be able to extract such an
approximation. A typical way of describing these constraints is to impose m (independent)
orthogonality conditions. Specifically, the residual vector b — Az is constrained to be or-
thogonal to m linearly independent vectors. This defines another subspace £ of dimension
m which will be called the subspace of constraints or left subspace for reasons that will
be explained below. This simple framework is common to many different mathematical
methods and is known as the Petrov-Galerkin conditions.

There are two broad classes of projection methods: orthogonal and oblique. In an
orthogonal projection technique, the subspace £ is the same as K. In an oblique projection

122
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method, £ is different from X and may be totally unrelated to it. This distinction is rather
important and gives rise to different types of algorithms.

5.1.1 GENERAL PROJECTION METHODS

Let A be an n x n real matrix and X and £ be two m-dimensional subspaces of R". A
projection technique onto the subspace K and orthogonal to £ is a process which finds an
approximate solution Z to (5.1) by imposing the conditions that Z belong to K and that the
new residual vector be orthogonal to £,

Findz € K, suchthat b— Az L L. (5.2)

If we wish to exploit the knowledge of an initial guess zq to the solution, then the approxi-
mation must be sought in the affine space = + K instead of the homogeneous vector space
K. This requires a slight modification to the above formulation. The approximate problem
should be redefined as

Find Z €29+ K, suchthat b— Az 1 L. (5.3)

Note that if Z is written in the form & = zo + 4, and the initial residual vector r is defined
as

ro = b— Axg, (5.4)
then the above equation becomes b — A(xzo +d) L Lor

ro —Ad L L.
In other words, the approximate solution can be defined as
T=zo+6, d€ K, (5.5)
(ro — Ad,w) =0, Yw € L. (5.6)

The orthogonality condition (5.6) imposed on the new residual e, = 79 — A4 is illus-
trated in Figure 5.1.

A5 T'O

Tnew

Figure 5.1 Interpretation of the orthogonality condition.

This is a basic projection step, in its most general form. Most standard techniques
use a succession of such projections. Typically, a new projection step uses a new pair of
subspace K and £ and an initial guess zo equal to the most recent approximation obtained



124 CHAPTER 5 PROJECTION METHODS

from the previous projection step. Projection methods form a unifying framework for many
of the well known methods in scientific computing. In fact, virtually all of the basic iterative
techniques seen in the previous chapter can be considered projection techniques. Whenever
an approximation is defined via m degrees of freedom (subspace X) and m constraints
(Subspace £), a projection process results.

Example 5.1 In the simplest case, an elementary Gauss-Seidel step as defined by (4.6)
is nothing but a projection step with K = £ = span{e;}. These projection steps are cycled
fori = 1,...,n until convergence. See Exercise 1 for an alternative way of selecting the
sequence of e;’s.

Orthogonal projection methods correspond to the particular case when the two sub-
spaces £ and K are identical. The distinction is particularly important in the Hermitian
case since we are guaranteed that the projected problem will be Hermitian in this situa-
tion, as will be seen shortly. In addition, a number of helpful theoretical results are true for
the orthogonal case. When £ = K, the Petrov-Galerkin conditions are called the Galerkin
conditions.

5.1.2 MATRIX REPRESENTATION

Let V = [v1,...,vmn], an n x m matrix whose column-vectors form a basis of K and,
similarly, W = [w1, ..., wn], an n x m matrix whose column-vectors form a basis of L.
If the approximate solution is written as

z=z9+ Vy,

then the orthogonality condition leads immediately to the following system of equations
for the vector y:

WTAVy =WTr,.
If the assumption is made that the m x m matrix W7 AV is nonsingular, the following
expression for the approximate solution Z results,
F=xo + VIWTAV)'WTr,. (5.7)

In many algorithms, the matrix W7 AV does not have to be formed since it is available
as a by-product of the algorithm. A prototype projection technique is represented by the
following algorithm.
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ALGORITHM 5.1: Prototype Projection Method

1. Until convergence, Do:
2 Select a pair of subspaces K and £

3. Choose basesV = [v1,...,vm] and W = [wy,...,wn] for K and £
4. r:=b-Ax
5

6.

7.

y:=WTAV) w7y
z:=z+Vy
EndDo

The approximate solution is defined only when the matrix W7 AV is nonsingular,
which is not guaranteed to be true even when A is nonsingular.

Example 5.2 As an example, consider the matrix

o1
=(7 1),

where I is the m x m identity matrix and O is the m x m zero matrix,and letV =W =
[e1,€a,- - ., em]. Although A is nonsingular, the matrix W1 AV is precisely the O block in
the upper-left corner of A and is therefore singular.

There are two important particular cases where the nonsingularity of W7 AV is guar-
anteed. These are discussed in the following proposition.

PROPOSITION 5.1 LetA, £, and K satisfy either one of the two following conditions,

2. A is positive definite and £ = K, or
2. A is nonsingular and £ = AK.

Then the matrix B = W™ AV is nonsingular for any bases V and W of K and L, respec-
tively.

Proof. Consider first the case (i). Let V' be any basis of K and W be any basis of £. In
fact, since £ and K are the same, W can always be expressed as W = VG, where G is a
nonsingular m x m matrix. Then

B=wTAV = GTvTAV.

Since A is positive definite, so is VT AV, see Chapter 1, and this shows that B is non-
singular.

Consider now case (ii). Let V' be any basis of X and W be any basis of £. Since
L = AK, W can be expressed in this case as W = AV G, where G is a nonsingular
m X m matrix. Then

B=WTAV =GT(AV)T AV. (5.8)

Since A is nonsingular, the n x m matrix AV is of full rank and as a result, (AV)T AV is
nonsingular. This, along with (5.8), shows that B is nonsingular. ]
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Now consider the particular case where A is symmetric (real) and an orthogonal pro-
jection technique is used. In this situation, the same basis can be used for £ and K, which
are identical subspaces, and the projected matrix, which is B = VT AV, is symmetric. In
addition, if the matrix A is Symmetric Positive Definite, then so is B.

I
GENERAL THEORY

This section gives some general theoretical results without being specific about the sub-
spaces K and £ which are used. The goal is to learn about the quality of the approximation
obtained from a general projection process. Two main tools are used for this. The first is
to exploit optimality properties of projection methods. These properties are induced from
those properties of projectors seen in Section 1.12.4 of Chapter 1. The second tool consists
of interpreting the projected problem with the help of projection operators in an attempt to
extract residual bounds.

5.2.1 TWO OPTIMALITY RESULTS

In this section, two important optimality results will be established that are satisfied by the
approximate solutions in some cases. Consider first the case when A is SPD.

PROPOSITION 5.2 Assume that A is Symmetric Positive Definite and £ = K. Then
a vector & is the result of an (orthogonal) projection method onto X with the starting vector
xo if and only if it minimizes the A-norm of the error over x¢ + K, i.e., if and only if

E(Z)= min E
() = min E(z),
where

E(z) = (A(zy — z), 2, —2)'/2.
Proof. Aswas seen in Section 1.12.4, for Z to be the minimizer of E(x), it is necessary
and sufficient that z,. — & be A-orthogonal to all the subspace K. This yields

(A(zx — 3),v) =0, Vv €K,
or, equivalently,

(b—Az,v)=0, Yv €K,

which is the Galerkin condition defining an orthogonal projection process for the approxi-
mation Z. ]

We now take up the case when £ is defined by £ = AK.
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PROPOSITION 5.3 Let A be an arbitrary square matrix and assume that L = AK.
Then a vector % is the result of an (oblique) projection method onto K orthogonally to £
with the starting vector xq if and only if it minimizes the 2-norm of the residual vector
b— Az overx € xo + K, i.e, ifand only if

R(@) = Jin R(z),

where R(z) = ||b — Az||2.

Proof. Aswas seen in Section 1.12.4, for Z to be the minimizer of R(x), it is necessary
and sufficient that b — A% be orthogonal to all vectors of the form v = Ay, where y belongs
to K, i.e,

(b—AZ,v) =0, Vv € AK,

which is precisely the Petrov-Galerkin condition that defines the approximate solution Z.
|

It is worthwhile to point out that A need not be nonsingular in the above proposition. When
A is singular there may be infinitely many vectors Z satisfying the optimality condition.

5.2.2 INTERPRETATION IN TERMS OF PROJECTORS

We now return to the two important particular cases singled out in the previous section,
namely, the cases £ = K and £ = AK. In these cases, the result of the projection process
can be interpreted easily in terms of actions of orthogonal projectors on the initial residual
or initial error. Consider the second case first, as it is slightly simpler. Let r¢ be the initial
residual rg = b — Az, and ¥ = b — AZ the residual obtained after the projection process
with £ = AK. Then,

F=b— A(xo +d) =ro — Ad. (5.9)

In addition, ¢ is obtained by enforcing the condition that ro — Aé be orthogonal to AX.
Therefore, the vector AJ is the orthogonal projection of the vector r¢ onto the subspace
AK. This is illustrated in Figure 5.2. Hence, the following proposition can be stated.

PROPOSITION 5.4 LetZ be the approximate solution obtained from a projection pro-

cess onto K orthogonally to £ = AK, and let 7 = b — A% be the associated residual. Then,
7= (I — P)rog, (5.10)

where P denotes the orthogonal projector onto the subspace AK.

A result of the proposition is that the 2-norm of the residual vector obtained after one

projection step will not exceed the initial 2-norm of the residual, i.e.,

I7]l2 < flroll2,

a result which has been established already. This class of methods may be termed residual
projection methods.
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AK

Q: ,,,,,,,,,,,,,,, [ ] 45 = Pry

Figure 5.2 Interpretation of the projection process for the
case when £ = AK.

Now consider the case where £ = K and A is Symmetric Positive Definite. Let dg =
x. — o be the initial error, where .. denotes the exact solution to the system and, similarly,
letd = =, — & where & = zo + 4 is the approximate solution resulting from the projection
step. Then (5.9) yields the relation

Ad =7 = A(dy — 6),
where 4 is now obtained by constraining the residual vector rq — A§ to be orthogonal to X:
(ro—Ad,w) =0, Yw € K.

The above condition is equivalent to

(A(do — 9),w) =0, Yw € K.
Since A is SPD, it defines an inner product (see Section 1.11) which is usually denoted by
(-,.)a and the above condition becomes

(do— 0, w)a =0, Yw € K.

The above condition is now easy to interpret: The vector § is the A-orthogonal projection
of the initial error dy onto the subspace K.

PROPOSITION 5.5 LetZ be the approximate solution obtained from an orthogonal
projection process onto K and let d = x. — % be the associated error vector. Then,

d = (I — Py)dy,
where P4 denotes the projector onto the subspace X, which is orthogonal with respect to
the A-inner product.

A result of the proposition is that the A-norm of the error vector obtained after one projec-
tion step does not exceed the initial A-norm of the error, i.e.,

lldla < lido]la,
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which is expected because it is known that the A-norm of the error is minimized in z¢ + X.
This class of methods may be termed error projection methods.

5.2.3 GENERAL ERROR BOUND

If no vector of the subspace XC comes close to the exact solution z, then it is impossible
to find a good approximation % to x from K. Therefore, the approximation obtained by
any projection process based on K will be poor. On the other hand, if there is some vector
in K which is a small distance ¢ away from z, then the question is: How good can the
approximate solution be? The purpose of this section is to try to answer this question.

Pxe kK, c—P.xLK
Qfz € K, z—Qfz 1 L

L /
QK:C/ v P.x

Figure 5.3 Orthogonal and obligue projectors.
Let P, be the orthogonal projector onto the subpace K and let Qﬁ be the (oblique)
projector onto X and orthogonally to £. These projectors are defined by
Pex € K, 1 —Pex LK,
Qfz € K, z—-Qfz L L,
and are illustrated in Figure 5.3. The symbol A,, is used to denote the operator
Am = QAP ,

and it is assumed, without loss of generality, that 2y = 0. Then according to the property
(1.54), the approximate problem defined in (5.5 - 5.6) can be reformulated as follows: find
Z € K such that

QL (b— Az) =0,
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or, equivalently,
AmE=QLb, & € K.

Thus, an n-dimensional linear system is approximated by an m-dimensional one.

The following proposition examines what happens in the particular case when the
subspace K is invariant under A. This is a rare occurrence in practice, but the result helps
in understanding the breakdown behavior of the methods to be considered in later chapters.

PROPOSITION 5.6 Assume that K is invariant under A, o = 0, and b belongs to
K. Then the approximate solution obtained from any (oblique or orthogonal) projection
method onto K is exact.

Proof. An approximate solution Z is defined by
QL (b— Az) =0,

where Z is a nonzero vector in K. The right-hand side b is in X, so we have Qﬁb =b.
Similarly, Z belongs to X which is invariant under A, and therefore, QﬁAzf: = AZ. Then
the above equation becomes

b— Az =0,

showing that Z is an exact solution. ]

The result can be extended trivially to the case where ¢ # 0. The required assumption in
this case is that the initial residual 1o = b — Az belongs to the invariant subspace K.

An important quantity for the convergence properties of projection methods is the
distance ||(I — P,.)z.||2 of the exact solution z,. from the subspace K. This quantity plays
a key role in the analysis of projection methods. Note that the solution z . cannot be well
approximated from K, if ||(I — P, )z.||2 is not small because

12 = 2ull2 2 |(T = Py )zs|l2-

The fundamental quantity ||(I — P, )z«||2/||z«||2 i the sine of the acute angle between the
solution z, and the subspace K. The following theorem establishes an upper bound for the
residual norm of the exact solution with respect to the approximate operator A,,,.

THEOREM 5.1 Lety = [|Q5A(I — P,)l|2 and assume that b is a member of K and
xzo = 0. Then the exact solution x,. of the original problem is such that

b= Amzallz < AT = Py)s|l2: (5.11)

Proof. Sinceb € K, then
b— Amzs = Q5(b— AP z)
= Qﬁ (Az, — AP, z,)
= QF Az — P xy)
= QﬁA(I =P )T
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Noting that I — P, is a projector, it follows that
16— Amzillz = QAT = P )T = Pe)zll2
<IQLAUI = P)llolI(T = Pi)slla,

which completes the proof. [ ]

It is useful to consider a matrix interpretation of the theorem. We consider only the
particular case of orthogonal projection methods (£ = K). Assume that V' is unitary, i.e.,
that the basis {v1, ..., vy, } is orthonormal, and that W = V. Observe that b = VV b,
Equation (5.11) can be represented in the basis V' as

b= VVTAV)VTz.]l2 < AT = Pe)al2-
However,
Ib=VVTAVYV 2, | = [VVIb— (VTAV)V 2,5
=|IVTo - (VTAV)V Tz, ||5.

Thus, the projection of the exact solution has a residual norm with respect to the matrix
B = VTAV, which is of the order of ||(I — P, )z ||z

—
ONE-DIMENSIONAL PROJECTION PROCESSES

B

This section examines simple examples provided by one-dimensional projection processes.
In what follows, the vector r denotes the residual vector r = b — Az for the current
approximation z. To avoid subscripts, arrow notation is used to denote vector updates.
Thus, “z < x + ar” means “compute x + ar and overwrite the result on the current z.”
(This is known as a SAXPY operation.)

One-dimensional projection processes are defined when

K = span{v} and L = span{w},

where v and w are two vectors. In this case, the new approximation takes the form
z < z + aw and the Petrov-Galerkin condition » — A5 L w yields

o)
(Av,w)’

Following are three popular choices to be considered.

(5.12)

5.3.1 STEEPEST DESCENT

The steepest descent algorithm is defined for the case where the matrix A is Symmetric
Positive Definite. It consists of taking at each step v = = and w = r. This yields an
iteration described by the following algorithm.
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ALGORITHM 5.2: Steepest Descent Algorithm

1. Until convergence, Do:
2 r<b— Az

3 a+«(rr)/(Ar,r)
4 T+ ar

5. EndDo

Each step of the above iteration minimizes

f@) = llo = 2% = (A = z), (z = z.)),

over all vectors of the form x + ad, where d is the negative of the gradient direction —V f.
The negative of the gradient direction is locally the direction that yields the fastest rate of
decrease for f. Next, we prove that convergence is guaranteed when A is SPD. The result
is a consequence of the following lemma known as the Kantorovich inequality.

LEMMA 5.1 (Kantorovichinequality) Let B be any Symmetric Positive Definite real
matrix and A0z, Amin its largest and smallest eigenvalues. Then,
(B;E7 .CL') (B_IIL',.'L') < ()‘max + )\’I’)'LH'L)2
(Z‘, 'T)Q - 4 /\maz/\mz’n ’

Vx # 0. (5.13)

Proof. Clearly, it is equivalent to show that the result is true for any unit vector x. Since
B is symmetric, it is unitarily similar to a diagonal matrix, B = Q7 D(, and

(Bz,2)(B~'z,2) = (Q"DQz,z)(Q" D' Qz, )
= (DQz,Qz)(D™'Qz,Qx).
Settingy = Qz = (v1,-..,yn)T, and 3; = y?, note that

= (Dy,y) Zﬁz ‘

is a convex combination of the eigenvalues A;,7 = 1,...,n. The following relation holds,
(Bz,z)(B~ 'z, 2) = M)(y)
with

¢( ) D y, Zﬂz

Noting that the function 1/z is convex, ¥ (y) is bounded from above by the linear curve
that joins the points (A1, 1/A1) and (A,,1/A,), i.e

1 1 A

< — 4+ —- .

Therefore,

(Bz,2)(B~'z,5) = Mb(y) < A (Ai sl 2 ) .
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[
A A AN An

The maximum of the right-hand side is reached for A = %()\1 + An) vielding,

A1+ An)?
ZONID.
which gives the desired result. ]

(Bz,2)(B™'w,z) = M)(y) <

This lemma helps to establish the following result regarding the convergence rate of
the method.

THEOREM 5.2 Let A be a Symmetric Positive Definite matrix. Then, the A-norms of
the error vectors dy, = x. — xy, generated by Algorithm 5.2 satisfy the relation

Amaz = Ami
d < Qmaz = Aminy g 514
Il < S (514)

and Algorithm 5.2 converges for any initial guess x.
Proof. Start by observing that ||dk+1]% = (Adgt1,dk+1) = (Tk+1,drs1) and then by
simple substitution,

ldksil% = (risr, di — axry)

Since by construction the new residual vector r,1 must be orthogonal to the search direc-
tion r, the second term in the right-hand side of the above equation is zero. Thus,

ldks1lls = (re — cxAry, dy) (5.15)
= (ri, A7 ) — ag(re, i) (5.16)

— 2 1_ (T'k,’f'k) (rkark) . 1
||dk||A( (rk,Ark) X (Tk,A_lTk) (5 7)

The result follows by applying the Kantorovich inequality (5.13). ]
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5.3.2 MINIMAL RESIDUAL (MR) ITERATION

We now assume that A is not necessarily symmetric but only positive definite, i.e., its
symmetric part A + AT is Symmetric Positive Definite. Taking at each step v = r and
w = Ar, the following iterative procedure results.

ALGORITHM 5.3: Minimal Residual lteration

Until convergence, Do:
r+b— Ax
a « (Ar,r)/(Ar, Ar)
T x+ar

EndDo

A WNR

Here, each step minimizes f(z) = ||b — Az||3 in the direction r. The iteration converges

under the condition that A is positive definite as is stated in the next theorem.

THEOREM 5.3 Let A be a real positive definite matrix, and let
p=Amin(A+AT)/2, o = || Al

Then the residual vectors generated by Algorithm 5.3 satisfy the relation

a2\ 1/2
7
el < (1= 5) Il (519)

and Algorithm (5.3) converges for any initial guess x.

Proof. \We proceed similarly to the steepest descent method, starting with the relation

Iresalls = (rk — agArg, e — ap Ary) (5.19)
= (Tk — OékA’I‘k,Tk) — ak(rk — OékA’I“k, A’f‘k). (5.20)
By construction, the new residual vector r;, — ayArg must be orthogonal to the search

direction Ary, and, as a result, the second term in the right-hand side of the above equation
vanishes and we obtain

Irksall3 = (e — agArg, i)
= (’l‘k,T‘k) — Otk(AT‘k,T‘k)

_ o (Ari,mi) (Arg,7i)
= ||rell3 (1 () (A'r‘k,AT'k)> (5.21)

= rul (1 - G Inds ),

(T'kaTk)z ||ATk||%

From Theorem 1.19, it can be stated that
(Az, x)

o) >p>0, (5.22)
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where g = Apin(A + AT)/2. The desired result follows immediately by using the in-
equality [|Ar[l2 < [lA[l2 [|7&[l2- u

There are alternative ways of obtaining inequalities that prove convergence. For ex-
ample, starting from (5.21), (5.22) can be used again for the term (Ary,r)/(rx, %) and
similarly, we can write

-1 -1 =T
(Az,z)  (Az,A"'(Ax)) > A (A +A ) >0,

(Az,Az)  (Az,Az) ~ 2
since A~! is also positive definite. This would yield the inequality
Irerall < (1= p(A)nA™Y) [Irell3, (5.23)

in which u(B) = Apnin (B + BT) /2.

Another interesting observation is that if we define
(Arg, i)
CoOS Ly = 77—,
A7k |2 ll7& |2

then (5.21) can be rewritten as

2 2 (AT’]“ ’f'k) (Ark ) Tk) )
Tz = [lrellz {1 —
Ireally = el (1= el et
= ||r|l? (1 — cos® ék)
= [lrgll3 sin® /.
At each step the reduction in the residual norm is equal to the sine of the acute angle
between r and Ar. The convergence factor is therefore bounded by
p=  max sin /(z, Az),
z€eR", 2£0

in which /(z, Ax) is the acute angle between z and Az. The maximum angle /(z, Az) is
guaranteed to be less than /2 when A is positive definite as the above results show.

5.3.3 RESIDUAL NORM STEEPEST DESCENT

In the residual norm steepest descent algorithm, the assumption that A is positive definite
is relaxed. In fact, the only requirement is that A is a (square) nonsingular matrix. At
each step the algorithm uses v = A”r and w = Aw, giving the following sequence of
operations:

r<b—Az,v=ATr,
a + [lv]13/[|Av]l3, (5.24)
T T+ av.

However, an algorithm based on the above sequence of operations would require three
matrix-by-vector products, which is three times as many as the other algorithms seen in
this section. The number of matrix-by-vector operations can be reduced to two per step by
computing the residual differently. This variant is as follows.
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ALGORITHM 5.4: Residual Norm Steepest Descent

Computer := b — Ax
Until convergence, Do:
v:=ATr
Compute Av and a := ||v||3/]| Av||3
T =T+ au
r:=r—acdv
EndDo

NSO WNR

Here, each step minimizes f(z) = ||b — Az||2 in the direction —V f. As it turns out,
this is equivalent to the steepest descent algorithm of Section 5.3.1 applied to the normal
equations AT Az = ATb. Since AT A is positive definite when A is nonsingular, then,
according to Theorem 5.2, the method will converge whenever A is nonsingular.

—
ADDITIVE AND MULTIPLICATIVE PROCESSES

We begin by considering again the block relaxation techniques seen in the previous chapter.
To define these techniques, a set-decomposition of S = {1,2,...,n} is considered as the
definition of p subsets Si,. .., S, of S with

sics, | si=s
i=1,-,p
Denote by n; the size of S; and define the subset S; as
Si = {mi(1),m;(2),...,mi(ni)}
Let V; be the n x n; matrix

Vi = [emi(1), €mi(2)> - - - » Emi(ni))s

where each e; is the j-th column of the n x n identity matrix.

If the block Jacobi and block Gauss-Seidel algorithms, Algorithms 4.1 and 4.2, are
examined carefully, it can be observed that each individual step in the main loop (lines 2 to
5) represents an orthogonal projection process over K; = span{V;}. Indeed, the equation
(4.17) is exactly (5.7) with W = V = V;. This individual projection step modifies only the
components corresponding to the subspace K;. However, the general block Jacobi iteration
combines these modifications, implicitly adding them together, to obtain the next iterate
Zk+1. Borrowing from the terminology of domain decomposition techniques, this will be
called an additive projection procedure. Generally, an additive projection procedure can
be defined for any sequence of subspaces K;, not just subspaces spanned by the columns
of the identity matrix. The only requirement is that the subspaces K; should be distinct,
although they are allowed to overlap.

Let a sequence of p orthogonal systems V; be given, with the condition that span{V;}
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# span{V;} for i # j, and define
A; = V5 AV,
The additive projection procedure can be written as
Yi = Ai_lViT(b—Axk), i=1,...,p,
p
Ty = ok + Y Vivi, (5.25)

i=1
which leads to the following algorithm.

ALGORITHM 5.5: Additive Projection Procedure

1. Fork=0,1,..., until convergence, Do:
2. Fori=1,2,...,pDo:

3. Solve A,y, = V;T(b — A.’L‘k)

4 EndDo

5. Setmpir=xr+y 0y Viyi

6. EndDo

Defining r, = b — Axy, the residual vector at step &, then clearly
The1 = b — Azpq1

p
=b— Az, — Y AV; (VT AV) ™ Vi

i=1
p
= 1= AV (VT AV) T VT | g
i=1
Observe that each of the p operators
Pi= AV (V1 4V) T V!

represents the projector onto the subspace spanned by AV;, and orthogonal to V;. Often,
the additive processes are used in conjunction with an acceleration parameter w, thus (5.25)
is replaced by

ylez_lv;T(b_Awk)a izla"'7p7
P
Ty =Tk +w Y Vigi.

i=1

Even more generally, a different parameter w; can be used for each projection, i.e.,
yz:Az_l‘/zT(b_Axk)a i:]-;"'apa

P
T =z + Y wiVigi.
i=1
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The residual norm in this situation is given by

V4
Tkl = (I - Zwipi) Tk, (5.26)
i=1

considering the single w parameter as a particular case. Exercise 14 gives an example of
the choice of w; which has the effect of producing a sequence with decreasing residual
norms.

We now return to the generic case, where w; = 1, Vi. A least-squares option can be
defined by taking for each of the subproblems L; = AK;. In this situation, P; becomes an
orthogonal projector onto AK;, since

P = AV; (AV)TAV;) ' (AV)T.

It is interesting to note that the residual vector obtained after one outer loop is related to
the previous residual by

p
T4l = (I— sz) Tks
i=1
where the P;’s are now orthogonal projectors. In particular, in the ideal situation when
the AV;’s are orthogonal to each other, and the total rank of the P;’s is n, then the exact
solution would be obtained in one outer step, since in this situation

p
I—ZPi =0.
i=1

Thus, the maximum reduction in the residual norm is achieved when the V;’s are A-
orthogonal to one another.

Similar to the Jacobi and Gauss-Seidel iterations, what distinguishes the additive and
multiplicative iterations is that the latter updates the component to be corrected at step
1 immediately. Then this updated approximate solution is used to compute the residual
vector needed to correct the next component. The Jacobi iteration uses the same previous
approximation z, to update all the components of the solution. Thus, the analogue of the
block Gauss-Seidel iteration can be defined as follows.

ALGORITHM 5.6: Multiplicative Projection Procedure

1. Until convergence, Do:

2 Fori=1,2,...,p Do:

3 Solve A;y = VI (b — Ax)
4. Setz :=x+ Viy

5 EndDo

6. EndDo
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— e—
EXERCISES

N

1. Consider the linear system Az = b, where A is a Symmetric Positive Definite matrix.

a. Consider the sequence of one-dimensional projection processes with X = £ = span{e;},
where the sequence of indices 7 is selected in any fashion. Let z,.., be a new iterate after
one projection step fromz and letr = b — Az, d = A™'b— z, and dnew = A7 ' — Znew.
Show that

(Adnew,dnew) = (Ad: d) - (7": ei)z/aii-

Does this equality, as is, establish convergence of the algorithm?

b. Assume now that ¢ is selected at each projection step to be the index of a component of
largest absolute value in the current residual vector r = b — Az. Show that

1 1/2
new < 1-— YT 3
ldneulla < ( — A)> ldlla

in which x(A) is the spectral condition number of A. [Hint: Use the inequality |e]r| >
n~'/2||7||2.] Does this prove that the algorithm converges?

2. Consider the linear system Ax = b, where A is a Symmetric Positive Definite matrix. Consider
a projection step with K = £ = span{v} where v is some nonzero vector. Let ..., be the new
iterate after one projection step fromz and letd = A1 — z, and dpew = A 10 — Tnew.

a. Show that
(Adnew, dnew) = (Ad,d) — (r,v)° /(Av,v).

Does this equality establish convergence of the algorithm?

b. In Gastinel’s method, the vector v is selected in such a way that (v,r) = [|r||1, €.0., by
defining the components of v to be v; = sign(ef'r), where r = b — Az is the current
residual vector. Show that

1 1/2
new < YA LY s
l[dnewlla < (1 nn2(A)> lldlla

in which k(A) is the spectral condition number of A. Does this prove that the algorithm
converges?

c. Compare the cost of one step of this method with that of cyclic Gauss-Seidel (see Example
5.1) and that of “optimal” Gauss-Seidel where at each step = £ = span{e;} and ¢ is a
component of largest magnitude in the current residual vector.

3. In Section 5.3.3, it was shown that taking a one-dimensional projection technique with £ =
span {ATr} and £ = span{AATr} is mathematically equivalent to using the usual steepest
descent algorithm applied to the normal equations A” Az = AT'. Show that an orthogonal pro-
jection method for A7 Az = ATb using a subspace K is mathematically equivalent to applying
a projection method onto /C, orthogonally to £ = AK for solving the system Az = b.

1 -6 0
A=[6 2 3].
0 3 2

4, Consider the matrix
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a. Find a rectangle or square in the complex plane which contains all the eigenvalues of A,
without computing the eigenvalues.

b. Is the Minimal Residual iteration guaranteed to converge for a linear system with the ma-

trix A?
D —F 1 _ b1
—FE —D» z2 )~ \ b

in which D, and D, are both nonsingular matrices of size m each.

. Consider the linear system

a. Define an orthogonal projection method using the set of vectors e1,...,em, 1.6, L = K =
span{er, ..., em }. Write down the corresponding projection step (x; is modified into ).
Similarly, write the projection step for the second half of the vectors, i.e., when £ = K =
span{em+1, - -.,€n}.

b. Consider an iteration procedure which consists of performing the two successive half-steps
described above until convergence. Show that this iteration is equivalent to a (standard)
Gauss-Seidel iteration applied to the original system.

c. Now consider a similar idea in which K is taken to be the same as before for each half-step
and £ = AK. Write down the iteration procedure based on this approach. Name another
technique to which it is mathematically equivalent.

. Consider the linear system Az = b, where A is a Symmetric Positive Definite matrix. We define

a projection method which uses a two-dimensional space at each step. At a given step, take

L = K = span{r, Ar}, where r = b — Az is the current residual.

a. For a basis of K use the vector r and the vector p obtained by orthogonalizing Ar against »
with respect to the A-inner product. Give the formula for computing p (no need to normalize
the resulting vector).

b. Write the algorithm for performing the projection method described above.

c. Will the algorithm converge for any initial guess zo? Justify the answer. [Hint: Exploit the
convergence results for one-dimensional projection techniques.]

. Consider projection methods which update at each step the current solution with linear combi-

nations from two directions: the current residual r» and Ar.

a. Consider an orthogonal projection method, i.e., at each step £ = K = span{r, Ar}. As-
suming that A is Symmetric Positive Definite, establish convergence of the algorithm.

b. Consider a least-squares projection method in which at each step X = span{r, Ar} and £ =
AK. Assuming that A is positive definite (not necessarily symmetric), establish convergence
of the algorithm.

[Hint: The convergence results for any of the one-dimensional projection techniques can be
exploited.]

. The “least-squares” Gauss-Seidel relaxation method defines a relaxation step as £ new = z+0 €;

(same as Gauss-Seidel), but chooses § to minimize the residual norm of z,,e..
a. Write down the resulting algorithm.

b. Show that this iteration is mathematically equivalent to a Gauss-Seidel iteration applied to
the normal equations AT Az = ATb.

. Derive three types of one-dimensional projection algorithms in the same manner as was done in

Section 5.3, by replacing every occurrence of the residual vector r by a vector e;, a column of
the identity matrix.



EXERCISES AND NOTES 141

10.

11.

12.

13.

14.

Derive three types of one-dimensional projection algorithms in the same manner as was done in
Section 5.3, by replacing every occurrence of the residual vector r by a vector Ae;, a column of
the matrix A. What would be an “optimal” choice for 7 at each projection step? Show that the
method is globally convergent in this case.

A minimal residual iteration as defined in Section 5.3.2 can also be defined for an arbitrary

search direction d, not necessarily related to » in any way. In this case, we still define e = Ad.

a. Write down the corresponding algorithm.

b. Under which condition are all iterates defined?

¢. Under which condition on d does the new iterate make no progress, i.e., ||rx+1ll2 = ||7x||2?

d. Write a general sufficient condition which must be satisfied by d at each step in order to
guarantee convergence.

Consider the following real-valued functions of the vector variable z, where A and b are the
coefficient matrix and right-hand system of a given linear system Az = band z. = A~ 'b.

a(z) = |le. - 2ll3,
f(@) = |Ib - Azl3,
9(z) = [|A"0 — A" Ag]l3,
h(z) = 2(b,z) — (Az, ).

. Calculate the gradients of all four functions above.
How is the gradient of g related to that of f?
How is the gradient of f related to that of A when A is symmetric?

. How does the function h relate to the A-norm of the error . — = when A is Symmetric
Positive Definite?

&0 &8

The block Gauss-Seidel iteration can be expressed as a method of successive projections. The
subspace K used for each projection is of the form

K = span{e;,eit1,...,€itp}-

What is £? Not too commonly used an alternative is to take £ = AK, which amounts to solving
a least-squares problem instead of a linear system. Develop algorithms for this case. What are
the advantages and disadvantages of the two approaches (ignoring convergence rates)?

Let the scalars w; in the additive projection procedure satisfy the constraint

r
Y wi=1. (5.27)
=1

It is not assumed that each w; is positive but only that |w;| < 1 for all 4. The residual vector is
given by the Formula (5.26) or, equivalently,

p
Tk+1 = Zwi(l - Pi)rk.
i=1

a. Show that in the least-squares case, we have ||rk+1]|2 < ||r&||2 for any choice of w;’s which
satisfy the constraint (5.27).

b. We wish to choose a set of w;’s such that the 2-norm of the residual vector r41 is minimal.
Determine this set of w;’s, assuming that the vectors (I — P;)ry, are all linearly independent.
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c. The “optimal” w;’s provided in the previous question require the solution of a p x p Symmet-
ric Positive Definite linear system. Let z; = V;y; be the “search directions” provided by each
of the individual projection steps. To avoid this difficulty, a simpler strategy is used which
consists of performing p successive minimal residual iterations along these search directions,
as is described below.

rI=Tk

Fori=1,...,pDo:
wi = (r, Az;) [(Az, Azi)
Ti=r+wiz;
ri=1r —w;Az

EndDo

Show that ||re+1]|2 < ||7x||2. Give a sufficient condition to ensure global convergence.
15. Consider the iteration: £x+1 = xx + ardy, Where dj, is a vector called the direction of search,

and ay, is ascalar. It is assumed throughout that dj, is a nonzero vector. Consider a method which
determines x4 So that the residual ||rx+1]|2 is the smallest possible.

a. Determine a, so that ||rg41]|2 is minimal.
b. Show that the residual vector 71 obtained in this manner is orthogonal to Ar.
c. Show that the residual vectors satisfy the relation:

Irk+1llz2 < llrell2 sin Z(rk, Adk).

d. Assume that at each step k&, we have (r, Adx) # 0. Will the method always converge?

e. Now assume that A is positive definite and select at each step dx = rx. Prove that the method
will converge for any initial guess xo.

16. Consider the iteration: zx4+1 = xx + ardk, Where dy, is a vector called the direction of search,
and ay is a scalar. It is assumed throughout that dy, is a vector which is selected in the form
dp = ATfk where fj, is some nonzero vector. Let z, = A~ b be the exact solution. Now
consider a method which at each step & determines 41 so that the error norm ||z« — Zx41||2
is the smallest possible.

a. Determine ay, so that ||z« — Zk+1]|2 is minimal and show that the error vector ex4+1 =
T« — Tp41 1S Orthogonal to d. The expression of a, should not contain unknown quantities
(e.9., z« Or eg).

b. Show that ||€k+1||2 < ||ek||2 sin A(ek,dk).

c. Establish the convergence of the algorithm for any zq, when fi, = r, for all k.

NOTES AND REFERENCES. Initially, the term projection methods was used mainly to describe one-
dimensional techniques such as those presented in Section 5.3. An excellent account of what has been
done in the late 1950s and early 1960s can be found in Householder’s book [122] as well as Gastinel
[101]. For more general, including nonlinear, projection processes, a good reference is Kranoselskii
and co-authors [138].

Projection techniques are present in different forms in many other areas of scientific computing
and can be formulated in abstract Hilbert functional spaces. The terms Galerkin and Petrov-Galerkin
techniques are used commonly in finite element methods to describe projection methods on finite
element spaces. The principles are identical to those seen in this chapter. |



6

KRYLOV SUBSPACE METHODS
PART |

The next two chapters explore a few methods which are considered cur-
rently to be among the most important iterative techniques available for
solving large linear systems. These techniques are based on projection pro-
cesses, both orthogonal and oblique, onto Krylov subspaces, which are sub-
spaces spanned by vectors of the form p(A)v where p is a polynomial. In
short, these techniques approximate A~'b by p(A)b, where p is a “good”
polynomial. This chapter covers methods derived from, or related to, the
Arnoldi orthogonalization. The next chapter covers methods based on Lanc-
zos biorthogonalization.

— —
INTRODUCTION

o

Recall from the previous chapter that a general projection method for solving the linear
system

Az =b, (6.1)

is a method which seeks an approximate solution z,, from an affine subspace zq + K,,, of
dimension m by imposing the Petrov-Galerkin condition

b—Azy L Ly,

where L,, is another subspace of dimension m. Here, zo represents an arbitrary initial
guess to the solution. A Krylov subspace method is a method for which the subspace K.,
is the Krylov subspace

]Cm(A’ TO) = Span{’f'o, ATOa A2r07 .. 7Am_17'0}7

143
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where ro = b— Axo. When there is no ambiguity, K, (A, r¢) will be denoted by X,,,. The
different versions of Krylov subspace methods arise from different choices of the subspace
L., and from the ways in which the system is preconditioned, a topic that will be covered
in detail in later chapters.

Viewed from the angle of approximation theory, it is clear that the approximations
obtained from a Krylov subspace method are of the form

AT & T = 0 + gm—1(A)r0,

in which ¢,,, 1 is a certain polynomial of degree m — 1. In the simplest case where zq = 0,
then

A_lb ~ qm—l(A)b

In other words, A~1b is approximated by g,,_1 (A)b.

Although all the techniques provide the same type of polynomial approximations, the
choice of £,,, i.e., the constraints used to build these approximations, will have an im-
portant effect on the iterative technique. Two broad choices for £,, give rise to the best-
known techniques. The first is simply £,, = K,, and the minimum-residual variation
Ly = AK,,. A few of the numerous methods in this category will be described in this
chapter. The second class of methods is based on defining £,,, to be a Krylov subspace
method associated with AT, namely, £,, = K,,(AT, 7). Methods of this class will be
covered in the next chapter. There are also block extensions of each of these methods
termed block Krylov subspace methods, which will be discussed only briefly. Note that
a projection method may have several different implementations, giving rise to different
algorithms which are all mathematically equivalent.

—
KRYLOV SUBSPACES

In this section we consider projection methods on Krylov subspaces, i.e., subspaces of the
form

K (A,v) = span {v, Av, A%v,..., A"y} (6.2)

which will be denoted simply by C,,, if there is no ambiguity. The dimension of the sub-
space of approximants increases by one at each step of the approximation process. A few
elementary properties of Krylov subspaces can be established, many of which need no
proof. A first property is that X,,, is the subspace of all vectors in R™ which can be writ-
ten as z = p(A)v, where p is a polynomial of degree not exceeding m — 1. Recall that
the minimal polynomial of a vector v is the nonzero monic polynomial p of lowest degree
such that p(A)v = 0. The degree of the minimal polynomial of v with respect to A is often
called the grade of v with respect to A, or simply the grade of v if there is no ambiguity.
A consequence of the Cayley-Hamilton theorem is that the grade of v does not exceed n.
The following proposition is easy to prove.



6.2 KRYLOV SUBSPACES 145

PROPOSITION 6.1 Let y be the grade of v. Then C,, is invariant under A and K,,, =
K, forallm > p.

It was mentioned above that the dimension of £,,, is nondecreasing. In fact, the fol-
lowing proposition determines the dimension of XC,,, in general.

PROPOSITION 6.2 The Krylov subspace K., is of dimension m if and only if the
grade p of v with respect to A is not less than m,, i.e.,

dim(K,,) =m < grade(v) > m.
Therefore,

dim(K,,) = min {m, grade(v)}.

Proof. The vectors v, Av,..., A™ v form a basis of K,, if and only if for any set of
m scalars a;,i = 0,...,m — 1, where at least one «; is nonzero, the linear combination
Z;’;‘Ol a; A'v is nonzero. This is equivalent to the condition that the only polynomial of
degree < m — 1 for which p(A)v = 0 is the zero polynomial. The second part of the
proposition is a consequence of the previous proposition. ]

PROPOSITION 6.3 Let Q,, be any projector onto K, and let A,, be the section of
Ato K, thatis, Ay, = QmAk,,- Then for any polynomial q of degree not exceeding
m—1,

q(A)v = q(Am)v,
and for any polynomial of degree < m,
qu(A)U = Q(Am)v'

Proof. First we prove that g(A)v = ¢(A,,)v for any polynomial g of degree < m — 1. It
is sufficient to show the property for the monic polynomials ¢;(¢) = t¢, i = 0,...,m — 1.
The proof is by induction. The property is true for the polynomial go(¢t) = 1. Assume that
it is true for ¢;(t) = t:
gi(A)v = ¢i(Am)v.
Multiplying the above equation by A on both sides yields
git1(A)v = Agi(Ap)v.

If i+ 1 < m — 1 the vector on the left-hand side belongs to X,,,, and therefore if the above
equation is multiplied on both sides by @, then

gi+1(A)v = QmAgi(Am)v.
Looking at the right-hand side we observe that ¢;(A,,,)v belongs to &,,,. Hence,
Git1 (A0 = QmAk,. ¢i(Am)v = qig1(Am)v,

which proves that the property is true for ¢ + 1, provided i + 1 < m — 1. For the case
i+ 1 = m, it only remains to show that Q,,gm(A)v = g (A )v, which follows from
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Gm—1(A)v = gm—1(An)v by simply multiplying both sides by @, A. ]

I
ARNOLDI'S METHOD

Arnoldi’s method [9] is an orthogonal projection method onto X, for general non-
Hermitian matrices. The procedure was introduced in 1951 as a means of reducing a dense
matrix into Hessenberg form. Arnoldi presented his method in this manner but hinted that
the eigenvalues of the Hessenberg matrix obtained from a number of steps smaller than
n could provide accurate approximations to some eigenvalues of the original matrix. It
was later discovered that this strategy leads to an efficient technique for approximating
eigenvalues of large sparse matrices. The method will first be described theoretically, i.e.,
assuming exact arithmetic, then implementation details will be addressed.

6.3.1 THE BASIC ALGORITHM

Arnoldi’s procedure is an algorithm for building an orthogonal basis of the Krylov subspace
K- In exact arithmetic, one variant of the algorithm is as follows:

ALGORITHM 6.1: Arnoldi

Choose a vector v, of norm 1
Forj =1,2,...,m Do:
Compute hij = (Avj,v;) fori =1,2,...,j
Compute wj 1= A’Uj — 2521 hij’l)z'
hjt1,; = ||lwjll2
If hjy1,; =0 then Stop
Vi1 = Wi/,
EndDo

NSO WNR

At each step, the algorithm multiplies the previous Arnoldi vector v; by A and then or-
thonormalizes the resulting vector w; against all previous v;’s by a standard Gram-Schmidt
procedure. It will stop if the vector w; computed in line 4 vanishes. This case will be ex-
amined shortly. Now a few simple properties of the algorithm are proved.

PROPOSITION 6.4 Assume that Algorithm 6.1 does not stop before the m-th step.
Then the vectors vy, va, . . . , v, form an orthonormal basis of the Krylov subspace

,Cm = span{vl, A’Ul, ceey Am_l’Ul}.
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Proof. The vectorsv;,j = 1,2,...,m, are orthonormal by construction. That they span
K, follows from the fact that each vector v; is of the form g;_; (A)v; where g;_; is a
polynomial of degree 5 — 1. This can be shown by induction on j as follows. The result is
clearly true for j = 1, since v; = go(A)vy with go(t) = 1. Assume that the result is true
for all integers < j and consider v;1. We have

J J
hjp1vier = Avj = Y hijui = Agj_y1 (A)vy — Y hijgi1(A)v (63)
i=1 =1

which shows that v;41 can be expressed as g;(A)vy where g; is of degree j and completes
the proof. [ ]

PROPOSITION 6.5 Denote by V,,,, the n x m matrix with column vectors vy, ...,
U, by H,,, the (m + 1) x m Hessenberg matrix whose nonzero entries h;; are defined by
Algorithm 6.1, and by H,,, the matrix obtained from H,, by deleting its last row. Then the
following relations hold:

AV = Vi Hypy + wiel (6.4)
= Vi1 Hp, (6.5)
V.IAV,, = Hp,. (6.6)

Proof. The relation (6.5) follows from the following equality which is readily derived
from lines 4, 5, and 7 of Algorithm 6.1,

j1
A’Uj — th’jvh J = 1,2,. Lo, m. (67)
i=1

Relation (6.4) is a matrix reformulation of (6.7). Relation (6.6) follows by multiplying both
sides of (6.4) by V,1" and making use of the orthonormality of {v1,...,vm}. [ ]

The result of the proposition is illustrated in Figure 6.1.

A Vi = Ven + wpel

m

Figure 6.1 The action of A on V,,, gives V,,, H,,, plus a rank-
one matrix.

As was noted earlier, the algorithm may break down in case the norm of w; vanishes at
a certain step j. In this case, the vector v;,; cannot be computed and the algorithm stops.
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Still to be determined are the conditions under which this situation occurs.

PROPOSITION 6.6 Arnoldi’s algorithm breaks down at step j (i.e., hj11,; = 0 in line
5 of Algorithm 6.1), if and only if the minimal polynomial of vy is of degree j. Moreover,
in this case the subspace K ; is invariant under A.

Proof. If the degree of the minimal polynomial is j, then w; must be equal to zero.
Indeed, otherwise v;., can be defined and as a result K;;, would be of dimension j + 1.
Then Proposition 6.2 would imply that z > j + 1, which is a contradiction. To prove
the converse, assume that w; = 0. Then the degree p of the minimal polynomial of v, is
such that 4 < j. Moreover, it is impossible that ;1 < j. Otherwise, by the first part of this
proof, the vector w, would be zero and the algorithm would have stopped at the earlier
step number p. The rest of the result follows from Proposition 6.1. ]

A corollary of the proposition is that a projection method onto the subspace KC; will
be exact when a breakdown occurs at step j. This result follows from Proposition 5.6 seen
in Chapter 5. It is for this reason that such breakdowns are often called lucky breakdowns.

6.3.2 PRACTICAL IMPLEMENTATIONS

In the previous description of the Arnoldi process, exact arithmetic was assumed, mainly
for simplicity. In practice, much can be gained by using the Modified Gram-Schmidt or the
Householder algorithm instead of the standard Gram-Schmidt algorithm. With the Modi-
fied Gram-Schmidt alternative the algorithm takes the following form:

ALGORITHM 6.2: Arnoldi-Modified Gram-Schmidt

Choose a vector vy of norm 1
Forj=1,2,...,m Do:
Compute w; := Awv;
Fori=1,...,5 Do:
hij = (wj,vi)
wj = wj — hi]-vi
EndDo
hjt1,5 = llwjll2. Ifhjy1,; =0 Stop
Vjt1 = wj/hj1,
EndDo

CLOLXINDIORA WD

-
[y

In exact arithmetic, this algorithm and Algorithm 6.1 are mathematically equivalent. In
the presence of round-off the above formulation is much more reliable. However, there
are cases where cancellations are so severe in the orthogonalization steps that even the
Modified Gram-Schmidt option is inadequate. In this case, two further improvements can
be utilized.

The first improvement resorts to double orthogonalization. Whenever the final vector
w; obtained at the end of the main loop in the above algorithm has been computed, a
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test is performed to compare its norm with the norm of the initial w; (which is || Av;||2).
If the reduction falls below a certain threshold, indicating severe cancellation might have
occurred, a second orthogonalization is made. It is known from a result by Kahan that
additional orthogonalizations are superfluous (see, for example, Parlett [160]).

The second improvement is to use a different technique altogether. From the numerical
point of view, one of the most reliable orthogonalization techniques is the Householder
algorithm. Recall from Chapter 1 that the Householder orthogonalization uses reflection
matrices of the form P, = I — 2w,w] to transform a matrix X into upper triangular form.
In the Arnoldi algorithm, the column vectors of the matrix X to be orthonormalized are
not available ahead of time. Instead, the next vector is obtained as Av;, where v; is the
current basis vector. In the Householder algorithm an orthogonal column v; is obtained as
PP, ... Pe;where Py, ..., P; are the previous Householder matrices. This vector is then
multiplied by A and the previous Householder transforms are applied to it. Then, the next
Householder transform is determined from the resulting vector. This procedure is described
in the following algorithm, which was originally proposed by Walker [221].

ALGORITHM 6.3: Householder Arnoldi

Select a nonzero vector v; Setz; = v
Forj=1,...,m,m+ 1 Do:
Compute the Householder unit vector w; such that
(wj)i =0,i = 1,...,j—1and
(Pjz;)i =0,i=j+1,...,n, where P; = I — 2w;w
hj_l = Pij
v; = P1P2 . .Pjej
If] < m compute Zj41 = Pij_1 . P1A’Uj
EndDo

T
J

©ONSD O AWNR

For details regarding the determination of the Householder vector w; in the third to fifth
lines and on its use in the sixth to eight lines, see Chapter 1. Recall that the matrices P; need
not be formed explicitly. To obtain k;_; from z; in line 6, zero out all the components from
position j+1 through n of the n-vector z; and change its j-th component, leaving all others
unchanged. Thus, the n x m matrix [ho, b1, . .., hy] Will have the same structure as the
matrix X, of equation (1.22) in Chapter 1. By comparison with the Householder algorithm
seen in Chapter 1, we can infer that the above process computes the @ R factorization of
the matrix v, Avy, Avy, Avs, . .., Av,,. Define

Qj=PjPj_;...P. (6.8)
The definition of z;; in line 8 of the algorithm yields the relation,
Q]'Avj = Zj+1-

After the next Householder transformation P;, is applied in line 6, h; satisfies the rela-
tion,

hj = Pit1zj11 = Pip1QjAv; = Q1 Avj. (6.9)
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Now observe that since the components j + 2,...,n of h; are zero, then P;h; = h; for
any s > j + 2. Hence,

hj:Pumfl...f)j_kzhj:QmA’Uj, j:l,...,m.
This leads to the factorization,
Qm['l},A’Ul,A/UQ,...,A’Um] = [hg,hl,...,hm] (610)

where the matrix [hq, . . ., hy] iSn x (m + 1) and is upper triangular and @, is unitary.

It is important to relate the vectors v; and h; defined in this algorithm with vectors of
the standard Arnoldi process. Let H,, be the (m + 1) x m matrix obtained from the first
m+1rows of the n xm matrix [h1, ..., hy]. Since @ ;41 is unitary we have Qi
and hence, from the relation (6.9)

=QT
J+1 T ¥+l

Jj+1 J+1

T
J+1 E :hwez E :hiij+lei
i=1

where each e; is the i-th column of the n X n identity matrix. Since Pre; = ¢; fori < k,
it is not difficult to see that

Qji1€i=Pi...Pipie; =y, fori < j+ 1. (6.11)

This yields the relation Av; = Efill hijvg, for j = 1,...,m, which can be written in
matrix form as

AVm = m+lgm-

This is identical with the relation (6.5) obtained with the Gram-Schmidt or Modified Gram-
Schmidt implementation. The v;’s form an orthonormal basis of the Krylov subspace X,
and are identical with the v;’s defined by the Arnoldi process, apart from a possible sign
difference.

Although the Householder algorithm is numerically more viable than the Gram-
Schmidt or Modified Gram-Schmidt versions, it is also more expensive. The cost of each
of the outer loops, corresponding to the j control variable, is dominated by lines 7 and 8.
These apply the reflection matrices P; fori = 1,...,7 to a vector, perform the matrix-
vector product Av;, and then apply the matrices P; fori = j,j — 1,...,1 to a vector. The
application of each P; to a vector is performed as

(I = 2w;w])v =v —ow; with o = 2w’ v.

This is essentially the result of a dot-product of length n — ¢ + 1 followed by a vector
update of the same length, requiring a total of about 4(n. — ¢ + 1) operations for each
application of P;. Neglecting the last step, the number of operations due to the Householder
transformations alone approximately totals
m
. Ji = 1)) 2 4 3
8n—i+1)=8 n— ~ dm“n — -m”°.
22 > (0 ;

The table below shows the costs of different orthogonalization procedures. GS stands for
Gram-Schmidt, MGS for Modified Gram-Schmidt, MGSR for Modified Gram-Schmidt
with reorthogonalization, and HO for Householder.
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| GS | MGS | MGSR | HO
Flops 2m?2n 2m?2n 4m3n 4m?2n — %m3
Storage | (m+1)n | (m+1)n | (m+Dn | (m+1)n — %mz

The number of operations shown for MGSR corresponds to the worst case scenario when a
second orthogonalization is performed each time. In practice, the number of operations is
usually closer to that of the standard MGS. Regarding storage, the vectors v;,s = 1,...,m
need not be saved. In the algorithms for solving linear systems, these vectors are needed at
the end of the process. This issue will be covered with the Householder implementations
of these algorithms. For now, assume that only the w;’s are saved. The small gain in mem-
ory usage in the Householder version can be explained by the diminishing lengths of the
vectors required at each step of the Householder transformation. However, this difference
is negligible relative to the whole storage requirement of the algorithm, because m <« n,
typically.

The Householder orthogonalization may be a reasonable choice when developing gen-
eral purpose, reliable software packages where robustness is a critical criterion. This is
especially true for solving eigenvalue problems since the cost of orthogonalization is then
amortized over several eigenvalue/eigenvector calculations. When solving linear systems,
the Modified Gram-Schmidt orthogonalization, with a reorthogonalization strategy based
on a measure of the level of cancellation, is more than adequate in most cases.

e
ARNOLDI'S METHOD FOR LINEAR SYSTEMS (FOM)

2

Given an initial guess xq to the original linear system Ax = b, we now consider an orthogo-
nal projection method as defined in the previous chapter, which takes £ = K = K, (4, 79),
with

K (A, o) = span{rg, Arg, A%rg, ... ,Am_lro}, (6.12)

in which rq = b — Axg. This method seeks an approximate solution z,,, from the affine
subspace xo + K, of dimension m by imposing the Galerkin condition

b— Az L K. (6.13)
If vy = rg/||70]|2 in Arnoldi’s method, and set 8 = ||ro]|2, then

VIAV,, = Hy

by (6.6) and
Viaro = Vi (Bur) = Ber.
As a result, the approximate solution using the above m-dimensional subspaces is given
by
Tm = Zo + VinYm, (6.14)
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Ym = H;Ll(ﬂel). (6.15)

A method based on this approach and called the Full Orthogonalization Method
(FOM) is described next. Modified Gram-Schmidt is used in the Arnoldi step.

ALGORITHM 6.4: Full Orthogonalization Method (FOM)

1. Computerg =b— Axg, 8 := ||rol|2, and vy := 19/

2. Define the m x m matrix Hy, = {hij}i j=1,...m; Set Hy, =0
3. Forj=1,2,...,m Do:

4.  Computew; := Av;

5. Fori=1,...,5 Do:

6 hij = (w]',’l},')

7 w; = wjy — hij’l},'

8 EndDo

9. Compute hji1,; = ||lwjll2. Ifhjt1,; = 0setm := j and Goto 12
10.  Computevjii = wj/hjq1,j.

11. EndDo

12. Compute y,, = H,,}(Be1) and z,, = zo + Vinym

The above algorithm depends on a parameter m which is the dimension of the Krylov
subspace. In practice it is desirable to select m in a dynamic fashion. This would be pos-
sible if the residual norm of the solution z,, is available inexpensively (without having to
compute z,,, itself). Then the algorithm can be stopped at the appropriate step using this
information. The following proposition gives a result in this direction.

PROPOSITION 6.7 The residual vector of the approximate solution x,,, computed by
the FOM Algorithm is such that

T
b— Axm = _hm—i-l,memymvm—l—l
and, therefore,

16— Az 2 = hm+1,m|€%ym|- (6.16)

Proof. We have the relations,
b— Az, =b— A(zo + Vinym)
=10 — AVinym
= /37}1 - VmHmym - hm+1,mez,;ymvm+1-

By the definition of y,,,, H,,y,m = Be1, and so fvy — V,, H,y = 0 from which the result
follows immediately. ]

A rough estimate of the cost of each step of the algorithm is determined as follows. If
Nz(A) is the number of nonzero elements of A, then m steps of the Arnoldi procedure will
require m matrix-vector products at the cost of 2m x Nz(A). Each of the Gram-Schmidt
steps costs approximately 4 x j x n operations, which brings the total over the m steps to
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approximately 2m?2n. Thus, on the average, a step of FOM costs approximately
2Nz(A) + 2mn.

Regarding storage, m vectors of length n are required to save the basis V,,,. Additional
vectors must be used to keep the current solution and right-hand side, and a scratch vector
for the matrix-vector product. In addition, the Hessenberg matrix H,, must be saved. The
total is therefore roughly

2

(m+3)n+ mT

In most situations m is small relative to n, so this cost is dominated by the first term.

6.4.1 VARIATION 1: RESTARTED FOM

Consider now the algorithm from a practical viewpoint. As m increases, the computational
cost increases at least as O(m?)n because of the Gram-Schmidt orthogonalization. The
memory cost increases as O(mn). For large n this limits the largest value of m that can
be used. There are two remedies. The first is to restart the algorithm periodically and the
second is to “truncate” the orthogonalization in the Arnoldi algorithm. In this section we
consider the first of these two options, which is described below.

ALGORITHM 6.5: Restarted FOM (FOM(m))

Computerg = b— Az, 8 = ||rol|2, @and vy = ro/B.

Generate the Arnoldi basis and the matrix H,, using the Arnoldi algorithm
starting with vy .

Compute y,, = H,,' Be1 and z,,, = mg + Vinym. If satisfied then Stop.

Setxg := x,,, and go to 1.

A WNR

There are many possible variations to this basic scheme. One that is generally more
economical in practice is based on the observation that sometimes a small m is sufficient
for convergence and sometimes the largest possible m is necessary. Hence, the idea of
averaging over different values of m. Start the algorithm with m = 1 and increment m by
one in line 5 until a certain m,,,, iS reached, after which m is reset to one, or kept the
same. These variations will not be considered here.

Example 6.1 Table 6.1 shows the results of applying the FOM algorithm with no pre-
conditioning to three of the test problems described in Section 3.7.

Matrix | Iters | Kflops | Residual Error

F2DA | 109 | 4442 | 0.36E-03 | 0.67E-04
F3D 66 | 11664 | 0.87E-03 | 0.35E-03
ORS 300 | 13558 | 0.26E+00 | 0.71E-04
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Table 6.1 A test run of FOM with no preconditioning.

The column labeled Iters shows the total actual number of matrix-vector multiplications
(matvecs) required to converge. The stopping criterion used is that the 2-norm of the resid-
ual be reduced by a factor of 107 relative to the 2-norm of the initial residual. A maximum
of 300 matvecs are allowed. Kflops is the total number of floating point operations per-
formed, in thousands. Residual and Error represent the two-norm of the residual and error
vectors, respectively. In this test, m was taken to be 10. Note that the method did not suc-
ceed in solving the third problem.

6.4.2 VARIATION 2: IOM AND DIOM

A second alternative to FOM is to truncate the Arnoldi recurrence. Specifically, an integer
k is selected and the following “incomplete” orthogonalization is performed.

ALGORITHM 6.6: Incomplete Orthogonalization Process

1. Forj=1,2,...,m Do:

2. Computew := Avj

3. Fori=max{l,j—k+1},...,7 Do:

4, hi’j = ('U],’Ui)

5. wi=w— hijvi

6. EndDo

7. Computehjyy,; = [[wllz andvjp = w/hjya,
8. EndDo

The number of directions & against which to orthogonalize may be dictated by mem-
ory limitations. The Incomplete Orthogonalization Method (IOM) consists of performing
the above incomplete orthogonalization procedure and computing an approximate solution
using the same formulas (6.14) and (6.15).

ALGORITHM 6.7: IOM Algorithm

Run a modification of Algorithm 6.4 in which the Arnoldi process in lines 3 to 11
is replaced by the Incomplete Orthogonalization process and every other compu-
tation remains unchanged.

It is now necessary to keep only the & previous v; vectors. The others are not needed
in the above process and may be discarded. However, the difficulty remains that when
the solution is computed by formula (6.14), all the vectors v; for i = 1,2,...,m are
required. One option is to recompute them at the end, but essentially this doubles the cost
of the algorithm. Fortunately, a formula can be developed whereby the current approximate
solution z,,, can be updated from the previous approximation z,, ; and a small number
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of vectors that are also updated at each step. This progressive formulation of the solution
leads to an algorithm termed Direct IOM (DIOM) which we now derive.

The Hessenberg matrix H,, obtained from the incomplete orthogonalization process
has a band structure with a bandwidth of k£ + 1. For example, when k = 3 and m = 5, it is
of the form

hi1 hiz  his
hor  haa  has  hog
Hy, = hsa hsz hzs hss |. (6.17)
has  has  has

hss  hss

The Direct version of IOM is derived from exploiting the special structure of the LU fac-
torization, H,,, = L,,U,,, of the matrix H,,. Assuming no pivoting is used, the matrix L,,
is unit lower bidiagonal and U,,, is banded upper triangular, with & diagonals. Thus, the
above matrix has a factorization of the form

1 U1l U122  U13
lor 1 U2z U223 U4
H, = la2 1 X U3z U4 U35
liz 1 Ugq Ugs
lsa 1 Uss

The approximate solution is then given by
T = T + Vi UL LY (Ber).
Defining

and
Zm = Lr_nl (Ber),
the approximate solution is given by
Tm = To + Pmzm- (6.18)

Because of the structure of U,,, P,, can be updated easily. Indeed, equating the last
columns of the matrix relation P,,,U,, = V,, yields

m

E UimPi = Um,

i=m—k+1
which allows the vector p,,, to be computed from the previous p;’s and v,,,, with the help
of the relation,

1 m—1
Pm = — lvm - Z UimPi ] .

u
mm i=m—k+1

In addition, because of the structure of L,,,, we have the relation

NED
"l m
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in which
Cm = _lm,mflcmfl-
From (6.18),

m—1
Cm

Noting that g+ Py, —12m—1 = Zm—1, it follows that the approximation x,,, can be updated
at each step by the relation,

z
Tm =x0+[Pm717pm] |: :| :$0+melszl+gmpm-

Ty = Tm—1 T Cmpm

where p,,, is defined above. This gives the following algorithm, called the Direct Incom-
plete Orthogonalization Method (DIOM).

ALGORITHM 6.8: DIOM

1. Choose xy and computery = b — Axg, B := ||rol|2, v1 :=ro/B.

2. Form =1,2,..., until convergence Do:

3 Compute hip, i = max{l,m — k+1},...,m and v, 41 asin

4 lines 2-7 of Algorithm (6.6).

5 Update the LU factorization of H,,, i.e., obtain the last column

6. of U,,, using the previous k pivots. If u,, = 0 Stop.

7 Cm ={ifm=1then B3, else — 1y m—1Cm-1}

8 Pm = ur_n%n (’Um - Z:’n::nl—k—i-l uimp,') (fOI'l' <0 set ujmp; = 0)
9. Tm = Tm—1+ Cmpm

. 10. EndDo

Note that the above algorithm is based implicitly on Gaussian elimination without
pivoting for the solution of the Hessenberg system H,,y,, = Be1. This may cause a pre-
mature termination in line 6. Fortunately, there is an implementation based on Gaussian
elimination with partial pivoting. The details of this variant can be found in [174]. DIOM
can also be derived by imposing the properties that are satisfied by the residual vector and
the conjugate directions, i.e., the p;’s.

Observe that (6.4) is still valid and as a consequence, Proposition 6.7, which is based
on it, still holds. That is because the orthogonality properties were not used to derive the
two relations therein. Since the residual vector is a scalar multiple of v,, 1 and since the
v;’s are no longer orthogonal, IOM and DIOM are not orthogonal projection techniques.
They can, however, be viewed as oblique projection techniques onto K,,, and orthogonal
to an artificially constructed subspace.

PROPOSITION 6.8 IOM and DIOM are mathematically equivalent to a projection
process onto K., and orthogonally to

Ly =span{z1,22,...,2m}
where

2 =V; — (Uiavm-l—l)vm-i-l: i= ]-5 ceey M.
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Proof. The proof is an immediate consequence of the fact that r,,, is a multiple of v, 41

and by construction, v,,,+1 is orthogonal to all z;’s defined in the proposition.

The following simple properties can be shown:
e The residual vectorsr;, ¢ = 1,...,m, are “locally” orthogonal,
(rj,ri) =0, for |i—j| <k, i#j.
e The p;’s are locally A-orthogonal to the Arnoldi vectors, i.e.,

(Apj,v;) =0 for j—k+1<i<j.

e For the case £ = oo (full orthogonalization) the p;’s are semi-conjugate, i.e.,

(Apj,p;) =0 for i<j.

__ I

GMRES

N o5

The Generalized Minimum Residual Method (GMRES) is a projection method based on
taking £ = K, and £ = AK,,, in which IC,,, is the m-th Krylov subspace with v; =
ro/|lroll2- As seen in Chapter 5, such a technique minimizes the residual norm over all
vectors in zg + K. The implementation of an algorithm based on this approach is similar
to that of the FOM algorithm. We first describe the basic idea and then discuss a few

practical variations.

6.5.1 THE BASIC GMRES ALGORITHM

There are two ways to derive the algorithm. The first way exploits the optimality property

and the relation (6.5). Any vector z in zog + K, can be written as

T =29+ Vpy,
where y is an m-vector. Defining

J(y) = 1b— Azl = [Ib— A(zo + Viny) l|2,
the relation (6.5) results in
b— Az =b— A(zo + Vimy)

=ro— AV,

= B — Vg1 Hmy

= Vit (ﬁel — It_[my) .
Since the column-vectors of V,,,+1 are orthonormal, then

J(y) = b= A(zo + Vimy) ll2 = l|Ber — Hmyll>-

(6.19)

(6.20)

(6.21)

(6.22)
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The GMRES approximation is the unique vector of zo + K,,, which minimizes (6.20). By
(6.19) and (6.22), this approximation can be obtained quite simply as ., = o + Vinym
where y,,, minimizes the function J(y) = ||Bexr — Huyl|2, i€,

T = To + Vinym, Where (6.23)
Ym = argmin, ||Be; — Hpyl2. (6.24)

The minimizer y.,, is inexpensive to compute since it requires the solution of an (m+1) xm
least-squares problem where m is typically small. This gives the following algorithm.

ALGORITHM 6.9: GMRES

Computerg = b — Az, 8 := ||rol|2, and vy := 1o/
Define the (m + 1) x m matrix H,, = {hij hi<i<m+1,1<j<m- Set Hy = 0.
Forj =1,2,...,m Do:
Compute wj := Av;
Fori=1,...,j Do:
hz'j = ('w]',’l)z')
w; = wy — hijvi
EndDo
hj.,.l,j = ”'U)j”z. Ifhj.,.l’j =0setm:=j andgo to 12
Vjt1 = wj/hji1,
11. EndDo
12. Compute y,,, the minimizer of ||Be; — Hyuyl|2 and z,, = o + VinYm.

=~
QLN WNR

The second way to derive the GMRES algorithm is to use the equations (5.7) with
W, = AV,,. This is the subject of Exercise 4.

6.5.2 THE HOUSEHOLDER VERSION

The previous algorithm utilizes the Modified Gram-Schmidt orthogonalization in the Ar-
noldi process. Section 6.3.2 described a Householder variant of the Arnoldi process which
is numerically more robust than Gram-Schmidt. Here, we focus on a modification of GM-
RES which retrofits the Householder orthogonalization. Section 6.3.2 explained how to get
the v; and the columns of H,,,1 at each step, from the Householder-Arnoldi algorithm.
Since V,,, and H,, are the only items needed to extract the approximate solution at the end
of the GMRES process, the modification seems rather straightforward. However, this is
only true if the v;’s are stored. In this case, line 12 would remain the same and the modifi-
cation to the algorithm would be in lines 3-11 which are to be replaced by the Householder
variant of the Arnoldi process. It was mentioned in Section 6.3.2 that it is preferable not
to store the v;’s because this would double the storage requirement. In this case, a formula
must be found to generate the approximate solution in line 12, using only the w;’s, i.e., the
P;’s. Let

T

Ym = (77177727 Tt 7"7m)

?
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so that the solution is of the form z,, = z¢ + mv1 + -+ + Nmuy,. Recall that in the
Householder variant of the Arnoldi process, each v; is defined by

’l)j = P1P2 .. .Pjej.
Using a Horner-like scheme, we obtain
Ty = Xo + 771P1€1 + 772P1P262 + ...+ ﬂmP1P2 ...Pyhem
=0+ P (mer + Py (me2+ ...+ Pt (Mm—1€m—1 + Prlimem))) -

Therefore, when Householder orthogonalization is used, then line 12 of the GMRES algo-
rithm should be replaced by a step of the form

z:=0 (6.25)
z:=P;(njej+2),j=m,m—-1,...,1 (6.26)
Tm = Zo + 2. (6.27)

The above step requires roughly as many operations as computing the last Arnoldi
vector v,,. Therefore, its cost is negligible relative to the cost of the Arnoldi loop.

ALGORITHM 6.10: GMRES with Householder orthogonalization

1. Computerg =b— Axg, z := 1.

2. Forj=1,...,m,m+ 1 Do:

3. Compute the Householder unit vector w; such that

4. ('wj)i:(),i:].,...,j—].and

5. (Pjz); =0,i=j+1,...,n where P; = I — 2w;w] ;
6.  hj_1:=Pjz; Ifj =1thenlet 3 := el ho.

7 V= P1P2...Pj€j.

8 Ifj <m compute z := P;P;_, ... P, Av,

9. EndDo

10. Define H,,, = the (m + 1) x m upper part of the matrix [h, . . ., hu].
11. Compute y,, = Argmin,||Be; — Hpyll2- Letym = (1,72, - - Mm) L.
12. z:=0

13. Forj=m,m—1,...,1 Do:

14, z:=P; (’I]jej + 2),

15. EndDo

16. Compute x,, = o + 2

Note that now only the set of w; vectors needs to be saved. The scalar 3 defined in line
6 is equal to £||rg||2. This is because P z = Be; where § is defined by the equations (1.21)
seen in Chapter 1, which define the first Householder transformation. As was observed
earlier the Householder factorization actually obtains the QR factorization (6.10) with v =
ro. We can also formulate GMRES directly from this factorization. Indeed, if x = zo +
Vinym, then according to this factorization, the corresponding residual norm is equal to

[lho — mh1 — n2ha2 — ... — b |2

whose minimizer is the same as the one defined by the algorithm.
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The details of implementation of the solution of the least-squares problem as well as
the estimate of the residual norm are identical with those of the Gram-Schmidt versions
and are discussed next.

6.5.3 PRACTICAL IMPLEMENTATION ISSUES

A clear difficulty with Algorithm 6.9 is that it does not provide the approximate solution
., explicitly at each step. As a result, it is not easy to determine when to stop. One remedy
is to compute the approximation solution x,, at regular intervals and check for convergence
by a test on the residual, for example. However, there is a more elegant solution which is
related to the way in which the least-squares problem (6.24) is solved.

In order to solve the least-squares problem min ||3e; — H,,y||, it is natural to trans-
form the Hessenberg matrix into upper triangular form by using plane rotations. Define the
rotation matrices

1

_ ¢ S <+ row ¢
2 = —8; G —rows+1 (6.28)

1

with ¢ + s? = 1. If m steps of the GMRES iteration are performed then these matrices
have dimension (m + 1) x (m + 1).

Multiply the Hessenberg matrix H,, and the corresponding right-hand side go = Be;
by a sequence of such matrices from the left. The coefficients s;, ¢; are selected to eliminate
hiy1,; at each time. Thus, if rn = 5 we would have

hii hi2 hiz his his
hai  haz has hay hos
7 hs2 hss hzs hss _
has  has  has
hss  hss

QDO OO O™®

Then premultiply Hs by

C1 S1
—81

I
—

M

with
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to obtain the matrix and right-hand side

R T ¥ e
’222 ’223 ’224 ’;Lzs _‘Blﬂ
gy — 32 33 34 3B | g = . 6.29
g has s hus |0 7T |0 o2
hsa  hss 0
hes 0

We can now premultiply the above matrix and right-hand side again by a rotation matrix
Q, to eliminate hso. This is achieved by taking

1
hay

Sog = —F————, (g = ———————,
(hS5)? + h2, V(1852 + R,

This elimination process is continued until the m-th rotation is applied, which transforms
the problem into one involving the matrix and right-hand side,

WY

Y1
5 5 5 5
E Y
_ OIS O _
= Bl B | B= - (6:30)
ool
h55 )
0 Y6

Generally, the scalars c; and s; of the " rotation Q; are defined as

5= hiti, o= hg_l) ] (6.31)
V2 42, VI h
Define @,,, the product of matrices ;,
Qm = QpQp1... 0 (6.32)
and
Ry = H™ = QH,,, (6.33)
gm = Qm(Ber) = (Y1, Ymr1) " (6.34)

Since @, is unitary,
min ||Be1 — Hnyll> = min||gm — Rmyll2.

The solution to the above least-squares problem is obtained by simply solving the triangular
system resulting from deleting the last row of the matrix R,, and right-hand side g,, in
(6.30). In addition, it is clear that for the solution y,, the “residual” ||Be; — H,,y.|| is
nothing but the last element of the right-hand side, i.e., the term g in the above illustration.

PROPOSITION 6.9 Let(;,i = 1,...,m be the rotation matrices used to transform
H,, into an upper triangular form and Ry, §m = (71, - -, Ym+1)? the resulting matrix and
right-hand side, as defined by (6.33), (6.34). Denote by R,, the m x m upper triangular
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matrix obtained from R, by deleting its last row and by g.,, the m-dimensional vector
obtained from g,,, by deleting its last component. Then,

1. The rank of AV, is equal to the rank of R,,,. In particular, ifr,,,, = 0 then A must
be singular.

2. The vector y,, which minimizes ||Be; — H,,y||2 is given by
Ym = Rr_nlgm-
3. The residual vector at step m satisfies

b— Az = Ving1 (Ber — Hintym) = Vins1Qm (Yms1€m41) (6.35)
and, as a result,

|b—Azp|l2 = [Ymt1]- (6.36)

Proof. To prove first part (1), use (6.5), to obtain the relation
AVm = m+1-[7_[m
= m—i—ley;Qm-Hm
= m+1Q£Rm-
Since V,, 11 QY is unitary, the rank of AV, is that of R,,, which equals the rank of R,
since these two matrices differ only by a zero row (the last row of R,,). If 7., = 0 then
R,, isof rank < m — 1 and as a result AV,, is also of rank < m — 1. Since V,,, is of full

rank, this means that A must be singular.
The second part (2), was essentially proved before the proposition. For any vector y,

||Ber — E[my”g = |Qm(Ber — }_Imy)”g
= [|gm — Rmy”%
= m41” + llgm — Rmyll3 (6.37)
The minimum of the left-hand side is reached when the second term in the right-hand side
of (6.37) is zero. Since Ry, is nonsingular, this is achieved when y = R g,.
To prove the third part (3), we start with the definitions used for GMRES and the
relation (6.21). For any ¢ = zq + Vi,
b— Az = Vm+1 (,361 - ﬁmy)
= m+1Q£ Qm (561 - H'my)
= m+1Q£ (gm - Rmy) .
As was seen in the proof of the second part above, the 2-norm of g,,, — R,y is minimized
when y annihilates all components of the right-hand side g,,, except the last one, which is
equal to y,,1. As a result,
b— Azry,, = m+1Q£(7m+lem+l)

which is (6.35). The result (6.36) follows from the orthonormality of the column-vectors
of Vm+1 Q% |

So far we have only described a process for computing the least-squares solution ,,
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of (6.24). Note that this approach with plane rotations can also be used to solve the linear
system (6.15) for the FOM method. The only difference is that the last rotation £2,, must
be omitted. In particular, a single program can be written to implement both algorithms
using a switch for selecting the FOM or GMRES options.

It is possible to implement the above process in a progressive manner, i.e., at each step
of the GMRES algorithm. This approach will allow one to obtain the residual norm at every
step, with virtually no additional arithmetic operations. To illustrate this, start with (6.30),
i.e., assume that the first m rotations have already been applied. Now the residual norm is
available for z5 and the stopping criterion can be applied. Assume that the test dictates that
further steps be taken. One more step of the Arnoldi algorithm must be executed to get Awvg
and the 6-th column of Hyg. This column is appended to R5 which has been augmented by
a zero row to match the dimension. Then the previous rotations 24, Q,, .. ., Q5 are applied
to this last column. After this is done the following matrix and right-hand side are obtained:

Y by by mE o mgE Ay

b )
e e e e | e |
6 = hig  hys hgg |96 = | - |- (6.38)
W -
0 hi T
0 he

The algorithm now continues in the same way as before. We need to premultiply the matrix
by a rotation matrix Qg (now of size 7 x 7) with

(5)
$¢ = —f—————>, C6 = —h66
5 5 .
(h$3)2 + hZ, (h$3))? + hZg
to get the matrix and right-hand side,

11 T2 Ti13 Ti4a Ti5 7Ti6 71
To2 T23 T24 T25 T26 Y2
B 33 T34 T35 T36 73
Rg = T44 T4s Tae | 5 G6 = . . (6.39)
Ts5 T56 -
T66 CeYe6
0 —8676

If the residual norm as given by |v,,+1| is small enough, the process must be stopped.
The last rows of R,,, and g,,, are deleted and the resulting upper triangular system is solved
to obtain y,,,. Then the approximate solution x,,, = x¢ + V¥ IS cOmputed.

Note from (6.39) that the following useful relation for ;4 results

Yi+1 = —S5V;- (6.40)

In particular, if s; = 0 then the residual norm must be equal to zero which means that the
solution is exact at step j.
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6.5.4 BREAKDOWN OF GMRES

If Algorithm 6.9 is examined carefully, we observe that the only possibilities of breakdown
in GMRES are in the Arnoldi loop, when ¢, = 0,i.e.,, when h;; ; = 0 atagivenstep j.
In this situation, the algorithm stops because the next Arnoldi vector cannot be generated.
However, in this situation, the residual vector is zero, i.e., the algorithm will deliver the
exact solution at this step. In fact, the converse is also true: If the algorithm stops at step j
with b — Al‘j = 0, then hj_f_l,j =0.

PROPOSITION 6.10 Let A be a nonsingular matrix. Then, the GMRES algorithm
breaks down at step j, i.e., hj11,; = 0, if and only if the approximate solution x ; is exact.

Proof. To show the necessary condition, observe thatif h;; ; = 0, then s; = 0. Indeed,

since A is nonsingular, then r;; = h%_l) is nonzero by the first part of Proposition 6.9
and (6.31) implies s; = 0. Then, the relations (6.36) and (6.40) imply that r; = 0.

To show the sufficient condition, we use (6.40) again. Since the solution is exact at step

Jj and not at step j — 1, then s; = 0. From the formula (6.31), this implies that ;1 ; = 0.

[ |

6.5.5 RELATIONS BETWEEN FOM AND GMRES

If the last row of the least-squares system in (6.38) is deleted, instead of the one in (6.39),
i.e., before the last rotation ¢ is applied, the same approximate solution as FOM would
result. As a practical consequence a single subroutine can be written to handle both cases.
This observation can also be helpful in understanding the relationships between the two
algorithms.

We begin by establishing an interesting relation between the FOM and GMRES iter-
ates, which will be exploited in the next chapter. A general lemma is first shown regarding
the solutions of the triangular systems

Ryym = gm

obtained from applying successive rotations to the Hessenberg matrices H,,,. As was stated
before, the only difference between the y,, vectors obtained in GMRES and Arnoldi is
that the last rotation €2,,, is omitted in FOM. In other words, the R,, matrix for the two
methods differs only in its (m, m) entry while the right-hand sides differ only in their last
components.

LEMMA 6.1 Let R,, be them x m upper part of the matrix Q.. H,, and, as before,
let R,,, be the m x m upper part of the matrix Q ,, H,,. Similarly, let g,,, be the vector of
the first m components of Q,,,_1(Be1) and let g,,, be the vector of the first m components
of Qm(Bei1). Define

gm = anlgm; Ym = Ry_nlgm
the y vectors obtained for an m-dimensional FOM and GMRES methods, respectively.
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Then
= (1) = (5= (")

in which ¢, is the cosine used in the m-th rotation Q.,,, as defined by (6.31).
Proof. The following relation holds:

_ Rpo1 zm N Ry Zm
(T @) Ea= (M5 T

Similarly, for the right-hand sides,
9m = (gm_1> y Gm = (gT_l)
Tm Ym

TYm = CmYm- (6.42)

Denoting by A the scalar ,/E?n + hfnﬂ,m, and using the definitions of s,, and ¢,,, we
obtain

with

— ¢ h _ ?n h3n+1,m =)= gm 6.43
&m = cmém + Sm m+1,m—7+f— —a. (6.43)
Now,
-1 1 -1
_ 1 g Ryzm Im—1
Ym = legm = ( m=1 &m = m=1 ) ( ) 6.44
0 o Ym (©49
which, upon observing that R' | g, 1 = ym_1, Yields,
Ym— 'm _R:nl_ Zm
ym—< Ol)zg—< - ) (6.45)

Replacing Yum, &m, Ym BY G, Em, Y respectively, in (6.44), a relation similar to (6.45)
would result except that v,,, /&, is replaced by 7., /&, which, by (6.42) and (6.43), satisfies
the relation
Tm 2 Ym
— =Cph=-
é.m fm

The result follows immediately. ]

If the FOM and GMRES iterates are denoted by the superscripts F' and G, respectively,
then the relation (6.41) implies that

G G _ .2 (.F G
Tm = Tm—1 = Cny (xm - wm—l) )
or,
28 =228 |+ 2k, (6.46)

This leads to the following relation for the residual vectors obtained by the two methods,

r,cri = sfnrg_l + cfnrﬁ; (6.47)



166 CHAPTER 6 KRYLOV SUBSPACE METHODS PART |

which indicates that, in general, the two residual vectors will evolve hand in hand. In par-
ticular, if ¢, = 0, then GMRES will not progress at step m, a phenomenon known as
stagnation. However, in this situation, according to the definitions (6.31) of the rotations,
h%”,;l) = 0 which implies that H,, is singular and, therefore, a:ﬂ is not defined. In fact,
the reverse of this is also true, a result due to Brown [43], which is stated without proof in
the following proposition.

PROPOSITION 6.11 If at any given step m, the GMRES iterates make no progress,
ie, if G = & _, then H,, is singular and =%, is not defined. Conversely, if H,, is
singular at step m, i.e., if FOM breaks down at step m, and A is nonsingular, then & =
2G|
Note also that the use of the above lemma is not restricted to the GMRES-FOM pair.
Some of the iterative methods defined in this chapter and the next involve a least-squares
problem of the form (6.24). In such cases, the iterates of the least-squares method and those
of the orthogonal residual (Galerkin) method will be related by the same equation.
Another important observation from (6.40) is that if p; is the residual norm ||b — Az;||2

obtained at step ¢, then
P = |smlog_y-
The superscripts G and F' are used again to distinguish between GMRES and FOM quan-
tities. A consequence of this is that,
pC =518 .- 8m|B- (6.48)

Now consider the FOM iterates, assuming that x,,, is defined, i.e., that H,, is nonsingular.
An equation similar to (6.48) for FOM can be derived. Using the same notation as in the
proof of the lemma, and recalling that

Pﬂ = hm+1,m|e£Hr;1 (Be1)l,

note that

el Hy (Ber) = 12
&m
Clearly,
|'~Ym| = |5m71')’m71| == |5152 - --Smflm
and therefore,
h
' m—+1,m
Pm = —F—
T leml
Using (6.31), observe that hm+1,m/|§~m| is the tangent of the angle defining the m-th rota-
tion, and therefore,

|$182 N Sm—lﬂl-

pF i |Sm| 57271 + h$n+1,m
" |&m |
which, by a comparison with (6.48), yields a revealing relation between the residuals of

|81$2 .. .Sm_1ﬁ|
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the FOM and GMRES algorithms, namely,

pm_ cmpm _pm 5.72,1 :

Another way to prove the above expression is to exploit the relation (6.47); see Exercise
12. These results are summarized in the following proposition (Brown [43]).

PROPOSITION 6.12 Assume that m steps of the Arnoldi process have been taken
and that H,, is nonsingular. Let £ = (Qum—1Hyp)mm and b = hyyq1.,. Then the residual
norms produced by the FOM and the GMRES algorithms are related by the equality

1
Prn = — P =P A1+ o5 (6.49)
Cm

6.5.6 VARIATION 1: RESTARTING

Similar to the FOM algorithm of the previous section, the GMRES algorithm becomes
impractical when m is large because of the growth of memory and computational require-
ments as m increases. These requirements are identical with those of FOM. As with FOM,
there are two remedies. One is based on restarting and the other on truncating the Arnoldi
orthogonalization. The straightforward restarting option is described here.

ALGORITHM 6.11: Restarted GMRES

1. Computerg =b— Axg, 8 = ||roll2, and vy = r¢/8

2. Generate the Arnoldi basis and the matrix H,, using the Arnoldi algorithm
3. starting with vy

4. Compute y,, which minimizes ||Be; — Hpy||2 and 2., = 2o + Vinym

5

. If satisfied then Stop, else set xy := x,, and GoTo 1

Note that the implementation tricks discussed in the previous section can be applied, pro-
viding the residual norm at each sub-step j without computing the approximation « ;. This
enables the program to exit as soon as this norm is small enough.

A well known difficulty with the restarted GMRES algorithm is that it can stagnate
when the matrix is not positive definite. The full GMRES algorithm is guaranteed to con-
verge in at most n steps, but this would be impractical if there were many steps required
for convergence. Obviously, a preconditioner for the linear system can be used to reduce
the number of steps, or a better preconditioner if one is already in use. This issue will be
covered later along with preconditioning techniques.

Example 6.2 Table 6.2 shows the results of applying the GMRES algorithm with no
preconditioning to three of the test problems described in Section 3.7.
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Matrix | Iters | Kflops | Residual Error

F2DA 95| 3841 | 0.32E-02 | 0.11E-03
F3D 67 | 11862 | 0.37E-03 | 0.28E-03
ORS 205 | 9221 | 0.33E+00 | 0.68E-04

Table 6.2 A test run of GMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test, the di-
mension of the Krylov subspace is m = 10. Observe that the problem ORS, which could
not be solved by FOM(10), is now solved in 205 steps.

6.5.7 VARIATION 2: TRUNCATED GMRES VERSIONS

It is possible to derive an Incomplete version of the GMRES algorithm. This algorithm
is called Quasi-GMRES (QGMRES) for the sake of notational uniformity with other al-
gorithms developed in the literature (some of which will be seen in the next chapter). A
direct version called DQGMRES using exactly the same arguments as in Section 6.4.2 for
DIOM can also be derived. We begin by defining the QGMRES algorithm, in simple terms,
by replacing the Arnoldi Algorithm with Algorithm 6.6, the Incomplete Orthogonalization
procedure.

ALGORITHM 6.12: Quasi-GMRES

Run a modification of Algorithm 6.9 in which the Arnoldi process in lines 3 to 11
is replaced by the Incomplete Orthogonalization process and all other computa-
tions remain unchanged.

Similar to I0M, only the & previous v; vectors must be kept at any given step. How-
ever, this version of GMRES will potentially save computations but not storage. This is
because computing the solution by formula (6.23) requires the vectors v; fori =1,...,m
to be accessed. Fortunately, the approximate solution can be updated in a progressive man-
ner, as in DIOM.

The implementation of this progressive version is quite similar to DIOM. First, note
that if H,, is banded, as for example, whenm = 5,k = 2,

hix  hia
ha1  haa  has
i h3a  hiz hag
has  has  has
hsy  hss
hes

then the premultiplications by the rotation matrices €2; as described in the previous section
will only introduce an additional diagonal. For the above case, the resulting least-squares

9= (6.50)

S OO OoOO™®
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system is Rsy = g5 with:

11 T2 T13 !
T22 T23 T24 Y2
R5= T33 T34 T35 7 Gs = V3 ) (6.51)
T4a4 Tap .
T55 .
0 Ye

The approximate solution is given by
Tm = To + VmR;zlgm

where R,, and g,, are obtained by removing the last row of R,, and g,,, respectively.
Defining P,, as in DIOM,

P, = Vmenl
then,
Tm = 2o + Prgm.

Also note that similarly to DIOM,

kN
in which
TYm = CM'Yﬁnm_l);
where 'yT(nm*l) is the last component of the vector g,,,_1, i.e., the right-hand side before the

m-th rotation is applied. Thus, z,, can be updated at each step, via the relation

Tm = Tm—1 + YmPm-

ALGORITHM 6.13: DQGMRES

1. Computerg =b— Axg, 11 := ||roll2, and vy := ro/m
2. Form =1,2,..., until convergence Do:
3. Compute b, i = max{l,m —k+1},...,m and v, 11
4. as in lines 2 to 6 of Algorithm 6.6
5. Update the QR factorization of H,,, i.e.,
6. Apply Q;,i =m —k,...,m — 1 to the m-th column of H,,
7. Compute the rotation coefficients c,,, sy, by (6.31)
8. ApplyQ,, to H,, and g,,, i.e., Compute:
9. TYm+1 = —SmTm
10. Ym = CmYm
11. hmm = Cmhmm + Smhmiim (= \/h2 1 +0200)
12. DPm = ('Um - Z:l:nl_k himpz') /hmm
13. Ty = Tm—1 + YmPm

14.  If|ymy1| is small enough then Stop
15. EndDo
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The above algorithm does not minimize the norm of the residual vector over ¢ + &C,y,.
Rather, it attempts to perform an approximate minimization. The formula (6.35) is still
valid since orthogonality is not used to derive it. Therefore,

b— Ax,, = Vm+1Q£ (’7m+lem+1)- (6.52)

If the v;’s were orthogonal to each other, then this is equivalent to GMRES and the resid-
ual norm is minimized over all vectors of the form zq + V,,,y. Since only an incomplete
orthogonalization is used then the v;’s are only locally orthogonal and, as a result, only
an approximate minimization may be obtained. In addition, (6.36) is no longer valid. This
equality had been derived from the above equation by exploiting the orthogonality of the
v;’s. It turns out that in practice, |ym,41| remains a reasonably good estimate of the actual
residual norm because the v;’s are nearly orthogonal. The following inequality provides an
actual upper bound of the residual norm in terms of computable quantities:

||b—A$m|| S \/m—k+1|’ym+1|. (653)
Here, & is to be replaced by m when m < k. The proof of this inequality is a consequence
of (6.52). If the unit vector ¢ = QT e,,+1 has components 51,72, - - - , Hm+1, then

b — Azmll2 = [Ym+1] [[Vins1dll2

k+1 m+1
<yl { Do movil| + | D mivs
i—1 o |li=kt2 )
e+l Y2 g
< |[Ymaal 27712 + Z 73] [|vill2
= i—=ht2
[k+1 1/2 m+1 1/2
<hml ([ +viR [z m.z]
Li=1 i—ht2

Here, the orthogonality of the first & + 1 vectors v; was used and the last term comes
from using the Cauchy-Schwartz inequality. The desired inequality follows from using the
Cauchy-Schwartz inequality again in the form

l.a+vVm—-k.b<vm—-k+1+va2+ b2

and from the fact that the vector ¢ is of norm unity. Thus, using |ym+1| as a residual
estimate, we would make an error of a factor of v/m — k + 1 at most. In general, this is an
overestimate and |v,,,+1| tends to give an adequate estimate for the residual norm.

It is also interesting to observe that with a little bit more arithmetic, it is possible to
actually compute the exact residual vector and norm. This is based on the observation that,
according to (6.52), the residual vector is v,,+1 times the vector z,,+1 which is the last
column of the matrix

Zmi1 = Vin1QT . (6.54)

It is an easy exercise to see that this last column can be updated from v,,,+1 and z,,. Indeed,

Zmt1 = [VWH Uﬂ%H]Q%—lﬂm
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= [Vngqavm—i—l]Qm
= [Zmyvm—f-l]ﬂm
where all the matrices related to the rotation are of size (m + 1) x (m + 1). The result is
that
Zm+1 = —SmiZm + CmUm+1- (655)

The z;’s can be updated at the cost of one extra vector in memory and 4n operations at
each step. The norm of z,,41 can be computed at the cost of 2n operations and the exact
residual norm for the current approximate solution can then be obtained by multiplying
this norm by |ym+1|-

Because this is a little expensive, it may be preferred to just “correct” the estimate
provided by «,,+1 by exploiting the above recurrence relation,

lzm+1llz < [smlllzmll2 + lem|.

If (i = ||2m]|2 , then the following recurrence relation holds,

Cm+1 < [8m|Cm + |eml- (6.56)

The above relation is inexpensive to update, yet provides an upper bound that is sharper
than (6.53); see Exercise 20.

An interesting consequence of (6.55) is a relation between two successive residual
vectors:

Tm = Ym+12m+1
= '7m+1[_5mzm + Cmvm—{—l]
2
= 85, "Tm—1 + CmYm+1Vm+1- (6.57)

This exploits the fact that v,;, 11 = —8mYm and r; = yj412j41.

Example 6.3 Table 6.3 shows the results of applying the DQGMRES algorithm with no
preconditioning to three of the test problems described in Section 3.7.

Matrix | Iters | Kflops | Residual Error

F2DA 98 | 7216 | 0.36E-02 | 0.13E-03
F3D 75 | 22798 | 0.64E-03 | 0.32E-03
ORS 300 | 24138 | 0.13E+02 | 0.25E-02

Table 6.3 A test run of DQGMRES with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. In this test the number
k of directions in the recurrence is & = 10.

It is possible to relate the quasi-minimal residual norm to the actual minimal residual
norm provided by GMRES. The following result was proved by Nachtigal (1991) [152] for
the QMR algorithm to be seen in the next chapter.
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THEOREM 6.1 Assume that V11, the Arnoldi basis associated with DQGMRES, is
of full rank. Letr& andrS& be the residual norms obtained after m steps of the DQGMRES
and GMRES algorithms, respectively. Then

Ir2l2 < k2(Vins1)lIrg ll2- (6.58)

Proof. Consider the subset of K, 1 defined by
R={r:r=Vyut;t=P08e —H,y;y € C"}.

Denote by v,, the minimizer of ||Be; — H,y||2 over y and t,, = Be; — Hplym, rm =
Vini1tm = r&. By assumption, V,,, 1 is of full rank and there is an (m + 1) x (m + 1)
nonsingular matrix .S such that Wy, 1 = V415 is unitary. Then, for any member of R,

r=Wpn S, t= SW,I,L{HT
and, in particular,
lFmllz < 1187 l2lltmll2- (6.59)

NOW ||¢,, |2 is the minimum of the 2-norm of Se; — H,,y over all y’s and therefore,

tmlle = 1SWeip1rmll < NSWilirlla Vr € R
< [ISll2llrllz vr € R
< [IS1la[1rl2- (6.60)

The result follows from (6.59), (6.60), and the fact that k2 (V;41) = k2(.5). ]

—
THE SYMMETRIC LANCZOS ALGORITHM

The symmetric Lanczos algorithm can be viewed as a simplification of Arnoldi’s method
for the particular case when the matrix is symmetric. When A is symmetric, then the Hes-
senberg matrix H,,, becomes symmetric tridiagonal. This leads to a three-term recurrence
in the Arnoldi process and short-term recurrences for solution algorithms such as FOM
and GMRES. On the theoretical side, there is also much more to be said on the resulting
approximation in the symmetric case.

6.6.1 THE ALGORITHM

To introduce the Lanczos algorithm we begin by making the observation stated in the
following theorem.
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THEOREM 6.2 Assume that Arnoldi’s method is applied to a real symmetric matrix
A. Then the coefficients h;; generated by the algorithm are such that

hij =0, for 1<i<j—1, (6.61)
hjj+1 = hjtr,y, j=1,2,...,m. (6.62)

In other words, the matrix H,, obtained from the Arnoldi process is tridiagonal and sym-
metric.

Proof. The proof is an immediate consequence of the fact that H,, = VI AV,, is a
symmetric matrix which is also a Hessenberg matrix by construction. Therefore, H,,, must
be a symmetric tridiagonal matrix. [ ]

The standard notation used to describe the Lanczos algorithm is obtained by setting
aj = hjj B = hj;
and if T,,, denotes the resulting H,,, matrix, it is of the form,

a1 B

B2 a2 B3
Tm = . . . (6.63)
ﬁm—l Am—1 /Bm

Bm  am
This leads to the following form of the Modified Gram-Schmidt variant of Arnoldi’s
method, namely, Algorithm 6.2.

ALGORITHM 6.14: The Lanczos Algorithm

Choose an initial vector vy of norm unity. Set 81 = 0,v9 = 0
Forj =1,2,...,m Do:

wy = Avj - ﬂj’l)j_l

aj = (wj,v;)

UJJ' = ’IU]' — ajvj

ﬁj+1 = ||1UJ||2 Ifﬂj+1 =0 then Stop

Vi1 := wj/Bjr
EndDo

NSO WD R

It is rather surprising that the above simple algorithm guarantees, at least in exact
arithmetic, that the vectors v;,¢ = 1,2, ..., are orthogonal. In reality, exact orthogonality
of these vectors is only observed at the beginning of the process. At some point the v;’s
start losing their global orthogonality rapidly. There has been much research devoted to
finding ways to either recover the orthogonality, or to at least diminish its effects by partial
or selective orthogonalization; see Parlett [160].

The major practical differences with Arnoldi’s method are that the matrix H,,, is tridi-
agonal and, more importantly, that only three vectors must be saved, unless some form of
reorthogonalization is employed.
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6.6.2 RELATION WITH ORTHOGONAL POLYNOMIALS

In exact arithmetic, the core of Algorithm 6.14 is a relation of the form

Bit1vj41 = Avj — ajvj — 101
This three-term recurrence relation is reminiscent of the standard three-term recurrence
relation of orthogonal polynomials. In fact, there is indeed a strong relationship between
the Lanczos algorithm and orthogonal polynomials. To begin, recall that if the grade of v
is > m, then the subspace K, is of dimension m and consists of all vectors of the form
g(A)vy, where g is a polynomial with degree(q) < m — 1. In this case there is even an

isomorphism between C,,, and P,,,_1, the space of polynomials of degree < m — 1, which
is defined by

qeEP, 1 >x=q(A)v € Kp.
Moreover, we can consider that the subspace P,,,_; is provided with the inner product

<D,q >vp;= (p(A)Ula q(A)Ul) (664)

This is indeed a nondegenerate bilinear form under the assumption that m does not exceed
1, the grade of v;. Now observe that the vectors v; are of the form

Vi = Qi—l(A)U1

and the orthogonality of the v;’s translates into the orthogonality of the polynomials with
respect to the inner product (6.64). It is known that real orthogonal polynomials satisfy a
three-term recurrence. Moreover, the Lanczos procedure is nothing but the Stieltjes algo-
rithm; (see, for example, Gautschi [102]) for computing a sequence of orthogonal poly-
nomials with respect to the inner product (6.64). It is known [180] that the characteristic
polynomial of the tridiagonal matrix produced by the Lanczos algorithm minimizes the
norm ||.||»,, over the monic polynomials. The recurrence relation between the characteris-
tic polynomials of tridiagonal matrices also shows that the Lanczos recurrence computes
the sequence of vectors pr.,, (4)v1, where pr., is the characteristic polynomial of T7,,.

—
THE CONJUGATE GRADIENT ALGORITHM

The Conjugate Gradient algorithm is one of the best known iterative techniques for solving
sparse Symmetric Positive Definite linear systems. Described in one sentence, the method
is a realization of an orthogonal projection technique onto the Krylov subspace K, (ro, A)
where rq is the initial residual. It is therefore mathematically equivalent to FOM. How-
ever, because A is symmetric, some simplifications resulting from the three-term Lanczos
recurrence will lead to more elegant algorithms.
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6.7.1 DERIVATION AND THEORY

We first derive the analogue of FOM, or Arnoldi’s method, for the case when A is sym-
metric. Given an initial guess zg to the linear system Az = b and the Lanczos vectors

v;,i = 1,...,m together with the tridiagonal matrix T7,,, the approximate solution ob-
tained from an orthogonal projection method onto C,,, is given by
T =20 + Vinhm,  Ym = Tyt (Ber). (6.65)

ALGORITHM 6.15: Lanczos Method for Linear Systems

1. Computerg =b— Az, B := ||rol|2, and vy := 10/

2. Forj=1,2,...,m Do:

3. wj; = AU]' - ﬂ]"l}j,1 (If] =1 setfrvg = 0)

4. aj; = (w]','l}j)

5. Wy = Wy — Qj;v;

6.  Bjt1 = ||lwjll2. If Bj1+1 = 0setm := j and goto 9

7. v = wj/Bin

8. EndDo

9. SetT,, = tridiag (8;, i, Bi+1), and Vi, = [v1, ..., 0]
10. Compute y,, = T,  (Be1) and T, = zo + Vinym

Many of the results obtained from Arnoldi’s method for linear systems are still valid. For
example, the residual vector of the approximate solution z,, is such that

b— Az, = —ﬂm+1e?nymvm+1. (6.66)

The Conjugate Gradient algorithm can be derived from the Lanczos algorithm in the
same way DIOM was derived from IOM. In fact, the Conjugate Gradient algorithm can be
viewed as a variation of DIOM(2) for the case when A is symmetric. We will follow the
same steps as with DIOM, except that the notation will be simplified whenever possible.

First write the LU factorization of T, as T}, = L,,U,,. The matrix L,, is unit lower
bidiagonal and U,,, is upper bidiagonal. Thus, the factorization of T, is of the form

1 m B
Ay 1 ne B3
Th= Az 1 X ns s
A1 n PBs
s 1 U
The approximate solution is then given by,
T = T + Vi U L (Ber).
Letting
P, = VmU,;1
and

#m = L, Ber,
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then,
T = To + PmzZm-

As for DIOM, p,,,, the last column of P,,, can be computed from the previous p;’s and v,,,
by the simple update

Pm = 777_n1 [Um - ﬂmpm—l]-

Note that 3, is a scalar computed from the Lanczos algorithm, while 7,,, results from the
m-th Gaussian elimination step on the tridiagonal matrix, i.e.,

Brm

Am = , (6.67)
NIm—1

Nm = Qm — AmBm- (6.68)

In addition, following again what has been shown for DIOM,
Zm—1
Zm = ;
o]

in which (,, = —AnGn—1. As aresult, x,, can be updated at each step as

Tm = Tm-1+ Cmpm

where p,, is defined above.
This gives the following algorithm, which we call the direct version of the Lanczos
algorithm for linear systems.

ALGORITHM 6.16: D-Lanczos

1 CompUtE'T’O =b— A.’L'(), Cl = /3 = ||7’0||2, and vy := 7’0/,8

2. Set \; 261:0,1)0:0

3. Form =1,2,..., until convergence Do:

4 Compute w := Av,y, — Bimvm—1 and o, = (w, v,y,)

5. Ifm > 1 then compute \,, = ni’jl and Cm = —AmCm—1

6 Nm = Qm — )\mﬂm

7. Pm = ny_nl (Vm — BmPm—1)

8. Tm = Tm-1 + CmPm

9
10
11
12

If x,,, has converged then Stop
W =W — QmUm
Bm+1 = [wll2, vm41 = w/Bmt1

. EndDo

This algorithm computes the solution of the tridiagonal system T,,y., = Bei pro-
gressively by using Gaussian elimination without pivoting. However, as was explained for
DIOM, partial pivoting can also be implemented at the cost of having to keep an extra
vector. In fact, Gaussian elimination with partial pivoting is sufficient to ensure stability
for tridiagonal systems. The more complex LQ factorization has also been exploited in this
context and gave rise to an algorithm known as SYMMLQ [159].

The two algorithms 6.15 and 6.16 are mathematically equivalent, that is, they deliver
the same approximate solution if they are both executable. However, since Gaussian elimi-
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nation without pivoting is being used implicitly to solve the tridiagonal system T,y = Be1,
the direct version may be more prone to breakdowns.

Observe that the residual vector for this algorithm is in the direction of v,, 1 due to
equation (6.66). Therefore, the residual vectors are orthogonal to each other as in FOM.
Likewise, the vectors p; are A-orthogonal, or conjugate. These results are established in
the next proposition.

PROPOSITION 6.13 Letr,, = b — Az,, m = 0,1,..., be the residual vec-
tors produced by the Lanczos and the D-Lanczos algorithms (6.15 and 6.16) and p,,,
m =0,1,..., the auxiliary vectors produced by Algorithm 6.16. Then,

1. Each residual vector r, is such that r,, = opvm1 Where o, Is a certain scalar.
As a result, the residual vectors are orthogonal to each other.
2. The auxiliary vectors p; form an A-conjugate set, i.e., (Ap;,p;) = 0, fori # j.

Proof. The first part of the proposition is an immediate consequence of the relation
(6.66). For the second part, it must be proved that PL AP, is a diagonal matrix, where
P, =V, U, L. This follows from
PrAP, =U,TVIAV,,U!

=U T, Ut

=U, L.
Now observe that U, T L,, is a lower triangular which is also symmetric since it is equal
to the symmetric matrix PL AP,,,. Therefore, it must be a diagonal matrix. ]

A consequence of the above proposition is that a version of the algorithm can be
derived by imposing the orthogonality and conjugacy conditions. This gives the Conjugate
Gradient algorithm which we now derive. The vector z ;1 can be expressed as

Tjr1 = Tj + g py- (6.69)
Therefore, the residual vectors must satisfy the recurrence

Tj+1 = Tj — OtjApj. (6.70)
If the r;’s are to be orthogonal, then it is necessary that (r; — a;Ap;,r;) = 0 and as a
result

(rj,75)

(4pj,75)
Also, it is known that the next search direction p;; is a linear combination of r;,; and
p;, and after rescaling the p vectors appropriately, it follows that

a; = (6.71)

Pj+1 = Tj+1 + Bip;- (6.72)
Thus, a first consequence of the above relation is that

(Apj,r;) = (Apj,pj — Bj—1pj—1) = (Apj,p;)
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because Ap; is orthogonal to p;_;. Then, (6.71) becomes a; = (rj,r;)/(Ap;,p;). In
addition, writing that p;; as defined by (6.72) is orthogonal to Ap; yields

g, = _ (it 4p;)
’ (pjﬂ Apj)
Note that from (6.70)

1
Apj = _a_j(rj+1 =) (6.73)

and therefore,

g= L (41, (rje1 —75)) _ (rjza,741)
; .

oy (Apj, pj) N
Putting these relations together gives the following algorithm.

ALGORITHM 6.17: Conjugate Gradient

1. Computerg := b — Axg, po := ro.

2. Forj =0,1,..., until convergence Do:
3. a;:=(rj,r;)/(Apj,pj)

4 Tjy1 = T + Q5P

5. Tj41 =15 — OéjApj
6.

7

8

Bj = (rjt1,741)/(rj,7;5)
Pj+1 = Tjt1 + Bip;

. EndDo

It is important to note that the scalars o, 3; in this algorithm are different from those of
the Lanczos algorithm. The vectors p; are multiples of the p;’s of Algorithm 6.16.

In terms of storage, in addition to the matrix A, four vectors (z, p, Ap, and r) must be
saved in Algorithm 6.17, versus five vectors (v, vm—1, w, p, and x) for Algorithm 6.16.

6.7.2 ALTERNATIVE FORMULATIONS

Algorithm 6.17 is the best known formulation of the Conjugate Gradient algorithm. There
are, however, several alternative formulations. Here, only one such formulation is shown,
which can be derived once more from the Lanczos algorithm.

The residual polynomial r,,(¢) associated with the m-th CG iterate must satisfy a
three-term recurrence, implied by the three-term recurrence of the Lanczos vectors. Indeed,
these vectors are just the scaled versions of the residual vectors. Therefore, we must seek
a three-term recurrence of the form

T'm+1 (t) = pm(Tm (t) — YmiTm (t)) + OmTm—1 (t)

In addition, the consistency condition r,,(0) = 1 must be maintained for each m, leading
to the recurrence,

Tmt1(t) = pm(rm(t) — Ymtrm(t)) + (L — pm)rm-1(t). (6.74)
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Observe that if r,,,(0) = 1 and r,,—1(0) = 1, then r,,41(0) = 1, as desired. Translating
the above relation into the sequence of residual vectors yields

Tm4+1 = pm(rm - ’YmArm) + (1 - pm)’rmfl- (675)

Recall that the vectors r;’s are multiples of the Lanczos vectors v;’s. As a result, +,, should
be the inverse of the scalar «.,, of the Lanczos algorithm. In terms of the r-vectors this
means

_ (Tmarm)
Tm = (AP, Tm)’

Equating the inner products of both sides of (6.75) with r,,,_1, and using the orthogonality
of the r-vectors, gives the following expression for p,,, after some algebraic calculations,

Ym  (Pm,Tm) 117!

Ym—1 (Tmfly Tmfl) Pm—1

The recurrence relation for the approximate solution vectors can be extracted from
the recurrence relation for the residual vectors. This is found by starting from (6.74) and
using the relation r,,, (t) = 1 —ts,,—1(t) between the solution polynomial s,,_1(¢) and the
residual polynomial r,,, (¢). Thus,

pm = |1— (6.76)

sm(t) = 1_’"++1(t)
= Pm <l_+m(t) — ’yme(t)> +(1- pm)l_T+fl(t)

= Pm (Smfl(t) - 'Yme(t)) + (1 - pm)3m72(t)-
This gives the recurrence,
Tmi1 = Pm(Tm — YmTm) + (L = pm)Tm—1. (6.77)

All that is left for the recurrence to be determined completely is to define the first two
iterates. The initial iterate x¢ is given. The first vector should be of the form

Z1 = To — 7YoTo,

to ensure that r4 is orthogonal to ro. This means that the two-term recurrence can be started
with pg = 1, and by setting z_, = 0. Putting these relations and definitions together gives
the following algorithm.

ALGORITHM 6.18: CG — Three-Term Recurrence Variant

Computerqg = b — Axg. Setz_1 = 0and py = 1.
Forj =0,1,..., until convergence Do:
Compute Ar; and y; = %
-1

If (j > 0) compute pj = [1 S 2

Yi-1 (rj—1,75-1) pj—1
iy = pj (2 —vri) + (1 = pj)zj
Computerjy = pj(rj —vjAr;) + (1 = pj)rj—

EndDo

NSO A WDNR
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The residual ;44 could also be computed directly as ;11 = b — Ax;4q in line 6 of the
algorithm, but this would require an additional matrix-vector product.

6.7.3 EIGENVALUE ESTIMATES FROM THE CG
COEFFICIENTS

Sometimes, it is useful to be able to obtain the tridiagonal matrix T, related to the un-
derlying Lanczos iteration from the coefficients of the Conjugate Gradient algorithm 6.17.
This tridiagonal matrix can provide valuable eigenvalue information on the matrix A. For
example, the largest and smallest eigenvalues of the tridiagonal matrix can approximate
the smallest and largest eigenvalues of A. This could be used to compute an estimate of
the condition number of A which in turn can help provide estimates of the error norm from
the residual norm. Since the Greek letters «; and 3; have been used in both algorithms,
notations must be changed. Denote by

Th = tridiag [nja 5janj+1]’

the tridiagonal matrix (6.63) associated with the m-th step of the Lanczos algorithm. We
must seek expressions of the coefficients 7;, d; in terms of the coefficients «;, 3;, obtained
from the CG algorithm. The key information regarding the correspondence between the
two pairs of coefficients resides in the correspondence between the vectors generated by
the two algorithms. From (6.66) it is known that

r; =scalar x wvjyq. (6.78)
As a result,
(Avjp1,0541) _ (A7, 7))
(Vj+1,Vj41) (rj,r5)
The denominator (r;, ;) is readily available from the coefficients of the CG algorithm, but
the numerator (Ar;,r;) is not. The relation (6.72) can be exploited to obtain

rj =P = Bj-1pj-1 (6.79)
which is then substituted in (Ar;,r;) to get
(Arj,r;) = (Alp; — Bj-1Pj-1):pj — Bj-1pj-1) -

Note that the terms 3;_ p;_1 are defined to be zero when j = 0. Because the p vectors are
A-orthogonal,

djp1 =

(Arj,r;) = (Apj,p;) + B7_1 (Apj—1,pj-1),
from which we finally obtain for 5 > 0,

Ap; . Ap._ . 1 .
(Apj,p;) + Jz'—l( Pj—1,Pj—1) = 4 Bj L (6.80)
(rj,rj) (rj,rj) aj
The above expression is only valid for j > 0. For j = 0, the second term in the right-hand
side should be omitted as was observed above. Therefore, the diagonal elements of T',,, are

Oj41 =
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given by

L for j=0
i1 = { T B . (6.81)
a; T ﬁ for 5 >0.

Now an expression for the co-diagonal elements 7, is needed. From the definitions
in the Lanczos algorithm,

|(Arj—1,7;)|

lIrj—all2llrsll2”

Using (6.79) again and the relation (6.73) as well as orthogonality properties of the CG
algorithm, the following sequence of equalities results:

(Arj_1,75) = (A(Pj—1 — Bj—2pj2),75)
= (Apj-1,7;) — Bj—2(Apj—2,7;)

Ni+1 = (Avj,vj41) =

-1 Bi—2
= 1 (rj —rj—1,75) + a2 (rj—1 —Tj—2,75)
-1
—m(ﬁ'ﬂ“;‘)-
Therefore,
Doy = — (rjpr)) 1 imilla _ V/Bi—
! aj-1 lrj-tll2llrjllz  aj-1 lIrj-allz a1

This finally gives the general form of the m-dimensional Lanczos tridiagonal matrix in
terms of the CG coefficients,

1 VBo

o (0]

@ L+5_0 \/6—1
(5} Qo

@o

[¢3]
T, = ) (6.82)
vV Bm—2
) QAm—2
Bm—2 1 Bm—2
QAm—2 Am—1 + Om—2
___ I

THE CONJUGATE RESIDUAL METHOD

2

In the previous section we derived the Conjugate Gradient algorithm as a special case of
FOM for Symmetric Positive Definite matrices. Similarly, a new algorithm can be derived
from GMRES for the particular case where A is Hermitian. In this case, the residual vectors
should be A-orthogonal, i.e., conjugate. In addition, the vectors Ap;’si = 0,1,..., are
orthogonal. When looking for an algorithm with the same structure as CG, but satisfying
these conditions, we find the Conjugate Residual algorithm. Notice that the residual vectors
are now conjugate to each other, hence, the name of the algorithm.
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ALGORITHM 6.19: Conjugate Residual Algorithm

1. Computerg :=b— Axg, po := 1o
2. Forj =0,1,..., until convergence Do:
3. aj:=(rj, Ar;)/(Ap;, Ap;)

4. zjp1 =25+ a;p;

5. Tj4+1 :=T5 — OéjApj
6
7
8
9

Bj = (rjt1, Arjy1)/(rj, Arj)
Pj+1 = Tj+1 + Bip;
Compute Apj+1 = Arjy1 + B Ap;

L9 EndDo

The last line in the above algorithm computes Ap;; from Ar;,; without an additional
matrix-vector product. Five vectors of storage are needed in addition to the matrix A: z, p,
Ap, r, Ar. The algorithm requires one more vector update, i.e., 2n more operations than
the Conjugate Gradient method and one more vector of storage. Since the two methods
exhibit typically a similar convergence behavior, the Conjugate Gradient method is often
preferred over the Conjugate Residual algorithm.

I
GCR, ORTHOMIN, AND ORTHODIR

All algorithms developed in this chapter are strongly related to, as well as defined by,
the choice of a basis of the Krylov subspace. The GMRES algorithm uses an orthogonal
basis. In the Conjugate Gradient algorithm, the p’s are A-orthogonal, i.e., conjugate. In
the Conjugate Residual method just described, the Ap;’s are orthogonal, i.e., the p;’s are
AT A-orthogonal. A number of algorithms can be developed using a basis of this form in
the nonsymmetric case as well. The main result that is exploited in all these algorithms is
the following lemma.

LEMMA 6.2 Letpg,p:,...,pm—1 beabasis of the Krylov subspace K, (A, ro) which
is AT A-orthogonal, i.e., such that

(Api, Ap;) =0, fori # j.
Then the approximate solution x,,, which has the smallest residual norm in the affine space
zo + K (A, ro) is given by
m—1
Api
Tm =0+ Y M i (6.83)

In addition, x.,, can be computed from x.,,_1 by

(Tm—hApm—l) p L
(Apm—laApm—l) e

Ty = Tm—1 + (6.84)
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Proof. The approximate solution and the associated residual vector can be written in the
form

m—1 m—1
Tm = To + Z iDi, Tm =T — z o Ap;. (6.85)
i=0 i=0

According to the optimality result of Proposition 5.3, in order for ||r,, |2 to be minimum,
the orthogonality relations

(rm,Ap;) =0, i=0,...,m—1
must be enforced. Using (6.85) and the orthogonality of the Ap;’s gives immediately,
a; = (ro, Api)/ (Api, Api)-

This proves the first part of the lemma. Assume now that z,,—; is known and that z,,
must be determined. According to formula (6.83), 2., = Z; -1 + @m_1Pm—1 With a1
defined above. Note that from the second part of (6.85),

m—2

Tm—1 =T0 — Z o; Ap;
j=0

so that

m—2

(*m-1,Apm 1) = (ro, Apm 1) — Y, @;(Apj, Apm 1) = (r0, Apm 1)

j=
exploiting, once more, the orthogonality of the vectors Ap;, j = 0,...,m — 1. Thus,
(Tmfla Apmfl)
f4pm—1514pm—1)7
which proves the expression (6.84). [ ]

Om—1 = (

This lemma opens up many different ways to obtain algorithms that are mathemati-
cally equivalent to the full GMRES. The simplest option computes the next basis vector
pm+1 as a linear combination of the current residual r,,, and all previous p;’s. The approxi-
mate solution is updated by using (6.84). This is called the Generalized Conjugate Residual
(GCR) algorithm.

ALGORITHM 6.20: GCR

1. Computerg =b— Axg. Setpyg = ro.
Forj =0,1,2,..., until convergence Do:

; = \rixAp;)
77 (Ap;,Apj)

2

3

4, Tjp1 = Tj + a;p;
5. Tjit1 =75 — OéjApj
6

7

8

Compute 3;; = —%, fori =0,1,...,j

Pj+1 =Tj+1 + E?:o Bijpi
EndDo
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To compute the scalars §;; in the above algorithm, the vector Ar; and the previous Ap;’s
are required. In order to limit the number of matrix-vector products per step to one, we
can proceed as follows. Follow line 5 by a computation of Ar;,4 and then compute Ap;
after line 7 from the relation

J
Apji1 = Arjp + ) Bij Api.
i=0
Both the set of p;’s and that of the Ap;’s need to be saved. This doubles the storage re-
quirement compared with GMRES. The number of arithmetic operations per step is also
roughly 50% higher than GMRES.

The above version of GCR suffers from the same practical limitations as GMRES
and FOM. A restarted version called GCR(m) can be trivially defined. Also, a truncation
of the orthogonalization of the Ap;’s, similar to IOM, leads to an algorithm known as
ORTHOMIN(K). Specifically, lines 6 and 7 of Algorithm 6.20 are replaced by

_%’ fori:j—k+1;---aj

7a. Pjt1 =Tj41 + Zg:j—k.l,_l ﬂz'jpz' .

6a. Compute 3;; =

Another class of algorithms is defined by computing the next basis vector p;. as

J
Pj+1 = Ap; + Zﬂz’jpz' (6.86)
=0
in which, as before, the §;;’s are selected to make the Ap;’s orthogonal, i.e.,
B = — (A%p;, Api)
Y (Ap;, Ap;)

The resulting algorithm is called ORTHODIR [127]. Restarted and truncated versions of
ORTHODIR can also be defined.

I
THE FABER-MANTEUFFEL THEOREM

As was seen in Section 6.6 when A is symmetric, the Arnoldi algorithm simplifies into the
Lanczos procedure, which is defined through a three-term recurrence. As a consequence,
FOM is mathematically equivalent to the Conjugate Gradient algorithm in this case. Simi-
larly, the full GMRES algorithm gives rise to the Conjugate Residual algorithm. It is clear
that the CG-type algorithms, i.e., algorithms defined through short-term recurrences, are
more desirable than those algorithms which require storing entire sequences of vectors as
in the GMRES process. These algorithms require less memory and operations per step.
Therefore, the question is: Is it possible to define algorithms which are based on op-
timal Krylov subspace projection and which give rise to sequences involving short-term
recurrences? An optimal Krylov subspace projection means a technique which minimizes
a certain norm of the error, or residual, on the Krylov subspace. Such methods can be de-
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fined from the Arnoldi process. If the Arnoldi process simplifies into an s-term recurrence,
i.e., if hy; = 0fori < j— s+ 1, then the conjugate directions p; in DIOM are also defined
from an s-term recurrence. Similarly, the full GMRES would also simplify into a DQGM-
RES algorithm involving a short recurrence. Therefore, for all purposes, it is sufficient to
analyze what happens to the Arnoldi process (or FOM). We start by generalizing the CG
result in a simple way, by considering the DIOM algorithm.

PROPOSITION 6.14 Let A be a matrix such that

ATy € K, (A,v)
for any vector v. Then, DIOM(s) is mathematically equivalent to the FOM algorithm.
Proof. The assumption is equivalent to the statement that, for any v, there is a polyno-

mial g, of degree < s — 1, such that ATv = ¢, (A)wv. In the Arnoldi process, the scalars
hi; are defined by h;; = (Av;,v;) and therefore

hij = (Avj,vi) = (v;, ATv;) = (vj, qu; (A)vi). (6.87)
Since g, is a polynomial of degree < s — 1, the vector g, (A)v; is a linear combination
of the vectors v;, vit1, - - -, Vits—1. Asaresult, if i < j — s+ 1, then h;; = 0. Therefore,
DIOM(K) will give the same approximate solution as FOM. [ ]

In particular, if
AT =q(4)

where ¢ is a polynomial of degree < s — 1, then the result holds. However, the above
relation implies that each eigenvector of A is also an eigenvector of A”. According to
Theorem 1.2, this can be true only if A is a normal matrix. As it turns out, the reverse is
also true. That is, when A is normal, then there is a polynomial of degree < n — 1 such
that A¥ = g(A). Proving this is easy because when A = QAQ* where Q is unitary and
A diagonal, then g(A) = Qq(A)Q*. By choosing the polynomial g so that
q()\j) :)\j, _] = 1,...,n

we obtain g(A) = QAQ = AH which is the desired result.

Let v(A) be the smallest degree of all polynomials g such that A# = q(A). Then the
following lemma due to Faber and Manteuffel [85] states an interesting relation between s
and v(A).

LEMMA 6.3 A nonsingular matrix A is such that

Ay € K4(4A,v)
for every vector v if and only if A is normal and v(A) < s — 1.
Proof. Thesufficient condition is trivially true. To prove the necessary condition, assume
that, for any vector v, Afv = ¢,(A)v where g, is a polynomial of degree < s — 1. Then
it is easily seen that any eigenvector of A is also an eigenvector of A¥. Therefore, from

Theorem 1.2, A is normal. Let u be the degree of the minimal polynomial for A. Then,
since A has p distinct eigenvalues, there is a polynomial ¢ of degree p — 1 such that
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q(X\;) = \; fori = 1,..., u. According to the above argument, for this g, it holds AH# =
g(A) and therefore v(4) < p— 1. Now it must be shown that i < s. Let w be a (nonzero)
vector whose grade is p. By assumption, A#¥w € K,(A,w). On the other hand, we also
have A#w = q(A)w. Since the vectors w, Aw, ..., A* 1w are linearly independent, u—1
must not exceed s — 1. Otherwise, two different expressions for A”w with respect to the
basis w, Aw, . .., A*~1w would result and this would imply that A#w = 0. Since A is
nonsingular, then w = 0, which is a contradiction. ]

Proposition 6.14 gives a sufficient condition for DIOM(s) to be equivalent to FOM.
According to Lemma 6.3, this condition is equivalent to A being normal and v(4) <
s — 1. Now consider the reverse result. Faber and Manteuffel define CG(s) to be the class
of all matrices such that for every vy, it is true that (Av;,v;) = 0 for all 4, j such that
i+ s < j < p(ve) — 1. The inner product can be different from the canonical Euclidean
dot product. With this definition it is possible to show the following theorem [85] which is
stated without proof.

THEOREM 6.3 A € CG(s), ifandonlyif u(A) < sorAisnormalandv(A) < s—1.

It is interesting to consider the particular case where v(A) < 1, which is the case of
the Conjugate Gradient method. In fact, it is easy to show that in this case A either has a
minimal degree < 1, or is Hermitian, or is of the form

A =€ (pI + B)

where @ and p are real and B is skew-Hermitian, i.e., B¥ = —B. Thus, the cases in
which DIOM simplifies into an (optimal) algorithm defined from a three-term recurrence
are already known. The first is the Conjugate Gradient method. The second is a version
of the CG algorithm for skew-Hermitian matrices which can be derived from the Lanczos
algorithm in the same way as CG. This algorithm will be seen in Chapter 9.

I
CONVERGENCE ANALYSIS

6.11

The convergence behavior of the different algorithms seen in this chapter can be analyzed
by exploiting optimality properties whenever such properties exist. This is the case for
the Conjugate Gradient and the GMRES algorithms. On the other hand, the non-optimal
algorithms such as FOM, 10M, and QGMRES will be harder to analyze.

One of the main tools used in the analysis of these methods is Chebyshev polynomials.
These polynomials are useful both in theory, when studying convergence, and in practice,
as a means of accelerating single-vector iterations or projection processes. In the following,
real and complex Chebyshev polynomials are discussed separately.
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6.11.1 REAL CHEBYSHEV POLYNOMIALS

The Chebyshev polynomial of the first kind of degree & is defined by
Cr(t) = cos[k cos™!(t)] for —1<t<1. (6.88)

That this is a polynomial with respect to ¢ can be shown easily by induction from the
trigonometric relation

cos[(k + 1)6] + cos[(k — 1)8] = 2 cosf cos k0,

and the fact that C4 (t) = ¢, Co(¢t) = 1. Incidentally, this also shows the important three-
term recurrence relation

Crya(t) = 2t Cp(t) — Cp1(t)-

The definition (6.88) can be extended to cases where |¢| > 1 with the help of the following
formula:

Ck(t) = cosh[kcosh *(t)], |t| > 1. (6.89)

This is readily seen by passing to complex variables and using the definition cos8 =
(e +e~)/2. As a result of (6.89) the following expression can be derived:

Ci(t) = % [(t+ \/t2—1)k+ (t+ \/t2—1)k] : (6.90)

which is valid for |¢| > 1 but can also be extended to the case of |¢| < 1. The following
approximation, valid for large values of &, will be sometimes used:

1 k
C®) %5 (t +VEE - 1) for [t > 1. (6.91)
In what follows we denote by P, the set of all polynomials of degree k. An important
result from approximation theory is the following theorem.
THEOREM 6.4 Let [a, 3] be a non-empty interval in R and let -y be any real scalar
outside the interval [, 8]. Then the minimum

min max |p(t)|
PEP,p(y)=1 t€[0]

is reached by the polynomial
Chk (1 + 2%)

Ci(t) m

(6.92)

For a proof, see Cheney [52]. The maximum of C}, for ¢ in[—1,1] is 1 and a corollary
of the above result is

1 1
min max_|p(t)| = —— = =
PEP L, p(y)=1 tE[*] |Ck(1+2;;,—§)| ICk (255
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in which g = (a + £)/2 is the middle of the interval. The absolute values in the denomi-

nator are needed only when « is to the left of the interval, i.e., when v < a. For this case,

it may be more convenient to express the best polynomial as

A Ch (1 + 23%3)

Cr(t) = ———L.
Ci (1+2572)

which is obtained by exchanging the roles of « and 3 in (6.92).

6.11.2 COMPLEX CHEBYSHEV POLYNOMIALS

The standard definition of real Chebyshev polynomials given by equation (6.88) extends
without difficulty to complex variables. First, as was seen before, when ¢ is real and [¢| > 1,
the alternative definition, C () = cosh[k cosh™(t)], can be used. These definitions can
be unified by switching to complex variables and writing

Cr(z) = cosh(k¢), where cosh(¢) =z.

Defining the variable w = e¢, the above formula is equivalent to

Cr(z) = %[wk +w ] where z= %[w +w™]. (6.93)

The above definition for Chebyshev polynomials will be used in C. Note that the equation
1 (w+w~") = 2z has two solutions w which are inverse of each other. As a result, the value
of C}(z) does not depend on which of these solutions is chosen. It can be verified directly
that the C},’s defined by the above equations are indeed polynomials in the z variable and
that they satisfy the three-term recurrence

Cri1(2) =22C0%(2) — Cr—1(2), (6.94)
Co(z) =1, Ci(z) = 2.
As is now explained, Chebyshev polynomials are intimately related to ellipses in the
complex plane. Let C, be the circle of radius p centered at the origin. Then the so-called
Joukowski mapping

Tw) = glw+w ]

transforms C|, into an ellipse of center the origin, foci —1, 1, major semi-axis %[p +p7Y
and minor semi-axis %|p — p~ 1. This is illustrated in Figure 6.2.

There are two circles which have the same image by the mapping J(w), one with the
radius p and the other with the radius p—1. So it is sufficient to consider only those circles
with radius p > 1. Note that the case p = 1 is a degenerate case in which the ellipse
E(0,1,—1) reduces to the interval [—1, 1] traveled through twice.

An important question is whether or not a generalization of the min-max result of The-
orem 6.4 holds for the complex case. Here, the maximum of |p(z)| is taken over the ellipse
boundary and - is some point not enclosed by the ellipse. The answer to the question is no;
Chebyshev polynomials are only optimal in some cases. However, Chebyshev polynomials
are asymptotically optimal, which is all that is needed in practice.
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J(w)

-1

/ \»\W— pei? \.\z: why
\ Re(w) / Re(z)

N

Figure 6.2 The Joukowski mapping transforms a circle into
an ellipse in the complex plane.

To prove the asymptotic optimality, we begin with a lemma due to Zarantonello, which
deals with the particular case where the ellipse reduces to a circle. This particular case is
important in itself.

LEMMA 6.4 Zarantonello Let C(0,p) be a circle of center the origin and radius p
and let « be a point of C not enclosed by C(0, p). Then

k
. p
min max |p(z)| = (—) , (6.95)
pEPy, p(y)=1 *€C00) | | 7]
the minimum being achieved for the polynomial (z/7)*.
Proof. See reference [168] for a proof. ]

Note that by changing variables, shifting, and rescaling the polynomial, then for any
circle centered at ¢ and for any scalar +y such that |y| > p, the following min-max result

holds:
p \*
min max |p(z)| = (—) .
PP p(7)=1 * € Clewr) v ¢

Now consider the case of an ellipse centered at the origin, with foci 1, —1 and semi-
major axis a, which can be considered as mapped by J from the circle C(0, p), with the
convention that p > 1. Denote by E, such an ellipse.

THEOREM 6.5 Consider the ellipse E, mapped from C(0, p) by the mapping J and
let v be any point in the complex plane not enclosed by it. Then

k
p .
< min max |p(2)]| <
|w’7|k peEPE p(y)=1 z € E, |

—k

k
P +p
g (6.96)

kL —k|
wy + wy

in which w., is the dominant root of the equation J(w) = 7.

Proof. e start by showing the second inequality. Any polynomial p of degree & satis-
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fying the constraint p(+y) = 1 can be written as
& .
Ej:o gj 27
k --
Zj:o &’
A point z on the ellipse is transformed by J from a certain w in C(0, p). Similarly, let w.,

be one of the two inverse transforms of by the mapping, namely, the one with largest
modulus. Then, p can be rewritten as

p(2) =

Yo &i(w! +w )
Yo & (W) +w37)
Consider the particular polynomial obtained by setting £, = 1 and §; = 0 for j # k,

p(z) = (6.97)

p(2) = wt+w®
wk + wy*
which is a scaled Chebyshev polynomial of the first kind of degree & in the variable z. It
is apparent that the maximum modulus of this polynomial is reached in particular when
w = pe'? is real, i.e., when w = p. Thus,
ko —k
. P tp
max |p*(z)| = T L~k
z€E) |wk + wy "
which proves the second inequality.
To prove the left inequality, we rewrite (6.97) as

p(z) = (w_k) Yoo & (wktT 4 wh=)

—& k k+j k—j
Z]’:o & (w"rﬂ +wy 7)

Wey
and take the modulus of p(z),

k . _a
ke G + wh )

Yo &(wh T +uf )|
The polynomial in w of degree 2k inside the large modulus bars in the right-hand side is

such that its value at w., is one. By Lemma 6.4, the modulus of this polynomial over the
circle C(0, p) is not less than (p/|w,|)?*, i.e., for any polynomial, satisfying the constraint

p(v) =1,

p
lp(2)| = ———
[w~|~F

—k 2k k

p p p
max |p(z)| > — = .
z€ B, [wo |78 |w, |2k Jw, |*

This proves that the minimum over all such polynomials of the maximum modulus on the
ellipse E, is > (p/|w~|)¥. ]

The difference between the left and right bounds in (6.96) tends to zero as & increases
to infinity. Thus, the important point made by the theorem is that for large &, the Chebyshev
polynomial

. wh 4wk w+w !
p*(2) = ———, Wwhere z=—p3—
wk + w5 2
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is close to the optimal polynomial. More specifically, Chebyshev polynomials are asymp-
totically optimal.

For a more general ellipse E(c, d, a) centered at ¢, and with focal distance d and semi-
major axis a, a simple change of variables shows that the near-best polynomial is given
by

o) = O T)
Cr(2) = 4= (6.98)
Cr (57%)
In addition, by examining the expression (w* +w ") /2 for w = pe® it is easily seen that
the maximum modulus of C(z), i.e., the infinity norm of this polynomial over the ellipse,
is reached at the point ¢ + a located on the real axis. From this we get,

5 Ci (3)

Cr(2)| = ——2%—
| k( )| |Ck (c;’y)l
Here, we point out that d and a both can be purely imaginary [for an example, see part
(B) of Figure 6.3]. In this case a/d is real and the numerator in the above expression is
always real. Using the definition for C, we obtain the following useful expression and
approximation:

max
z € E(c,d,a)

(6.100)

Finally, we note that an alternative and more detailed result has been proven by Fischer
and Freund in [89].

6.11.3 CONVERGENCE OF THE CG ALGORITHM

As usual, ||z|| 4 denotes the norm defined by

l2]la = (Az,2)"/>.
The following lemma characterizes the approximation obtained from the Conjugate Gra-
dient algorithm.

LEMMA 6.5 Let x,, be the approximate solution obtained from the m-th step of the
CG algorithm, and let d,,, = z. — x,, Where x,. is the exact solution. Then, x., is of the
form

Tm = To + gm(A)ro
where q,, is a polynomial of degree m — 1 such that

(T — Agm(A))dol|a = mpﬁﬂ (I — Agq(A))do|| a-
g€ Pm_1
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Proof. This is a consequence of the fact that x,, minimizes the A-norm of the error in
the affine subspace z¢ + K, a result of Proposition 5.2, and the fact that /C,,, is the set of
all vectors of the form z¢ + g(A)rq, where ¢ is a polynomial of degree < m — 1. [ ]

From this, the following theorem can be proved.

THEOREM 6.6 Let z,, be the approximate solution obtained at the m-th step of the
Conjugate Gradient algorithm, and x . the exact solution and define

)‘min
= 6.101
K )\maz - )\min ( )
Then,
llz+ — 2oll4
. — <> A 6.102

in which C,, is the Chebyshev polynomial of degree m of the first kind.

Proof. From the previous lemma, it is known that ||z. — 2|4 minimizes A-norm of
the error over polynomials r(¢) which take the value one at 0, i.e.,

lzx —2mlla= min  [jr(A)do|la.
7€ P, r(0)=1
If A\;,i = 1,...,n are the eigenvalues of A, and &;,7 = 1,...,n the components of the

initial error dy in the eigenbasis, then

lIr(A)dol%s = Z Air(X)*(&)? < miax(r(Ai))ledolli
i=1
< 2 2.
< s (r(A)”[doll’a
Therefore,

o = znlla < min max |r(V)dols.
1€ P, r(0)=1 A EAminAmasz]

The result follows immediately by using the well known result of Theorem 6.4 from ap-
proximation theory. This gives the polynomial » which minimizes the right-hand side.
[ |

A slightly different formulation of inequality (6.102) can be derived. Using the rela-
tion,

0= (04 V)" (V) 7]
j (e ve=)”

vV

then
Cm(1+2n) >

(1+2n+ \/m)m
(1+2n+2\/7m)m.

>

DN =N =
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Now notice that

1+2p+ 200 +1) = (\/ﬁ+ \/n+1)2 (6.103)

(V )\min + v )\ma:c)2
= (6.104)
_V /\maw + vV )‘min (6 105)
B Vv Ama,z‘ -V Amzn -
k+1
= g — (6.106)
in which « is the spectral condition number k = Aoz / Amin.
Substituting this in (6.102) yields,

k—11"

. = amlla <2 [YEL] . = zolla (6.107)

This bound is similar to that of the steepest descent algorithm except that the condition
number of A is now replaced by its square root.

6.11.4 CONVERGENCE OF GMRES

We begin by stating a global convergence result. Recall that a matrix A is called positive
definite if its symmetric part (A+ A7) /2 is Symmetric Positive Definite. This is equivalent
to the property that (Az, z) > 0 for all nonzero real vectors x.

THEOREM 6.7 If A is a positive definite matrix, then GMRES(m) converges for any
m > 1.

Proof. This is true because the subspace X,,, contains the initial residual vector at each
restart. Since the algorithm minimizes the residual norm in the subspace X,,,, at each outer
iteration, the residual norm will be reduced by as much as the result of one step of the
Minimal Residual method seen in the previous chapter. Therefore, the inequality (5.18) is
satisfied by residual vectors produced after each outer iteration and the method converges.

]

Next we wish to establish a result similar to the one for the Conjugate Gradient
method, which would provide an upper bound on the convergence rate of the GMRES
iterates. We begin with a lemma similar to Lemma 6.5.

LEMMA 6.6 Let x,, be the approximate solution obtained from the m-th step of the
GMRES algorithm, and letr,, = b — Ax,,. Then, x,, is of the form

Ty = To + qm(A)ro
and

Irmll2 = [[(I — Agm(A))roll2 = min  [[(I — Ag(A))rol|.
q€ P
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Proof. This is true because z.,,, minimizes the 2-norm of the residual in the affine sub-
space zo + K., a result of Proposition 5.3, and the fact that K,,, is the set of all vectors of
the form z¢ + g(A)rq, where ¢ is a polynomial of degree < m — 1. [ ]

Unfortunately, it not possible to prove a simple result such as Theorem 6.6 unless A is
normal.

PROPOSITION 6.15 Assume that A is a diagonalizable matrix and let A = X AX !
where A = diag {A1, As, ..., A\, } is the diagonal matrix of eigenvalues. Define,

™ = min “max |p(\;)]-
PEP m,p(0)=1 =il

Then, the residual norm achieved by the m-th step of GMRES satisfies the inequality
[Irmll2 < k2 (X)e™ Iro]l2.
where k2(X) = || X||2/| X Y2

Proof. Let p be any polynomial of degree < m which satisfies the constraint p(0) = 1,
and z the vector in &C,,, to which it is associated viab — Az = p(A)rq. Then,

lIb — Azl|y = | Xp(A) X ~trolly < [ X[]2| X l2llroll2llp(A)]]2
Since A is diagonal, observe that
lp(A)]l2 = max [p(A;)]-
i=1,...,n
Since x,, minimizes the residual norm over z¢ + K, then for any consistent polynomial
pl
16— Azl < [Ib = Azlz < 1 X[1201X 2ol max [p(Aq)]-

Now the polynomial p which minimizes the right-hand side in the above inequality can be
used. This yields the desired result,

1 — Azl < [Ib— Azllz < [IX[|21X Iz llrolloe™-
|

The results of Section 6.11.2 on near-optimal Chebyshev polynomials in the complex
plane can now be used to obtain an upper bound for (™). Assume that the spectrum of A
in contained in an ellipse E(c, d, a) with center ¢, focal distance d, and major semi axis a.
In addition it is required that the origin lie outside this ellipse. The two possible cases are
shown in Figure 6.3. Case (B) corresponds to the situation when d is purely imaginary, i.e.,
the major semi-axis is aligned with the imaginary axis.

COROLLARY 6.1 Let A be a diagonalizable matrix, i.e, let A = XAX~' where
A = diag {A1, \2,..., A} is the diagonal matrix of eigenvalues. Assume that all the
eigenvalues of A are located in the ellipse E(c, d,a) which excludes the origin. Then, the
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residual norm achieved at the m-th step of GMRES satisfies the inequality,

Cm (§)
IFmll2 < K2(X) 7257 [Iroll2-
Cm (3)]
(A) (B)
c—d c c+d c+a
> Re(z) > Re(z)

Figure 6.3 Ellipses containing the spectrum of A. Case (A):
real d; case (B): purely imaginary d.

Proof. All that is needed is an upper bound for the scalar (") under the assumptions.
By definition,

™ = min ‘max |p(A;)]
pEPm,p(O)Zl i=1,...,n
< min max |p(A)].

PEPmp(0)=1* € Eleid:a)

The second inequality is due to the fact that the maximum modulus of a complex analytical
function is reached on the boundary of the domain. We can now use as a trial polynomial
C', defined by (6.98), with v = 0:

€ < min max  |p(\)]
PEP m,p(0)=1 X € E(c,d,a)
R Cy (2
< max (G = 2ml@)
X € E(c,d,a) |Cm (g

This completes the proof. ]
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An explicit expression for the coefficient Cr, (%) / C: (
readily obtained from (6.99-6.100) by taking v = O:

oaty) (1oV@7=1) + (3T -1)
Cm (5) (5_'_ (%)2_1)’94-(54- (%)2—1)%

%) and an approximation are

k

Since the condition number x2(X) of the matrix of eigenvectors X is typically not
known and can be very large, results of the nature of the corollary are of limited practical
interest. They can be useful only when it is known that the matrix is nearly normal, in
which case, k2 (X) ~ 1.

—
BLOCK KRYLOV METHODS

In many circumstances, it is desirable to work with a block of vectors instead of a single
vector. For example, out-of-core finite-element codes are more efficient when they are
programmed to exploit the presence of a block of the matrix A in fast memory, as much as
possible. This can be achieved by using block generalizations of Krylov subspace methods,
for which A always operates on a group of vectors instead of a single vector. We begin by
describing a block version of the Arnoldi algorithm.

ALGORITHM 6.21: Block Arnoldi

1. Choose a unitary matrix Vi of dimensionn x p.

2. Forj=1,2,...,m Do:

3. ComputeH;; =VTAV; i=1,2,...,j

4. ComputeW; = AV; — >1_ V;H;;

5 Compute the Q-R factorization of W;: W; = Viy1 Hjq1 ;
6. EndDo

The above algorithm is a straightforward block analogue of Algorithm 6.1. By con-
struction, the blocks generated by the algorithm are orthogonal blocks that are also orthog-
onal to each other. In the following we denote by I the k& x & identity matrix and use the
following notation:

Um = [%,%,...,Vm],
Hm = (Hij)IS’i,jSTTLJ Hz] = 0, for > ] + 1,
E,, = matrix of the last p columns of I,,.
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Then, the following analogue of the relation (6.4) is easily proved:
AUy = UpHpy + Vi1 Hyp1 mEL . (6.108)

Here, the matrix H,, is no longer Hessenberg, but band-Hessenberg, meaning that it has
p subdiagonals instead of only one. Note that the dimension of the subspace in which the
solution is sought is not m but m.p.

A second version of the algorithm uses a modified block Gram-Schmidt procedure
instead of the simple Gram-Schmidt procedure used above. This leads to a block general-
ization of Algorithm 6.2, the Modified Gram-Schmidt version of Arnoldi’s method.

ALGORITHM 6.22: Block Arnoldi with Block MGS

Choose a unitary matrix V, of sizen x p
Forj =1,2,...,m Do:
Compute W; := AV;
Fori=1,2,...,j do:
Hij = V;-TW]'
W]‘ = Wj - V;'Hij
EndDo
Compute the Q-R decomposition W; = V1 Hjy1 ;
EndDo

CONSDDORWDNR

Again, in practice the above algorithm is more viable than its predecessor. Finally, a third
version, developed by A. Ruhe [170] for the symmetric case (block Lanczos), yields a vari-
ant that is quite similar to the original Arnoldi algorithm. Assume that the initial block of
p orthonormal vectors, vy, . . ., v, is available. The first step of the algorithm is to multiply
vy by A and orthonormalize the resulting vector w against vy, . . ., v,. The resulting vector
is defined to be v, 1. In the second step it is v, that is multiplied by A and orthonormalized
against all available v;’s. Thus, the algorithm works similarly to Algorithm 6.2 except for
a delay in the vector that is multiplied by A at each step.

ALGORITHM 6.23: Block Arnoldi-Ruhe’s variant

Choose p initial orthonormal vectors {v; }i=1,... p-
Forj=p,p+1,...,m Do:
Setk:=j—p+1;
Compute w := Awvy;
Fori=1,2,...,5 Do:
hig = (w,v;)
wi=w— hi,kUi
EndDo
Compute hj+1,k = ||'LU||2 andvj+1 = w/hj+1’k.
EndDo

QLN WNR

-
[y

Observe that the particular case p = 1 coincides with the usual Arnoldi process. Also, the
dimension m of the subspace of approximants, is no longer restricted to being a multiple
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of the block-size p as in the previous algorithms. The mathematical equivalence of Algo-
rithms 6.22 and 6.23 when m is a multiple of p is straightforward to show. The advantage
of the above formulation is its simplicity. A slight disadvantage is that it gives up some
potential parallelism. In the original version, the columns of the matrix AV; can be com-
puted in parallel whereas in the new algorithm, they are computed in sequence. This can
be remedied, however, by performing p matrix-by-vector products every p steps.

At the end of the loop consisting of lines 5 through 8 of Algorithm 6.23, the vector w
satisfies the relation

J
w = Avy, — Z hirvs,
i=1
where k and j are related by k¥ = j —p+ 1. Line 9 gives w = hj41 xv;1 Which results in

k+p
AUk = Z hikvi.
=1
As a consequence, the analogue of the relation (6.5) for Algorithm 6.23 is
AV = Vi pHp. (6.109)

As before, for any j the matrix V; represents the n x j matrix with columns vy, ... v;. The
matrix H,, is now of size (m + p) x m.

Now the block generalizations of FOM and GMRES can be defined in a straightfor-
ward way. These block algorithms can solve linear systems with multiple right-hand sides,

Az® = p@  i=1,... p, (6.110)
or, in matrix form
AX = B, (6.111)

where the columns of the n x p matrices B and X are the b()’s and z(9)’s, respectively.
Given an initial block of initial guesses x((,’) fori = 1,...,p, we define Ry the block of
initial residuals

RO = [7-(()1)’/’-(()2)’ ctt 5T(()p)]5
where each column is r(()i) = b — A:v((,i). It is preferable to use the unified notation
derived from Algorithm 6.23. In this notation, m is not restricted to being a multiple of the
block-size p and the same notation is used for the v;’s as in the scalar Arnoldi Algorithm.
Thus, the first step of the block-FOM or block-GMRES algorithm is to compute the QR
factorization of the block of initial residuals:

R(] = ['1)1,’1)2,...,’111,] R

Here, the matrix [vq, . ..,vp] is unitary and R is p x p upper triangular. This factorization
provides the first p vectors of the block-Arnoldi basis.
Each of the approximate solutions has the form

2@ = () 4 V9@, (6.112)

and, grouping these approximations (¥ in a block X and the (¥ in a block Y, we can
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write
X = X0+ VY. (6.113)

Itis now possible to imitate what was done for the standard FOM and GMRES algorithms.
The only missing link is the vector Be; in (6.21) which now becomes a matrix. Let E; be
the (m + p) x p matrix whose upper p x p principal block is an identity matrix. Then, the
relation (6.109) results in

B—AX =B — A(Xy + V,,Y)
=Ry — AV,,)Y
=[v1,-.-,0p]R = Vi pHmY

= Vinip (1R — HpY (6.114)

The vector
g(i) = FiRe;

is a vector of length m + p whose components are zero except those from 1 to ¢ which
are extracted from the i-th column of the upper triangular matrix R. The matrix H,, is an
(m + p) x m matrix. The block-FOM approximation would consist of deleting the last p
rows of g9 and H,, and solving the resulting system,

H,y® = g

The approximate solution z(® is then computed by (6.112). .

The block-GMRES approximation z(?) is the unique vector of the form ;c(()’) + Viny®
which minimizes the 2-norm of the individual columns of the block-residual (6.114). Since
the column-vectors of V4, are orthonormal, then from (6.114) we get,

1B — Azl = |g® — Hyny V. (6.115)

To minimize the residual norm, the function on the right hand-side must be minimized over
y(®. The resulting least-squares problem is similar to the one encountered for GMRES.
The only differences are in the right-hand side and the fact that the matrix is no longer
Hessenberg, but band-Hessenberg. Rotations can be used in a way similar to the scalar
case. However, p rotations are now needed at each new step instead of only one. Thus, if
m = 6 and p = 2, the matrix Hg and block right-hand side would be as follows:

hir hi2 hiz hie his hig gi1 912
ha1 haz has has hos  haog 922
h31 hsz hsz has has hae
= hao has has has  hys
hss  hse hss hse
hes hes hes
hzs  hre

hse

For each new column generated in the block-Arnoldi process, p rotations are required to
eliminate the elements hy ;, for k = j + p downto k = j + 1. This backward order is
important. In the above example, a rotation is applied to eliminate k3, and then a second
rotation is used to eliminate the resulting A5 1, and similarly for the second, third step, etc.

Q
Il
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This complicates programming slightly since two-dimensional arrays must now be used
to save the rotations instead of one-dimensional arrays in the scalar case. After the first
column of H,, is processed, the block of right-hand sides will have a diagonal added under
the diagonal of the upper triangular matrix. Specifically, the above two matrices will have
the structure,

*
*

b S

* ot ot X %

L S S S
L S . P s
b

b D D D . P I
Q
Il

where a * represents a nonzero element. After all columns are processed, the following
least-squares system is obtained.

*x Kk Kk
*x %
*

b S S S
b S I
b S D .
Q
Il
b D S .
X % X % Xt %

*

X

To obtain the least-squares solutions for each right-hand side, ignore anything below the
horizontal lines in the above matrices and solve the resulting triangular systems. The resid-
ual norm of the i-th system for the original problem is the 2-norm of the vector consisting
of the components m + 1, through m +¢ in the ¢-th column of the above block of right-hand
sides.

Generally speaking, the block methods are of great practical value in applications in-
volving linear systems with multiple right-hand sides. However, they are not as well studied
from the theoretical point of view. Perhaps, one of the reasons is the lack of a convincing
analogue for the relationship with orthogonal polynomials, established in subsection 6.6.2
for the single-vector Lanczos algorithm. The block version of the Lanczos algorithm has
not been covered but the generalization is straightforward.

—
EXERCISES

1. Inthe Householder implementation of the Arnoldi algorithm, show the following points of detail:

a. @41 is unitary and its inverse is QJ-TH.
b. Q1 = PiP>... Py,
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c. QJ-T_He,- =w; fori < j.
d. Qj+1AVm = Vpyiler, e, ..., ej+1]ﬁm, where e; is the i-th column of the n x n identity
matrix.

e. The v;’s are orthonormal.
f. The vectors vy, . .., v; are equal to the Arnoldi vectors produced by the Gram-Schmidt ver-
sion, except possibly for a scaling factor.

2. Rewrite the Householder implementation of the Arnoldi algorithm with more detail. In particu-
lar, define precisely the Householder vector w; used at step j (lines 3-5).

3. Consider the Householder implementation of the Arnoldi algorithm. Give a detailed operation
count of the algorithm and compare it with the Gram-Schmidt and Modified Gram-Schmidt
algorithm.

4. Derive the basic version of GMRES by using the standard formula (5.7) with V' = V,,, and
W = AV,.

5. Derive a version of the DIOM algorithm which includes partial pivoting in the solution of the
Hessenberg system.

6. Show how the GMRES and FOM methods will converge on the linear system Az = b when

1

b

I

—_

S8

I
cCocoocor

1
and with zo = 0.
7. Give a full proof of Proposition 6.11.
8. Let a matrix A have the form

(1)

Assume that (full) GMRES is used to solve a linear system, with the coefficient matrix A. What
is the maximum number of steps that GMRES would require to converge?

A=(g g)_

Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A. Let

(1)
T
»= ()
be the initial residual vector. It is assumed that the degree of the minimal polynomial of r(()z)

with respect to S (i.e., its grade) is k. What is the maximum number of steps that GMRES
would require to converge for this matrix? [Hint: Evaluate the sum Ef:o Bi(AT — A%)rg

where Zf:o Bit® is the minimal polynomial of 1"(()2) with respect to S'.]

9. Let a matrix A have the form:
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10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
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Let
I Y,

I Y3

I Yy
I Y

a. Show that (I — A)* = 0.

b. Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A.
What is the maximum number of steps that GMRES would require to converge?

Show that if H,, is nonsingular, i.e., z5, is defined, and if 28 = &%, thenrS =5 =0, i.e.,
both the GMRES and FOM solutions are exact. [Hint: use the relation (6.46) and Proposition
6.11 or Proposition 6.12.]

Derive the relation (6.49) from (6.47). [Hint: Use the fact that the vectors on the right-hand side
of (6.47) are orthogonal.]

In the Householder-GMRES algorithm the approximate solution can be computed by formulas
(6.25-6.27). What is the exact cost of this alternative (compare memory as well as arithmetic
requirements)? How does it compare with the cost of keeping the v;’s?

An alternative to formulas (6.25-6.27) for accumulating the approximate solution in the House-
holder-GMRES algorithm without keeping the v;’s is to compute z,, as

Tm =20+ P1P2... Pny

where y is a certain n-dimensional vector to be determined. (1) What is the vector y for the
above formula in order to compute the correct approximate solution z,,? [Hint: Exploit (6.11).]
(2) Write down an alternative to formulas (6.25-6.27) derived from this approach. (3) Compare
the cost of this approach with the cost of using (6.25-6.27).

Obtain the formula (6.76) from (6.75).

Show that the determinant of the matrix 7', in (6.82) is given by

_

[T o

The Lanczos algorithm is more closely related to the implementation of Algorithm 6.18 of the
Conjugate Gradient algorithm. As a result the Lanczos coefficients 6,41 and 7,41 are easier
to extract from this algorithm than from Algorithm 6.17. Obtain formulas for these coefficients

from the coefficients generated by Algorithm 6.18, as was done in Section 6.7.3 for the standard
CG algorithm.

det (Tpm) =

Show that if the rotations generated in the course of the GMRES (and DQGMRES) algorithm
are such that
|Cm| Z c> 0,

then GMRES, DQGMRES, and FOM will all converge.

Show the exact expression of the residual vector in the basis vi, v, . .., Um+1 for either GMRES
or DQGMRES. [Hint: A starting point is (6.52).]

Prove that the inequality (6.56) is sharper than (6.53), in the sense that {41 < vVm — k + 11
(for m > k). [Hint: Use Cauchy-Schwarz inequality on (6.56).]
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21. Denote by S,, the unit upper triangular matrix S in the proof of Theorem 6.1 which is ob-
tained from the Gram-Schmidt process (exact arithmetic assumed) applied to the incomplete
orthogonalization basis V;,. Show that the Hessenberg matrix HS obtained in the incomplete
orthogonalization process is related to the Hessenberg matrix HS obtained from the (complete)
Arnoldi process by

HS =S, HE S

NOTES AND REFERENCES. Lemma 6.1 was proved by Roland Freund [95] in a slightly different
form. Proposition 6.12 is due to Brown [43] who proved a number of other theoretical results, includ-
ing Proposition 6.11. Recently, Cullum and Greenbaum [63] discussed further relationships between
FOM and GMRES and other Krylov subspace methods.

The Conjugate Gradient method was developed independently and in different forms by Lanc-
zos [142] and Hesteness and Stiefel [120]. The method was essentially viewed as a direct solu-
tion technique and was abandoned early on because it did not compare well with other existing
techniques. For example, in inexact arithmetic, the method does not terminate in n steps as is
predicted by the theory. This is caused by the severe loss of of orthogonality of vector quantities
generated by the algorithm. As a result, research on Krylov-type methods remained dormant for
over two decades thereafter. This changed in the early 1970s when several researchers discovered
that this loss of orthogonality did not prevent convergence. The observations were made and ex-
plained for eigenvalue problems [158, 106] as well as linear systems [167]. The early to the middle
1980s saw the development of a new class of methods for solving nonsymmetric linear systems
[13, 14, 127, 172, 173, 185, 218]. The works of Faber and Manteuffel [85] and Voevodin [219]
showed that one could not find optimal methods which, like CG, are based on short-term recur-
rences. Many of the methods developed are mathematically equivalent, in the sense that they realize
the same projection process, with different implementations.

The Householder version of GMRES is due to Walker [221]. The Quasi-GMRES algorithm
described in Section 6.5.7 was initially described by Brown and Hindmarsh [44], although the direct
version DQGMRES was only discussed recently in [187]. The proof of Theorem 6.1 can be found in
[152] for the QMR algorithm.

The non-optimality of the Chebyshev polynomials on ellipses in the complex plane was estab-
lished by Fischer and Freund [90]. Prior to this, a 1963 paper by Clayton [59] was believed to have
established the optimality for the special case where the ellipse has real foci and + is real.

Until recently, little attention has been given to block Krylov methods. In addition to their at-
traction for solving linear systems with several right-hand sides [177, 196], these techniques can also
help reduce the effect of the sequential inner products in parallel environments and minimize 1/0O
costs in out-of-core implementations. The block-GMRES algorithm is analyzed by Simoncini and
Gallopoulos [197] and in [184]. Alternatives to GMRES which require fewer inner products have
been proposed by Sadok [188] and Jbilou [125]. Sadok investigated a GMRES-like method based
on the Hessenberg algorithm [227], while Jbilou proposed a multi-dimensional generalization of
Gastinel’s method seen in Exercise 2 of Chapter 5. |
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KRYLOV SUBSPACE METHODS
PART II

The previous chapter considered a number of Krylov subspace methods
which relied on some form of orthogonalization of the Krylov vectors in
order to compute an approximate solution. This chapter will describe a
class of Krylov subspace methods which are instead based on a biortho-
gonalization algorithm due to Lanczos. These are projection methods that
are intrinsically non-orthogonal. They have some appealing properties, but
are harder to analyze theoretically.

I
LANCZOS BIORTHOGONALIZATION

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matrices of
the symmetric Lanczos algorithm seen in the previous chapter. One such extension, the
Arnoldi procedure, has already been seen. However, the nonsymmetric Lanczos algorithm
is quite different in concept from Arnoldi’s method because it relies on biorthogonal se-
quences instead of orthogonal sequences.

7.1.1 THE ALGORITHM

The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of biortho-
gonal bases for the two subspaces

K (A,v1) = span{vy, Avy, ..., A" 1o}
and
Ko (AT wy) = span{w;, ATwy, ..., (AT)™ tw,}.

204
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The algorithm that achieves this is the following.

ALGORITHM 7.1: The Lanczos Biorthogonalization Procedure

1. Choose two vectors vy, wy such that (vy,w;) = 1.
2. SetB1 =61 =0, wg=1v9=0

3. Forj=1,2,...,m Do:

4. a; = (Avj,wj)

5, ﬁj+1 = A’Uj — QU5 — ﬁj’l)jfl

6. if)j_H = ATU)j — Q;W; — 5jwj_1
7.

8

9

0

1

8j41 = | (1, W541)[1/?. If 641 = O Stop
Bi+1 = (Dj41,Wj41) /041
wjt1 = Wjt1 /B
Vjt1 = Vjp1/841
EndDo

Note that there are numerous ways to choose the scalars 6,1, 341 in lines 7 and 8.
These two parameters are scaling factors for the two vectors v;41 and w1 and can be
selected in any manner to ensure that (v;41,w;41) = 1. As aresult of lines 9 and 10 of the
algorithm, it is only necessary to choose two scalars 31, 0,41 that satisfy the equality

j+1Bj+1 = (Dj1, Wj41)- (7.1)
The choice taken in the above algorithm scales the two vectors so that they are divided
by two scalars which have the same modulus. Both vectors can also be scaled by their
2-norms. In that case, the inner product of v;; and w;4+ is no longer equal to 1 and the
algorithm must be modified accordingly; see Exercise 3.

Consider the case where the pair of scalars 6,41, 3;+1 is any pair that satisfies the
relation (7.1). Denote by T, the tridiagonal matrix

ar B2
62 (&3] /63
T = : . (7.2)
5m—1 Om—1 /8m
Om  Qm
If the determinations of 3;,,,d;41 of lines 7-8 are used, then the §;’s are positive and
Bj = ;.
Observe from the algorithm that the vectors v; belong to K,,,(4,v1), while the w;’s
are in K, (AT, wy). In fact, the following proposition can be proved.

PROPOSITION 7.1 If the algorithm does not break down before step m, then the
vectorsv;,i =1,...,m, andwy, j = 1,...,m, form a biorthogonal system, i.e.,
(vj,w;) =65 1<, j <m.

Moreover, {v;}i=1,2,....m IS a basis of Kp(A,v1) and {w;}i=1,2,.,m IS @ basis of
Km (AT wy) and the following relations hold,

AV = ViuTon + S 1Vmy 1€l (7.3)
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ATWm = Wngr: + ﬂm—i—lwm—i-lez;a (7'4)
WAV, =T (7.5)

Proof. The biorthogonality of the vectors v;, w; will be shown by induction. By assump-
tion (vy,wy) = 1. Assume now that the vectors vy, ... v; and wy, . .. w; are biorthogonal,
and let us prove that the vectors vy, ... v;41 and wy, ... w;4q are biorthogonal.

First, we show that (v;41,w;) = 0 fori < j. When ¢ = j, then

(vj41,w5) = 6, [(Avs, wy) — (v, w;) = Bi(vj—1,w;)]-
The last inner product in the above expression vanishes by the induction hypothesis. The

two other terms cancel each other by the definition of «; and the fact that (v;, w;) = 1.
Consider now the inner product (v;41,w;) with ¢ < j,

(v, wi) = 8,11 [(Avg, wi) = (v, w3) = By (V-1 w)]
= 071 [(vj, ATwi) = B (vj—1,wi)]
= 0534 [(v, Birwis + qqw; + diwi—1) — B;(vj—1, w;)]-

Fori < j — 1, all of the inner products in the above expression vanish, by the induction
hypothesis. For i = j — 1, the inner product is

(vj41,wi-1) = 6, [(v), Bjw; + ej1wj_1 + §_1wj_s) — B;(vj—1, wj1)]

= 533:1[@(”]‘7“)]') = Bi(vj_1,wj 1)]
=0.

It can be proved in exactly the same way that (v;,w;+1) = 0 for i < j. Finally,
by construction (v;41,w;j+1) = 1. This completes the induction proof. The proof of the
matrix relations (7.3-7.5) is similar to that of the relations (6.4-6.6) in Arnoldi’s method.

|

The relations (7.3-7.5) allow us to interpret the algorithm. The matrix T, is the pro-
jection of A obtained from an oblique projection process onto K, (A4, v;) and orthogo-
nally to K, (AT, w1 ). Similarly, T represents the projection of A on K, (AT, w; ) and
orthogonally to &C,,, (A4, v1). Thus, an interesting new feature here is that the operators A
and AT play a dual role because similar operations are performed with them. In fact, two
linear systems are solved implicitly, one with A and the other with AT If there were two
linear systems to solve, one with A and the other with A7, then this algorithm is suitable.
Otherwise, the operations with A™ are essentially wasted. Later a number of alternative
techniques developed in the literature will be introduced that avoid the use of AT,

From a practical point of view, the Lanczos algorithm has a significant advantage over
Arnoldi’s method because it requires only a few vectors of storage, if no reorthogonali-
zation is performed. Specifically, six vectors of length n are needed, plus some storage for
the tridiagonal matrix, no matter how large m is.

On the other hand, there are potentially more opportunities for breakdown with the
nonsymmetric Lanczos method. The algorithm will break down whenever §;4, as defined
in line 7 vanishes. This is examined more carefully in the next section. In practice, the
difficulties are more likely to be caused by the near occurrence of this phenomenon. A
look at the algorithm indicates that the Lanczos vectors may have to be scaled by small
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quantities when this happens. After a few steps the cumulated effect of these scalings may
introduce excessive rounding errors.

Since the subspace from which the approximations are taken is identical to that of
Arnoldi’s method, the same bounds for the distance ||(I — II,,)u]|» are valid. However,
this does not mean in any way that the approximations obtained by the two methods are
likely to be similar in quality. The theoretical bounds shown in Chapter 5 indicate that the
norm of the projector may play a significant role.

7.1.2 PRACTICAL IMPLEMENTATIONS

There are various ways to improve the standard nonsymmetric Lanczos algorithm which
we now discuss briefly. A major concern here is the potential breakdowns or “near break-
downs” in the algorithm. There exist a number of approaches that have been developed to
avoid such breakdowns. Other approaches do not attempt to eliminate the breakdown, but
rather try to deal with it. The pros and cons of these strategies will be discussed after the
various existing scenarios are described.

Algorithm 7.1 will abort in line 7 whenever,

(Dj41,Wj41) = 0. (7.6)

This can arise in two different ways. Either one of the two vectors ¢4, or w;41 van-
ishes, or they are both nonzero, but their inner product is zero. The first case is the “lucky
breakdown” scenario which has been seen for symmetric matrices. Thus, if ;41 = 0 then
span{V;} is invariant and, as was seen in Chapter 5, the approximate solution is exact.
If w;y1 = 0 then span{WW;} is invariant. However, in this situation nothing can be said
about the approximate solution for the linear system with A. If the algorithm is being used
to solve a pair of linear systems, one with A and a dual system with AT, then the approxi-
mate solution for the dual system will be exact in this case. The second scenario in which
(7.6) can occur is when neither of the two vectors is zero, but their inner product is zero.
Wilkinson (see [227], p. 389) called this a serious breakdown. Fortunately, there are cures
for this problem which allow the algorithm to continue in most cases. The corresponding
modifications of the algorithm are often put under the denomination Look-Ahead Lanczos
algorithms. There are also rare cases of incurable breakdowns which will not be discussed
here (see references [161] and [206]).

The main idea of Look-Ahead variants of the Lanczos algorithm is that the pair
vjt2,wj2 can often be defined even though the pair v;yq1,w;41 is not defined. The al-
gorithm can be pursued from that iterate as before until a new breakdown is encountered.
If the pair vj4 2, w;42 cannot be defined then the pair v;43,w; 3 can be tried, and so on.
To better explain the idea, it is best to refer to the connection with orthogonal polyno-
mials mentioned earlier for the symmetric case. The relationship can be extended to the
nonsymmetric case by defining the bilinear form on the subspace P,,, 1

< p,q >= (p(A)v1, (AT )wy). (7.7)

Unfortunately, this is now an “indefinite inner product” in general since < p,p > can be
zero or even negative. Note that there is a polynomial p; of degree j such that 9,4, =
p;(A)vy and, in fact, the same polynomial intervenes in the equivalent expression of w 1.
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More precisely, there is a scalar v; such that ;1 = v;p; (AT )v;. Similar to the symmetric
case, the nonsymmetric Lanczos algorithm attempts to compute a sequence of polynomials
that are orthogonal with respect to the indefinite inner product defined above. If we define
the moment matrix

My={<z" " 277" >} o1k
then this process is mathematically equivalent to the computation of the factorization
My, = LUy,

of the moment matrix My, in which Uy, is upper triangular and Ly, is lower triangular. Note
that My, is a Hankel matrix, i.e., its coefficients m;; are constant along anti-diagonals, i.e.,
fori + j = constant.

Because

< pj,p; >=(pj(A)vr, pj(AT)wr),
we observe that there is a serious breakdown at step j if and only if the indefinite norm of

the polynomial p; at step j vanishes. If this polynomial is skipped, it may still be possible
to compute p;41 and continue to generate the sequence. To explain this simply, consider

g;(t) = zp;_1(t) and g;41(t) = 2°p;_1(2).

Both ¢; and g;41 are orthogonal to the polynomials py, . .., p;—2. We can define (some-
what arbitrarily) p; = g¢;, and then p;;, can be obtained by orthogonalizing g;41 against
pj—1 and p;. It is clear that the resulting polynomial will then be orthogonal against all
polynomials of degree < j; see Exercise 5. Therefore, the algorithm can be continued
from step j + 1 in the same manner. Exercise 5 generalizes this for the case where & poly-
nomials are skipped rather than just one. This is a simplified description of the mechanism
which underlies the various versions of Look-Ahead Lanczos algorithms proposed in the
literature. The Parlett-Taylor-Liu implementation [161] is based on the observation that
the algorithm breaks because the pivots encountered during the LU factorization of the
moment matrix M}, vanish. Then, divisions by zero are avoided by performing implicitly a
pivot with a 2 x 2 matrix rather than using a standard 1 x 1 pivot.

The drawback of Look-Ahead implementations is the nonnegligible added complexity.
Besides the difficulty of identifying these near breakdown situations, the matrix 7', ceases
to be tridiagonal. Indeed, whenever a step is skipped, elements are introduced above the
superdiagonal positions, in some subsequent step. In the context of linear systems, near
breakdowns are rare and their effect generally benign. Therefore, a simpler remedy, such
as restarting the Lanczos procedure, may well be adequate. For eigenvalue problems, Look-
Ahead strategies may be more justified.
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e
THE LANCZOS ALGORITHM FOR LINEAR SYSTEMS

2

We present in this section a brief description of the Lanczos method for solving nonsym-
metric linear systems. Consider the (single) linear system:

Ax =10 (7.8)

where A is n x n and nonsymmetric. Suppose that a guess zq to the solution is available
and let its residual vector be r¢ = b — Axo. Then the Lanczos algorithm for solving (7.8)
can be described as follows.

ALGORITHM 7.2: Two-sided Lanczos Algorithm for Linear Systems

1. Computerg =b— Az and 3 := ||ro||2

2. Runm steps of the nonsymmetric Lanczos Algorithm, i.e.,
3 Start with vy := ro /S, and any w; such that (v, w;) =1
4. Generate the Lanczos VECtors vy, - . . , Uy, Wi, - - - , Wy,

5 and the tridiagonal matrix T,,, from Algorithm 7.1.

6. Computey,, = T,,' (Be1) and ., := o + VinYm.-

Note that it is possible to incorporate a convergence test when generating the Lanczos
vectors in the second step without computing the approximate solution explicitly. This is
due to the following formula, which is similar to Equation (6.66) for the symmetric case,

b — Az;ll2 = 6;31€] ;| llvjg1l2, (7.9)

and which can be proved in the same way, by using (7.3). This formula gives us the residual
norm inexpensively without generating the approximate solution itself.

e
THE BCG AND QMR ALGORITHMS

7

The Biconjugate Gradient (BCG) algorithm can be derived from Algorithm 7.1 in exactly
the same way as the Conjugate Gradient method was derived from Algorithm 6.14. The
algorithm was first proposed by Lanczos [142] in 1952 and then in a different form (Con-
jugate Gradient-like version) by Fletcher [92] in 1974. Implicitly, the algorithm solves not
only the original system Az = b but also a dual linear system ATz* = b* with AT, This
dual system is often ignored in the formulations of the algorithm.
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7.3.1 THE BICONJUGATE GRADIENT ALGORITHM

The Biconjugate Gradient (BCG) algorithm is a projection process onto
K = span{vy, Avy,---, A" o}
orthogonally to
Ly = span{wy, ATwy,---, (A1) 1w}

taking, as usual, v1 = 7o/||ro||2. The vector w, is arbitrary, provided (vy,w;) # 0, but it
is often chosen to be equal to v;. If there is a dual system A7 z* = b* to solve with A7,
then w; is obtained by scaling the initial residual b* — AT z.

Proceeding in the same manner as for the derivation of the Conjugate Gradient al-
gorithm from the symmetric Lanczos algorithm, we write the LDU decomposition of T,
as

Ty = LpUp, (7.10)
and define
P, =V, Ut (7.11)
The solution is then expressed as
T = 20 + Vi T, (Ber)
=zo + ViU L L (Ber)
=xo + PmL;nl (/661)'
Notice that the solution z,, is updatable from z,,_; in a similar way to the Conjugate
Gradient algorithm. Like the Conjugate Gradient algorithm, the vectors r; and r; are in the

same direction as v, and w;41, respectively. Hence, they form a biorthogonal sequence.
Define similarly the matrix

Py =WnL,". (7.12)
Clearly, the column-vectors p; of P, and those p; of P, are A-conjugate, since,
(P2 AP, = L'WT AV, U = L \T, U = 1.

Utilizing this information, a Conjugate Gradient-like algorithm can be easily derived from
the Lanczos procedure.

ALGORITHM 7.3: Biconjugate Gradient (BCG)

Computerg := b — Axo. Choose r§ such that (ro,r§) # 0.
Set, po :=10, Py =14
Forj =0,1,..., until convergence Do:

Qj = (T’j,T’;)/(Apj,p;f)

Tjt1 i= Tj + @;p;

Tit1 i=1j — ajAp;

rig =15 — oy ATps

Bi = (rj4+1,7541)/(15,775)

O N WDNER
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9. piy1:=rit + B5p;
10, piy =1l + G

11. EndDo
1

If a dual system with AT is being solved, then in line 1 r should be defined as r§ =
b* — ATz} and the update T;,1 = zj + a;p; to the dual approximate solution must
beinserted after line 5. The vectors produced by this algorithm satisfy a few biorthogonality
properties stated in the following proposition.

PROPOSITION 7.2 The vectors produced by the Biconjugate Gradient algorithm sat-
isfy the following orthogonality properties:

(rj,r;) =0, fori#j, (7.13)
(Apj,p;) =0, fori# j. (7.14)

Proof. The proof is either by induction or by simply exploiting the relations between the
vectors r;, 77, pj, pj, and the vector columns of the matrices V,,,, Wy, P, Py,. This is
left as an exercise. [ |

Example 7.1 Table 7.1 shows the results of applying the BCG algorithm with no pre-
conditioning to three of the test problems described in Section 3.7. See Example 6.1 for the
meaning of the column headers in the table. Recall that Iters really represents the number
of matrix-by-vector multiplications rather the number of Biconjugate Gradient steps.

Matrix | Iters | Kflops | Residual Error

F2DA | 163 | 2974 | 0.17E-03 | 0.86E-04
F3D 123 | 10768 | 0.34E-04 | 0.17E-03
ORS 301 | 6622 | 0.50E-01 | 0.37E-02

Table 7.1 A test run of BCG without preconditioning.

Thus, the number 163 in the first line represents 81 steps of BCG, which require 81 x 2
matrix-by-vector products in the iteration, and an extra one to compute the initial residual.

7.3.2 QUASI-MINIMAL RESIDUAL ALGORITHM

The result of the Lanczos algorithm is a relation of the form
AV = Vi1 T (7.15)

in which T,,, is the (m + 1) x m tridiagonal matrix

= Tm
Tm = (5m+16£> '
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Now (7.15) can be exploited in the same way as was done to develop GMRES. If v; is
defined as a multiple of rg, i.e., if v; = (rg, then the residual vector associated with an
approximate solution of the form

T =20+ Viny

is given by
b— Az =b—A(zo+ Viny)

=To — Ame

= Bur — Vi1 Ty

= Vm+41 (561 — Tmy) . (7.16)
The norm of the residual vector is therefore

Ib = Azl = [[Vint1 (Ber — Tom) Il (7.17)

If the column-vectors of V,,,.1 were orthonormal, then we would have ||b — Az| =
l1Be1r — Trmyl|2, as in GMRES. Therefore, a least-squares solution could be obtained from
the Krylov subspace by minimizing ||Be; — T, y||2 over y. In the Lanczos algorithm, the
v;’s are not orthonormal. However, it is still a reasonable idea to minimize the function

J(y) = |1Ber = Trmyll2

over y and compute the corresponding approximate solution =y + V;,,y. The resulting so-
lution is called the Quasi-Minimal Residual approximation.

Thus, the Quasi-Minimal Residual (QMR) approximation from the m-th Krylov sub-
space is obtained as ¢ + V;,, ¥, Where y,,, minimizes the function J(y) = ||8e1 — Trny|l2,
i.e., just as in GMRES, except that the Arnoldi process is replaced by the Lanczos process.
Because of the simple structure of the matrix T;,, the following algorithm is obtained,
which is adapted from the DQGMRES algorithm (Algorithm 6.13).

ALGORITHM 7.4: QMR

Computero =b-— A.Z'() and'yl = ||T0||2, wy = v = To/’)’l
Form =1,2,..., until convergence Do:
Compute oy, dmt+1 @Nd Upyy1, W1 @S in Algorithm 7.1
Update the QR factorization of T,,,, i.e.,
Apply Q;, i = m — 2,m — 1 to the m-th column of T,
Compute the rotation coefficients ¢,,, s,, by (6.31)
Apply rotation Q,,, to T,,, and g, i.e., compute:
Ym+1 = —SmYm,
Ym = CmYm, and,

Qm = CmOm + SmOma1 (: \/ 021+ afn)
DPm = (Um - Z:'n::nl_Q tz’mpz') /tmm
Ty = Tm—1 + YmPm
13, If|ymy1| is small enough then Stop
14. EndDo

CONSDDORWDNR
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The following proposition establishes a result on the residual norm of the solution. It
is similar to Proposition 6.9.

PROPOSITION 7.3 The residual norm of the approximate solution x,, satisfies the
relation

b — Azm || < [Vintall2 [s182 - - - sm] [I7oll2- (7.18)

Proof. According to (7.16) the residual norm is given by

b— A.’Em = Vm+1 [/361 — Tmym] (719)
and using the same notation as in Proposition 6.9, referring to (6.37)

18er = Hmyll3 = yms1l* + llgm — Rmyll3
in which g,, — R,y = 0 by the minimization procedure. In addition, by (6.40) we have

Ym4+1 = 81---SmM1-

The result follows immediately using (7.19). ]

The following simple upper bound for ||V,,,+1]|2 can be used to estimate the residual
norm:

m+1 1/2

Vinllz < [Z llvill3
=1

Observe that ideas similar to those used for DQGMRES can be exploited to obtain
a better estimate of the residual norm. Also, note that the relation (6.57) for DOGMRES
holds. More interestingly, Theorem 6.1 is also valid and it is now restated for QMR.

THEOREM 7.1 Assume that the Lanczos algorithm does not break down on or before
stepm and let V,,, 1 be the Lanczos basis obtained at stepm. Letr$ andrS. be the residual
norms obtained after m steps of the QMR and GMRES algorithms, respectively. Then,

IrQll2 < k2 (Vg )lIrS |2

The proof of this theorem is essentially identical with that of Theorem 6.1. Note that V,,, 11
is now known to be of full rank, so we need not make this assumption as in Theorem 6.1.

e
TRANSPOSE-FREE VARIANTS

j

Each step of the Biconjugate Gradient algorithm and QMR requires a matrix-by-vector
product with both A and AT However, observe that the vectors p} or w; generated with
AT do not contribute directly to the solution. Instead, they are used only to obtain the
scalars needed in the algorithm, e.g., the scalars o;; and 3; for BCG. The question arises
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as to whether or not it is possible to bypass the use of the transpose of A and still generate
iterates that are related to those of the BCG algorithm. One of the motivations for this ques-
tion is that, in some applications, A is available only through some approximations and not
explicitly. In such situations, the transpose of A is usually not available. A simple exam-
ple is when a CG-like algorithm is used in the context of Newton’s iteration for solving
F(u) = 0. The linear system that arises at each Newton step can be solved without having
to compute the Jacobian J(uy) at the current iterate uy explicitly, by using the difference
formula

F(uy + ev) — F(ug)

; .
This allows the action of this Jacobian to be computed on an arbitrary vector v. Unfortu-
nately, there is no similar formula for performing operations with the transpose of J(u,).

J(ug)v =

7.4.1 CONJUGATE GRADIENT SQUARED

The Conjugate Gradient Squared algorithm was developed by Sonneveld in 1984 [201],
mainly to avoid using the transpose of A in the BCG and to gain faster convergence for
roughly the same computational cost. The main idea is based on the following simple
observation. In the BCG algorithm, the residual vector at step j can be expressed as

i = ¢i(A)ro (7.20)
where ¢; is a certain polynomial of degree j satisfying the constraint ¢;(0) = 1. Similarly,
the conjugate-direction polynomial 7;(t) is given by

pj = m;(A)ro, (7.21)
in which 7; is a polynomial of degree j. From the algorithm, observe that the directions
r; and p; are defined through the same recurrences as r; and p; in which A is replaced by
AT and, as a result,

i = ¢; (AT)’I‘S, p; =T; (AT)TS.
Also, note that the scalar ; in BCG is given by
o (850, ¢5(AT)r5) _ (#3(A)ro, 1)
T (Amj(A)ro, mi(AT)rg)  (AmF(A)ro,rp)
which indicates that if it is possible to get a recursion for the vectors ¢ (A)ro and 73 (A)ro,
then computing «; and, similarly, 8; causes no problem. Hence, the idea of seeking an
algorithm which would give a sequence of iterates whose residual norms r;- satisfy
i = ¢3(A)ro. (7.22)

The derivation of the method relies on simple algebra only. To establish the desired
recurrences for the squared polynomials, start with the recurrences that define ¢; and =;,
which are,

Bj+1(t) = ¢;(t) — ajtm;(t), (7.23)
Tit1(t) = i1 (t) + Bim; (). (7.24)
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If the above relations are squared we get

$511 (1) = 65 (t) — 205tm; (8)d; (1) + Q5773 (2),

i1 (t) = 6541 (8) + 289541 (&) (8) + B 5 (t)°.
I it were not for the cross terms 7;(¢)¢; (t) and ¢;.11 (t)w;(t) on the right-hand sides, these
equations would form an updatable recurrence system. The solution is to introduce one of

these two cross terms, namely, ¢;.1(t)7;(t), as a third member of the recurrence. For the
other term, i.e., m;(¢); (¢), we can exploit the relation

¢i (i (t) = () (65 (1) + Bj—amj—1(t)) = ¢5(t) + Bj—105(O)7j—1(2).

By putting these relations together the following recurrences can be derived, in which the
variable (¢) is omitted where there is no ambiguity:

§+1 = ¢§' - ajt (2¢§ +2Bj_1¢5mj—1 — ot 7r]2) (7.25)
bjp1m; = ¢ + Bi_1¢;mj_1 — oyt T (7.26)
7rg2'+1 = ¢?+1 + 26i¢j 4175 + /332%2 (7.27)

These recurrences are at the basis of the algorithm. If we define
rj = ¢3(A)ro, (7.28)
pj =73 (A)ro, (7.29)
aj = $j+1(A)m;(A)ro, (7.30)

then the above recurrences for the polynomials translate into

rit1 =1; — ;A (2r; +2Bj_1q-1 — ;A p;) (7.31)
g =7j + Bj-1qj-1 — ;A pj, (7.32)
Pi+1 =it +2B5q; + Bp;. (7-33)

It is convenient to define the auxiliary vector
dj =2r; +2Bj_1¢9j—1 — a; Ap;.
With this we obtain the following sequence of operations to compute the approximate
solution, starting with rq := b — Axg, po := 79, ¢o := 0, Bo := 0.
aj = (rj,75)/(Apj,75)
dj =2r; +203;_1q;-1 — o Ap;
g =rj+ Bj-1¢j-1 — a;jAp;
Tjy1 = T; + a;d;
rjt1 =r; — o Ad;
Bi = (rj41,715)/(r5,75)
® pjt1 =11 + B;(2g;5 + Bipj)-

A slight simplification to the algorithm can be made by using the auxiliary vector
uj = r;j + B3j-1¢;—1. This definition leads to the relations

dj =u; + q;,
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q; = uj — ajApj,
pi+1 = ujr1 + B5(g; + Bips),
and as a result the vector d; is no longer needed. The resulting algorithm is given below.

ALGORITHM 7.5: Conjugate Gradient Squared

1. Computerg :=b— Az, r§ arbitrary.

2. Setpo = Ug :=Tg.

3. Forj=0,1,2..., until convergence Do:
4. a; =(rj,r5)/(Apj,75)
5. q; = uj; — oszpj
6.z =x + oju; +q5)
7.

8

9

0

1

ri+1 =1 — a;A(u; + g;)

Bj = (rj+1,715)/(rj, 75)

Ujp1 = rjp1 + Big;

pj+1 = ujt1 + Bj(g; + Bjpj)

EndDo
1

Observe that there are no matrix-by-vector products with the transpose of A. Instead, two
matrix-by-vector products with the matrix A are now performed at each step. In general,
one should expect the resulting algorithm to converge twice as fast as BCG. Therefore,
what has essentially been accomplished is to replace the matrix-by-vector products with
AT by more useful work.

The Conjugate Gradient Squared algorithm works quite well in many cases. However,
one difficulty is that, since the polynomials are squared, rounding errors tend to be more
damaging than in the standard BCG algorithm. In particular, very high variations of the
residual vectors often cause the residual norms computed from the result of line 7 of the
above algorithm to become inaccurate.

7.4.2 BICGSTAB

The CGS algorithm is based on squaring the residual polynomial, and, in cases of irregular
convergence, this may lead to substantial build-up of rounding errors, or possibly even
overflow. The Biconjugate Gradient Stabilized (BICGSTAB) algorithm is a variation of
CGS which was developed to remedy this difficulty. Instead of seeking a method which
delivers a residual vector of the form r; defined by (7.22), BICGSTAB produces iterates
whose residual vectors are of the form

T; = ’Lbj (A)¢] (A)T(], (7.34)

in which, as before, ¢;(¢) is the residual polynomial associated with the BCG algorithm
and ¢;(t) is a new polynomial which is defined recursively at each step with the goal of
“stabilizing” or “smoothing” the convergence behavior of the original algorithm. Specifi-
cally, 1;(t) is defined by the simple recurrence,

Yir1(t) = (1 — wit); (1) (7.35)
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in which the scalar w; is to be determined. The derivation of the appropriate recurrence
relations is similar to that of CGS. Ignoring the scalar coefficients at first, we start with a
relation for the residual polynomial ;41 ¢;41. We immediately obtain

Yiv10j41 = (1 — w;t)Y; (t)dj41 (7.36)
= (1 —wjt) (Y95 — ajty;my) (7.37)

which is updatable provided a recurrence relation is found for the products ¢ ;7;. For this,
write

Vi = (5 + Bj—1mj-1) (7.38)
=1i¢; + Bi—1(1 —wj_1t)jamj1. (7.39)
Define,
i = ¢;(A);(A)ro,
pj = ¥ (A)m;(A)ro.

According to the above formulas, these vectors can be updated from a double recurrence
provided the scalars «; and 3; were computable. This recurrence is

rit1 = (I —w;A)(rj — a;Ap;)) (7.40)
Pj+1 = Tj+1 + Bi(I — w;A)p;.

Consider now the computation of the scalars needed in the recurrence. According to
the original BCG algorithm, 8; = p;4+1/p; with

pi = ($i(A)ro, d;(AT)rg) = (6;(A)*ro,7)

Unfortunately, p; is not computable from these formulas because none of the vectors
#;(A)ro, ¢;(AT)ry or ¢;(A)%rg is available. However, p; can be related to the scalar

pj = (6 (A)ro, ¢ (AT)rg)
which is computable via
pi = (65 (A)ro,v;(AT)rg) = (15 (A)$;(A)ro, ) = (r5,75)-

To relate the two scalars p; and p;, expand 1, (AT)r§ explicitly in the power basis, to
obtain

75 = (95(Ayro, o (ATyirg + 0§ (ATY "' r5 + ).

Since ¢;(A)ro is orthogonal to all vectors (AT)*rg, with & < 4, only the leading power is
relevant in the expansion on the right side of the above inner product. In particular, if 'yf’)
is the leading coefficient for the polynomial ¢, (t), then

0w Yl
pj = | ¢i(A)ro, —75¢i(A%)ro | = 5 pi-
A "

When examining the recurrence relations for ¢ ;41 and +;41, leading coefficients for these
polynomials are found to satisfy the relations

B ) R s N
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and as a result
Pit1 _ Wi Pi+1
Pi & pj
which yields the following relation for 3;:
gy =Pl % (7.41)
Pj Wi
Similarly, a simple recurrence formula for «; can be derived. By definition,
o (65(A)ro,6;(AT)r)
T (Am(A)ro, i (AT)rg)
and as in the previous case, the polynomials in the right sides of the inner products in both
the numerator and denominator can be replaced by their leading terms. However, in this
case the leading coefficients for ¢;(A)rg and m; (AT)r are identical, and therefore,

0, = (8i(A)ro, &5 (AT)r5)
T (Amj(A)ro, ¢5(AT)rg)
_ (&3 (A)ro, 9 (AT)rg)
(Amj(A)ro, ;i (AT)rg)
_ (@i(A4)¢;(A)ro,75)
(A9 (A)m;(A)ro,m5)
Since p; = ¢;(A)m;(A)ro, this yields,

_hi
(Apj, o)

Next, the parameter w; must be defined. This can be thought of as an additional free
parameter. One of the simplest choices, and perhaps the most natural, is to select w; to
achieve a steepest descent step in the residual direction obtained before multiplying the
residual vector by (I — w;A) in (7.40). In other words, w; is chosen to minimize the 2-
norm of the vector (I — w;A)y;(A)¢;4+1(A)re. Equation (7.40) can be rewritten as

a; = (7.42)

Ti+1 = (I — ij)sj
in which
S =715 — ajApj.
Then the optimal value for w; is given by
Wi = (AS]', 8]‘)
J (ASj, ASj) ’

Finally, a formula is needed to update the approximate solution ;44 from ;. Equa-
tion (7.40) can be rewritten as

(7.43)

Tj+1 = 85 — ijsj =Tr; — OtjApj - ijsj
which yields

Tjt1 = Tj + a;p; + w;s;-
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After putting these relations together, we obtain the final form of the BICGSTAB
algorithm, due to van der Vorst [210].

ALGORITHM 7.6: BICGSTAB

1. Computery :=b— Axzy; r§ arbitrary;
2. Po :=To-

3. Forj =0,1,...,until convergence Do:
4 Qj = (TJ‘:TS)/(APJ‘:TS)

5. 85 1=Tj — OéjApj

6. Wj = (ASj,Sj)/(ASj,ASj)
7 ZTj41 = Tj + a;p; + wjs;
8 Tj41 = 85 — (.UjASj

10.  pjy1 =741 + Bi(p; — w;Ap;)
. 11. EndDo

Example 7.2 Table 7.2 shows the results of applying the BICGSTAB algorithm with no
preconditioning to three of the test problems described in Section 3.7.

Matrix | Iters | Kflops | Residual Error

F2DA 96 | 2048 | 0.14E-02 | 0.77E-04
F3D 64 | 6407 | 0.49E-03 | 0.17E-03
ORS 208 | 5222 | 0.22E+00 | 0.68E-04

Table 7.2 A test run of BICGSTAB with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of
matrix-by-vector multiplications required to converge is larger than with BCG. Thus, us-
ing the number of matrix-by-vector products as a criterion, BCG is more expensive than
BICGSTAB in all three examples. For problem 3, the number of steps for BCG exceeds
the limit of 300. If the number of steps is used as a criterion, then the two methods come
very close for the second problem [61 steps for BCG versus 64 for BICGSTAB]. However,
BCG is slightly faster for Problem 1. Observe also that the total number of operations fa-
vors BICGSTAB. This illustrates the main weakness of BCG as well as QMR, namely, the
matrix-by-vector products with the transpose are essentially wasted unless a dual system
with AT must be solved simultaneously.

7.4.3 TRANSPOSE-FREE QMR (TFQMR)

The Transpose-Free QMR algorithm of Freund [95] is derived from the CGS algorithm.
Observe that z; can be updated in two half-steps in line 6 of Algorithm 7.5, namely,
Tjp1 = Tj + aju; and x4 = Tipi + Qg5 Thi_s is only natural s_inf:e t_he act_ual up-
date from one iterate to the next invoives two matrix-by-vector multiplications, i.e., the
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degree of the residual polynomial is increased by two. In order to avoid indices that are
multiples of 1, it is convenient when describing TFQMR to double all subscripts in the
CGS algorithm. With this change of notation, the main steps of the Algorithm 7.5 (CGS)
become

azj = (r25,75)/ (Ap2j,75) (7.44)
Q2j = u2j — Q2 Apa; (7.45)
Tajyo = Toj + azj(usj + g2j) (7.46)
Tojp2 = Toj — Qo A(uzj + ¢25) (7.47)
B2j = (r2j+2,79)/(r2j,75) (7.48)
uzjr2 = 242 + B2jq2; (7.49)
Dajy2 = Uzjy2 + B2j(q2j + Bp2;)- (7.50)

The initialization is identical with that of Algorithm 7.5. The update of the approxi-
mate solution in (7.46) can now be split into the following two half-steps:

T2j+1 = T2j + Q2;U2j (7.51)
T2j4+2 = T2j41 + 025G2;- (7.52)

This can be simplified by defining the vectors u,, for odd m as u2;4+1 = g2;. Similarly, the
sequence of a, is defined for odd values of m as aa;41 = a;. In summary,

dm—1

7.53
Q1 (7.53)

for m odd define: { tm

Om

With these definitions, the relations (7.51-7.52) are translated into the single equation
Tm = Tm—1 T Qm—1Um—1,

which is valid whether m is even or odd. The intermediate iterates x.,,, with m odd, which
are now defined do not exist in the original CGS algorithm. For even values of m the
sequence x,,, represents the original sequence or iterates from the CGS algorithm. It is
convenient to introduce the N x m matrix,

Upm = [uo, - - Um—1]
and the m-dimensional vector
Zm = (o, a1, ..., m_1)%.
The general iterate z,, satisfies the relation
Tm = Zo + UpmzZm (7.54)
=ZTm-1+Am—1Um—1- (7.55)

From the above equation, it is clear that the residual vectors r,,, are related to the u-vectors
by the relations

Tm =10 — AUm2Zm (7.56)
=Prm_1 — Om_1AUp_1. (7.57)

Next, a relation similar to the relation (6.5) seen for FOM and GMRES will be ex-
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tracted using the matrix AU,,. As a result of (7.57), the following relation holds:

1
Au; = o (ri —Tig1) -

Translated in matrix form, this relation becomes

AU,, = Rypy1Bm (7.58)
where
Ry =1[ro,m1,---,Tk—1] (7.59)
and where B, is the (m + 1) x m matrix,
1 0O ... ... 0
-1 1 :
Bn=|° 8o |« diag {i,i,... 1 } (7.60)
: . . : oy’ o Qm—1
: -1 1
0o ... -1

The columns of R, can be rescaled, for example, to make each of them have a 2-norm
equal to one, by multiplying R,,+: to the right by a diagonal matrix. Let this diagonal
matrix be the inverse of the matrix

Am+1 = dlag [(507(51, ... 76m] -

Then,
AUp = Rn1A,Y 1 A1 B, (7.61)
With this, equation (7.56) becomes
rm =10 — AU 2zm = Ry [el - Bmzm] (7.62)
= Rmt1A,, 11 [60€1 — Ami1Bmzm] - (7.63)

By analogy with the GMRES algorithm, define
.E[m = Am+1Bm.

Similarly, define H,, to be the matrix obtained from H,,, by deleting its last row. It is easy
to verify that the CGS iterates z,,, (now defined for all integersm = 0, 1,2, ...) satisfy the
same definition as FOM, i.e.,

Ty = To + U H, M (S0e1)- (7.64)

It is also possible to extract a GMRES-like solution from the relations (7.61) and
(7.63), similar to DQGMRES. In order to minimize the residual norm over the Krylov
subspace, the 2-norm of the right-hand side of (7.63) would have to be minimized, but
this is not practical since the columns of Rm+1A;ll+1 are not orthonormal as in GMRES.
However, the 2-norm of dpe; — A1 Bz €an be minimized over z, as was done for the
QMR and DQGMRES algorithms.

This defines the TFQMR iterates theoretically. However, it is now necessary to find a
formula for expressing the iterates in a progressive way. There are two ways to proceed.
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The first follows DQGMRES closely, defining the least-squares solution progressively and
exploiting the structure of the matrix R,, to obtain a formula for x,,, from z,,_,. Because
of the special structure of H,,, this is equivalent to using the DQGMRES algorithm with
k = 1. The second way to proceed exploits Lemma 6.1 seen in the previous chapter. This
lemma, which was shown for the FOM/GMRES pair, is also valid for the CGS/TFQMR
pair. There is no fundamental difference between the two situations. Thus, the TFQMR
iterates satisfy the relation

Ty — Tr1 = Coy (B — Trn1) (7.65)
where the tildes are now used to denote the CGS iterate. Setting
1 1

dm = 1 (.’i’m - .Tm_l) = m (.'Il'm - mm_l) (766)

Nm = cfnam,l,
the above expression for x,, becomes
Tm = Tm—1 + Mmdm- (7.67)
Now observe from (7.55) that the CGS iterates %, satisfy the relation
Tm = Tm—1 + Om_1Um—1- (7.68)

From the above equations, a recurrence relation from d,, can be extracted. The definition
of d,,, and the above relations yield

1

Q-1

dm =

(i'm — Ty 1+ Tpmo1 — xmfl)

= Um—1 + (-’Ijm—l —Tm—2 — (-'L'm—l - Z‘m—z))

Qm—1
1- c?n—l (~

=Up—1+ Tmo1— Tm2)-

m—1

Therefore,

1—ch 1)Nm—1
A = Up—1 + U#dm_l_
Cm—1%m—1
The term (1 — ¢2,_;)/c2,_; is the squared tangent of the angle used in the (m — 1) — st
rotation. This tangent will be denoted by ,,, 1, and we have
_ Sm , 1 B 0% N
em—a; Cm—m; Admt1 = Um + Zm

The angle used in the m-th rotation, or equivalently ¢,,, can be obtained by examining the

dpm.
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matrix H,,:
do 0 e e 0
-5 4 :
_ 0 —62 & 1
H, = | . > x diag {—} . (7.69)
: ’ : @i ) j=0,...,m—1
—0m Om
0 . _6m+1

The diagonal matrix in the right-hand side scales the columns of the matrix. It is easy to see
that it has no effect on the determination of the rotations. Ignoring this scaling, the above
matrix becomes, after j rotations,

*x %
*x %

—0j41 911
—Om Om
_5m+1
The next rotation is then determined by,
—0j+1 7j —0j41

Sj+1 = N Cjt1 = TR Oy = T
V7 954 V7 05 !

In addition, after this rotation is applied to the above matrix, the diagonal element J;41
which is in position (5 + 1,7 + 1) is transformed into

s

— — 79%5+1 — —

Tjrl = 0j4l X 1 = —m=e= = T840 = ~Ti041Cj41 (7.70)
it 05

The above relations enable us to update the direction d,,, and the required quantities ¢,,, and
Nm. Since only the squares of these scalars are invoked in the update of the direction d;,+1,
a recurrence for their absolute values is sufficient. This gives the following recurrences
which will be used in the algorithm:

dm+1 = Umy + (Hi/am)nmdm

0m+1 = 6m+1/7—m

2 \~3

Cmt1 = (1 + 9m+1)

Tm+1 = Tmam—i-lcm—i-l

m+1 = C?n—i—lam‘

Before writing down the algorithm, a few relations must be exploited. Since the vectors

T, are no longer the actual residuals in the algorithm, we change the notation to w.,,,. These
residual vectors can be updated by the formula

Wi = Wrp—1 — Qp—1 AlUp_1.
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The vectors Au; can be used to update the vectors
v2j = Apoj
which are needed in the CGS algorithm. Multiplying (7.50) by A results in
Apaj = Augj + Boj_2(Agej_2 + BjApaj_2)

which, upon substituting the relation

q25 = U2541
translates into
voj = Augj + Baj—2(Auzj1 + Baj—2v2j-2).
Also, observe that the recurrences in (7.45) and (7.49) for g2; and uz;42, respectively,
become
U2j+1 = U2j — Q25V2j
Ugj42 = W2jt2 + BojU2j41-

The first equation should be used to compute u,,+1 When m is even, and the second when
m is odd. In the following algorithm, the normalization d,, = ||w||2, which normalize
each column of R,,, to have 2-norm unity, is used.

ALGORITHM 7.7: Transpose-Free QMR (TFQMR)

1 Compute wo = Ug = Tg = b — Axg, vo = Aug, dy = 0;
2. T0 = ||7’0||2, 90 =N = 0.
3. Choose r§ such that po = (r§,m0) # 0.
4. Form =0,1,2,..., until convergence Do:
5. Ifm is even then
6 Om41 = Oy :pm/(vmaré)
7. Um+1 = U — Oy Uy
8 EndIf
9. Wint1 = Wy — QA
10.  dpg1 = um + 02,/ ) nmdm
1
1L Omyr = lwmsll2/Tm) Cmir = (1 +0?n+1)_5
12. Tm+4+1 = Tm0m+1cm+1 s 41 = C$n+1am

13. Tm+1 = Tm + 77m+1dm+1
14. If m is odd then

15. Pmt1 = (Tm+1,70); Bm—1 = Pm+1/Pm—1

16. Um+1 = Wmy1 + ﬂm—lum

17. Um+41 = Aum—i-l + /Bm—l(Aum + ﬁm—lvm—l)
18. Endif

19. EndDo

Notice that the quantities in the odd m loop are only defined for even values of m. The
residual norm of the approximate solution z,, is not available from the above algorithm
as it is described. However, good estimates can be obtained using similar strategies to
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those used for DQGMRES. Referring to GMRES, an interesting observation is that the
recurrence (6.40) is identical with the recurrence of the scalars 7;’s. In addition, these two
sequences start with the same values, d, for the 7’s and g for the ~’s. Therefore,

TYm+1 = Tm.
Recall that ,,,+1 is the residual for the (m + 1) x m least-squares problem
mzin |6oe1 — Hpz||2-
Hence, a relation similar to that for DQGMRES holds, namely,
b — Az || < Vm + 17y. (7.71)

This provides a readily computable estimate of the residual norm. Another point that should
be made is that it is possible to use the scalars s, ¢,, in the recurrence instead of the pair
Cm, Bm, @S Was done above. In this case, the proper recurrences are

2
dm+1 = Um + (sm/am)am—ldm
— 2
Smt1 = Omy1 /[T + 004y
Cmt1 = T /A\/Toy + 63)1—‘,—1

Tm+1 = TmSm+1

_ 2
Nm+1 = Cpp1Gme-

Example 7.3 Table 7.3 shows the results when TFQMR algorithm without precondi-
tioning is applied to three of the test problems described in Section 3.7.

Matrix | Iters | Kflops | Residual Error

F2DA | 112 | 2736 | 0.46E-04 | 0.68E-04
F3D 78 | 8772 | 0.52E-04 | 0.61E-03
ORS 252 | 7107 | 0.38E-01 | 0.19E-03

Table 7.3 A test run of TFQMR with no preconditioning.

See Example 6.1 for the meaning of the column headers in the table. The number of
steps is slightly higher than that of BICGSTAB. Comparing with BCG, we note that each
step of BCG requires two matrix-by-vector products compared with one for TFQMR and
BICGSTAB. Thus, using the number of matrix-by-vector products as a criterion, BCG is
more expensive than TFQMR in all cases, as is shown in the “Iters” columns. If the num-
ber of steps is used as a criterion, then BCG s just slightly better for Problems 1 and 2. A
comparison is not possible for Problem 3, since the number of matrix-by-vector products
required for convergence exceeds the limit of 300. In general, the number of steps required
for convergence is similar for BICGSTAB and TFQMR. A comparison with the methods
seen in the previous chapter indicates that in many cases, GMRES will be faster if the
problem is well conditioned, resulting in a moderate number of steps required to converge.
If many steps (say, in the hundreds) are required, then BICGSTAB and TFQMR may per-
form better. If memory is not an issue, GMRES or DQGMRES, with a large number of
directions, is often the most reliable choice. The issue then is one of trading ribustness for
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memory usage. In general, a sound strategy is to focus on finding a good preconditioner
rather than the best accelerator.

—
EXERCISES

1. Consider the following modification of the Lanczos algorithm, Algorithm 7.1. We replace line 6
by

J
1f)j+1 = AT’LU]‘ — Z hijwi
i=1
where the scalars h;; are arbitrary. Lines 5 and 7 through 10 remain the same but line 4 in which
«a; is computed must be changed.

a. Show how to modify line 4 to ensure that the vector ;1 is orthogonal against the vectors
ws, fori=1,...,7.

b. Prove that the vectors v;’s and the matrix T, do not depend on the choice of the h;;’s.

c. Consider the simplest possible choice, namely, h;; = 0 for all 7, 5. What are the advantages
and potential difficulties with this choice?

2. Assume that the Lanczos algorithm does not break down before step m, i.e., that it is possible
to generate v1, . .. Upm+1. Show that Vi, 41 and Wi, 41 are both of full rank.

3. Develop a modified version of the non-Hermitian Lanczos algorithm that produces a sequence
of vectors v;, w; such that each v; is orthogonal to every w; with j # i and ||vs]|2 = [|will2 =1
for all <. What does the projected problem become?

4. Develop a version of the non-Hermitian Lanczos algorithm that produces a sequence of vectors
v;, w; Which satisfy
(Ui, ’w]‘) = :E(Sq;j,
but such that the matrix T),, is Hermitian tridiagonal. What does the projected problem become
in this situation?

5. Using the notation of Section 7.1.2 prove that ¢;4+x(t) = t*p;(t) is orthogonal to the poly-
nomials p1,p2,...,pj—k, assuming that & < j. Show that if g; 1 is orthogonalized against
P1,P2, ..., Pj—k, the result would be orthogonal to all polynomials of degree < j + k. Derive a
general Look-Ahead non-Hermitian Lanczos procedure based on this observation.

6. Consider the matrices Vi, = [v1,...,vm] and Wy, = [w1, ..., wy] obtained from the Lanczos
biorthogonalization algorithm. (a) What are the matrix representations of the (oblique) projector
onto K., (A, v1) orthogonal to the subspace /C,, (AT, w1), and the projector onto K., (AT, w1)
orthogonally to the subspace K., (A,v1)? (b) Express a general condition for the existence of
an oblique projector onto K, orthogonal to L. (c) How can this condition be interpreted using
the Lanczos vectors and the Lanczos algorithm?

7. Show a three-term recurrence satisfied by the residual vectors r; of the BCG algorithm. Include
the first two iterates to start the recurrence. Similarly, establish a three-term recurrence for the
conjugate direction vectors p; in BCG.



EXERCISES AND NOTES 227

8.

10.

11.

Let ¢;(¢) and m; (¢) be the residual polynomial and the conjugate direction polynomial, respec-
tively, for the BCG algorithm, as defined in Section 7.4.1. Let +;(¢) be any other polynomial
sequence which is defined from the recurrence

Po(t) =1, 91(t) = (1 — &ot)to(t)
Yi+1(t) = (L+m; — 1) (1) — myjehj—1(2)

a. Show that the polynomials 1); are consistent, i.e., 1;(0) = 1 forall 5 > 0.
b. Show the following relations

Yir1di+1 = Yidi11 — i (i1 — ¥)Pi41 — §itidi

Yidir1 = Yid; — ateym;

(Yi-1 — P5) i1 = Yj-16; — Yidj+1 — ajtrhjam;

VYir1mi41 = Y1841 — Bimivi—1m; + B (L+ ni)ims — Bi&jtabm;
Y41 = Yidi1 + B

c. Defining,

ti = i (A)di+1(A)ro,  y; = (Yi-1(A4) — i (A));+1(A)ro,
pi = ¢ (A)mi(A)ro, 55 =1hj-1(A)m;(A)ro
show how the recurrence relations of the previous question translate for these vectors.

d. Find a formula that allows one to update the approximation x ;41 from the vectors z;_1, z;
and ¢, pj, y;, s; defined above.

e. Proceeding as in BICGSTAB, find formulas for generating the BCG coefficients a; and j3;
from the vectors defined in the previous question.

. Prove the expression (7.64) for the CGS approximation defined by (7.54-7.55). Is the relation

valid for any choice of scaling A,,4+1?

Prove that the vectors r; and r; produced by the BCG algorithm are orthogonal to each other
when i # j, while the vectors p; and p} are A-orthogonal, i.e., (Ap;,p;) = 0 fori # j.

The purpose of this exercise is to develop block variants of the Lanczos algorithm. Consider a
two-sided analogue of the Block-Arnoldi algorithm, in its variant of Algorithm 6.23. Formally,
the general step that defines the biorthogonalization process, for j > p, is as follows:

1. Orthogonalize Avj_p41 Versus wi, we, ..., w; (by subtracting a linear combination
of v1,...,v; from Av;_,41). Call v the resulting vector.
2. Orthogonalize ATw;_,+1 Versus v, va, ... ,v; (by subtracting a linear combination
of wi, ..., w; from ATw;_,41). Call w the resulting vector.
3. Normalize the two vectors v and w so that (v, w) = 1 to get v;+1 and wj41.
Here, p is the block size and it is assumed that the initial blocks are biorthogonal: (vi, w;) = &5
fori, 7 <p.
a. Show that Av;_p,+1 needs only to be orthogonalized against the 2p previous w;’s instead of
all of them. Similarly, ATw;_,+1 must be orthogonalized only against the 2p previous v;’s.

b. Write down the algorithm completely. Show the orthogonality relations satisfied by the vec-
tors v; and w;. Show also relations similar to (7.3) and (7.4).

c. We now assume that the two sets of vectors v; and w; have different block sizes. Call g the
block-size for the w’s. Line 2 of the above formal algorithm is changed into:

2a. Orthogonalize ATw;—q+1 VErsus v, v2, . .., v; (---). Call w the resulting vector.
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and the rest remains unchanged. The initial vectors are again biorthogonal: (v;, w;) = d;
fori < pand j < g. Show that now Awv;_,1 needs only to be orthogonalized against the
g + p previous w;’s instead of all of them. Show a simlar result for the w;’s.

d. Show how a block version of BCG and QMR can be developed based on the algorithm
resulting from question (c).

NOTESAND REFERENCES. Atthe time of this writing there is still much activity devoted to the class
of methods covered in this chapter. Two of the starting points in this direction are the papers by Son-
neveld [201] and Freund and Nachtigal [97]. The more recent BICGSTAB [210] has been developed
to cure some of the numerical problems that plague CGS. There have been a few recent additions
and variations to the basic BCG, BICGSTAB, and TFQMR techniques; see [42, 47, 113, 114, 192],
among many others. A number of variations have been developed to cope with the breakdown of
the underlying Lanczos or BCG algorithm; see, for example, [41, 20, 96, 192, 231]. Finally, block
methods have also been developed [5].

Many of the Lanczos-type algorithms developed for solving linear systems are rooted in the
theory of orthogonal polynomials and Padé approximation. Lanczos himself certainly used this view-
point when he wrote his breakthrough papers [140, 142] in the early 1950s. The monogram by
Brezinski [38] gives an excellent coverage of the intimate relations between approximation theory
and the Lanczos-type algorithms. Freund [94] establishes these relations for quasi-minimal resid-
ual methods. A few optimality properties for the class of methods presented in this chapter can be
proved using a variable metric, i.e., an inner product which is different at each step [21]. A recent
survey by Weiss [224] presents a framework for Krylov subspace methods explaining some of these
optimality properties and the interrelationships between Krylov subspace methods. Several authors
discuss a class of techniques known as residual smoothing; see for example [191, 234, 224, 40].
These techniques can be applied to any iterative sequence x, to build a new sequence of iterates yy,
by combining yx—1 with the difference zx — yx—1. A remarkable result shown by Zhou and Walker
[234] is that the iterates of the QMR algorithm can be obtained from those of the BCG as a particular
case of residual smoothing.

A number of projection-type methods on Krylov subspaces, other than those seen in this chapter
and the previous one are described in [1]. The group of rank-k update methods discussed by Eirola
and Nevanlinna [79] and Deufflhard et al. [70] is closely related to Krylov subspace methods. In
fact, GMRES can be viewed as a particular example of these methods. Also of interest and not
covered in this book are the vector extrapolation techniques which are discussed, for example, in the
books Brezinski [38], Brezinski and Radivo Zaglia [39] and the articles [199] and [126]. Connections
between these methods and Krylov subspace methods, have been uncovered, and are discussed by
Brezinski [38] and Sidi [195]. |



