
Synchronous Iterations

Introduction

In this chapter, we are interested in parallel synchronous iterative algo-
rithms for linear and nonlinear systems. Convergence results of the syn-
chronous versions and their implementations are detailed.

We will concentrate on so-called multisplitting algorithms and their coupling
with the Newton method. Multisplitting algorithms include the discrete ana-
logues of Schwarz multi-subdomain methods and hence are very suitable for
distributed computing on distant heterogeneous clusters. They are particu-
larly well suited for physical and natural problems modeled by elliptic systems
and discretized by finite difference methods with natural ordering.

The parallel versions of minimization like the methods exposed in Chap-
ter 2 are not detailed in this chapter but it should be mentioned that, thanks
to the multisplitting approach and under suitable assumptions on the split-
tings, these methods can be used as inner iterations of two-stage multisplitting
algorithms.

4.1 Parallel linear iterative algorithms for linear systems

4.1.1 Block Jacobi and O’Leary and White multisplitting
algorithms

Suppose that we have L processors P1, ..., PL and that an unknown vector of
dimension n is partitioned into L subvectors of dimensions ni (i ∈ {1, ..., L})
so that n =

∑L
i=1 ni, Rn =

∏L
i=1 Rni .

Consider the n-dimensional linear system

Ax = b, x ∈ R
n, (4.1)

and suppose that (4.1) has a unique solution x∗.
As seen in Section 2.1.6 of Chapter 2, block iterative algorithms can be de-

duced from by-point iterative algorithms by splitting the matrix A into M−N

71

© 2008 by Taylor & Francis Group, LLC

Synchronous Iterations 73

THEOREM 4.1

Let A = M −N, where A and M are nonsingular square matrices.
Let T = M−1N and suppose that T is a nonnegative matrix, then

ρ(T) < 1⇔ A−1N ≥ 0.

Moreover

ρ(T) =
ρ(A−1N)

1 + ρ(A−1N)
.

PROOF Suppose that ρ(T) < 1. Then

A−1N =
[
M(I −M−1N)

]−1
N

= (I − T)−1T
=
∑∞

p=1 T p.

As T is nonnegative, we deduce that A−1N is nonnegative.
Suppose now that A−1N ≥ 0. Then the Perron-Frobenius theorem implies

that there exists a positive vector such that

Tx = ρ(T)x.

So
A−1Nx = (I − T)−1Tx

=
ρ(T)

1− ρ(T)
x.

As A−1N and x are nonnegative, the last equality implies that ρ(T) < 1.
Now, the equation just quoted above implies that

ρ(T)

1− ρ(T)
≤ ρ(A−1N),

hence

ρ(T) ≤ ρ(A−1N)

1 + ρ(A−1N)
.

On the other hand, as A−1N ≥ 0, we have by the Perron-Frobenius theorem

Ty = (I + A−1N)−1A−1Ny

=
ρ(A−1N)

1 + ρ(A−1N)
y,

for some positive vector y, thus

ρ(T) ≥ ρ(A−1N)

1 + ρ(A−1N)
.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

PROPOSITION 4.1

Consider a square n× n matrix A such that A−1 ≥ 0. Let

A = M1 −N1 = M2 −N2

be two regular splittings of A. Denote by T1 = M−1
1 N1 and by T2 = M−1

2 N2,
then

N2 ≤ N1 ⇒ ρ(T2) ≤ ρ(T1),

so
R∞(T1) ≤ R∞(T2).

PROOF This is a consequence of Theorem 4.2 and the fact that the
function f(x) = x/(1 + x) is monotone increasing.

The above results allow us to compare two block Jacobi like algorithms.
Indeed, the decompositions A = M1 −N1 and A = M2 −N2 give rise to the
block Jacobi algorithms whose iteration matrices are, respectively, M−1

1 N1

and M−1
2 N2. Indeed, the behaviors of synchronous iterations, generated by

these block Jacobi algorithms to solve the linear system (4.1), are, respectively,
described by the successive approximations associated to the fixed point map-
ping

T (1) : Rn → Rn

x 7→ y = M−1
1 N1x + M−1

1 b

and
T (2) : Rn → Rn

x 7→ y = M−1
2 N2x + M−1

2 b.

Then, Theorems 4.1 and 4.2 give sufficient conditions to ensure the conver-
gence of block Jacobi algorithms. Theorem 4.1 allows us to compare the speed
of convergence of two given block Jacobi algorithms.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Algorithm 4.1 Multisplitting scheme

for i=0,1,. . . , until convergence do
for l=1,. . . ,L do

yl ← B−1
l Clx

(i) + B−1
l b

end for
x(i+1) ←∑

l Dlyl

end for

O’Leary and White [92] established the following result:

THEOREM 4.3

If for l = 1, ..., L, (Bl, Cl) are weak regular splittings of A satisfying A−1 ≥ 0,
then Algorithm 4.1 is convergent.

The convergence of O’Leary and White multisplitting algorithms given in
Theorem 4.3 is based on Theorem 4.1. It can be seen that block Jacobi
algorithms correspond to the particular case of the O’Leary and White multi-
splitting method where the matrix is partitioned into non-overlapping blocks
and where the entries of the weighted diagonal matrices are null when they
are not associated with the computation of the vector associated with the
block diagonal matrix.

Since the work of O’Leary and White, several authors have studied mul-
tisplitting algorithms for linear and nonlinear systems; we refer to [59], [61],
[60], [75], [27], [62], [5] and the references therein.

In the next section, we give a general formulation of multisplitting algo-
rithms due to Bahi et al. [27]. This formulation allows us to put in the same
theoretical framework, parallel block Jacobi algorithms, O’Leary and White
multisplitting algorithms and the discrete analogues of parallel Schwarz algo-
rithms.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

76 Parallel Iterative Algorithms

A
1

N
1

M

= −

FIGURE 4.1: A splitting of matrix A.

4.1.2 General multisplitting algorithms

In this section we follow the general formulation of multisplitting algorithms
given in [27]. These algorithms are described by the iterations generated by
the successive approximations associated to an extended fixed point mapping
defined from (Rn)

L
into itself, where n is the dimension of the problem and

L is the number of processors. This fixed point mapping is defined as follows:

{
T : (Rn)

L −→ (Rn)
L

X = (x1, ..., xL) 7−→ Y = (y1, ..., yL),
(4.3)

such that for l ∈ {1, ..., L}

yl = T (l)(zl)

zl =
L∑

k=1

Elkxk,
(4.4)

where Elk are weighting matrices satisfying

Elk are diagonal matrices
Elk ≥ 0
L∑

k=1

Elk = In (identity matrix) , ∀l ∈ {1, ..., L} .
(4.5)

In (4.4),
T (l)(zl) = M−1

l Nlz
l + M−1

l b (4.6)

where
A = Ml −Nl, l = 1, ..., L (4.7)

is a splitting of A and Ml is, e.g., the block diagonal matrix defined in Fig-
ure 4.1.

Then it can be shown that if each splitting is convergent,
i.e., if ρ(M−1

l Nl) < 1, then the extended fixed point mapping is also con-
vergent to the extended solution of (4.1), say (x∗, ..., x∗), and then the syn-
chronous algorithm converges. The convergence study will be detailed in the

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 77

1
N

1
A M

=

Jl

Jl

Ãl

Ãl

−

Ãl

Ãl

Âl

FIGURE 4.2: A splitting of matrix A using subset Jl of l ∈ {1, ..., L}.

next chapter in the more general context which includes the study of both
synchronous and asynchronous algorithms.

In the following, a matrix A is partitioned as follows:
(
Âl

)

i,j
= ai,j , for i, j ∈ Jl,

(
Ãl

)

i,j
= ai,j for i, j ∈ JC

l ,

Ml = diag
(
Âl, Ãl

)
,

where L denotes the number of processors and Jl are subsets of {1, ..., n} .
The elements of Jl are indices of sub-components of a vector x of Rn. To each
l ∈ {1, ..., L} we associate a splitting, so we obtain L splittings of A described
in Figure 4.2.

We will now show how the extended fixed point defined above and the
dependence of the weighting matrices on both l and k allow us to obtain
particular standard algorithms such as O’Leary and White multisplitting al-
gorithms.

The practical considerations on how to implement such algorithms are dis-
cussed in Section 4.4.5.

4.1.2.1 Obtaining O’Leary and White multisplitting

If the diagonal positive matrices Elk depend only on k

Elk = Ek

and satisfy

L∑
k=1

Ek = In

(Ek)i,i = 0, ∀i /∈ Jk

(4.8)

Then the synchronous iterations corresponding to O’Leary and White multi-
splitting are defined by the fixed point mapping (here L = n, Bl = Rn),

T OW (x1, ..., xL) = (y1, ..., yL) such that

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

78 Parallel Iterative Algorithms

yl = T (l)(z)

z =
L∑

k=1

Ekxk

where for l ∈ {1, ..., L} , T (l) is defined by (4.6).

4.1.2.2 Obtaining discrete analogues of Schwarz alternating algo-
rithms

Suppose that we have only two subsets J1 and J2 and that J1

⋂
J2 6= ∅, so

we have an overlapping between the 1st and the 2nd subdomains and

A = M1 −N1 = M2 −N2

Consider the matrices Elk such that

(E11)i,i =

{
1 ∀i ∈ J1

0 ∀i /∈ J1
, (E12)i,i =

{
0 ∀i ∈ J1

1 ∀i /∈ J1
(4.9)

(E21)i,i =

{
1 ∀i /∈ J2

0 ∀i ∈ J2
, (E22)i,i =

{
0 ∀i /∈ J2

1 ∀i ∈ J2

Define the fixed point mapping

T S(x1, x2) = (y1, y2) such that for l = 1, 2

yl = T (l)(zl)

zl =
2∑

k=1

Elkxk (4.10)

where for l ∈ {1, 2} , T (l) is defined by (4.6). Then the additive discrete
analogue of the Schwarz alternating method corresponds to the successive
approximation method applied to T S , and the multiplicative discrete analogue
of the Schwarz alternating method corresponds to the block nonlinear Gauss-
Seidel method applied to T S .

4.1.2.3 Obtaining discrete analogues of multisubdomain Schwarz
algorithms

We introduce the weighting matrices Ek satisfying (4.8) and the matrices
Elk such that for l ∈ {1, ..., L}

(Ell)i,i =

{
1 if i ∈ Jl

0 if i /∈ Jl

(Elk)i,i =

{
0 if i ∈ Jl

(Ek)i,i if i /∈ Jl

(4.11)

the synchronous iterations corresponding to the discrete analogue of the mul-
tisubdomain Schwarz method are defined by the fixed point mapping T MS

T MS(x1, ..., xL) = (y1, ..., yL) such that

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

4.2 Nonlinear systems: parallel synchronous Newton-
multisplitting algorithms

Now we are interested in the development of parallel algorithms for non-
linear problems. We concentrate on the Newton method, since it is the most
commonly used method to solve nonlinear systems.

4.2.1 Newton-Jacobi algorithms

Consider the nonlinear problem

F (x) = 0 (4.13)

and the Newton method defined in Chapter 2 by the iterations

x(k+1) = x(k) − F ′(x(k))−1F (x(k)).

The solution of the system

F ′(x(k))x(k+1) = F ′(x(k))x(k) − F (x(k)) (4.14)

may be particularly prohibitive when the dimension of the problem is large.
In this case, we can use an iterative method instead of direct ones in order to
obtain an approximate solution of the system (4.14).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

80 Parallel Iterative Algorithms

Let D(k) be a block diagonal matrix of F ′(x(k)), then

F ′(x(k)) = D(k) −D(k) + F ′(x(k)). (4.15)

The linear system (4.14) can be solved by the block Jacobi algorithm asso-
ciated with the splitting (4.15). The obtained scheme consists in computing
the iteration vectors by the following two-stage algorithm.

Algorithm 4.2 Newton-Jacobi scheme

Choose any arbitrary initial vector (x(0))(0) = 0
for k = 1,2,... do

for l = 1,2,... do
D(k)(x(k+1))(l+1) ← (D(k) − F ′(x(k)))(x(k))(l) − F (x(k))

end for
end for

It should be noticed that in practice only a fixed number of inner iterations
is performed and that the number of inner iterations may vary in function of
the Newton outer iterations. We are then in the presence of nonstationary
iterative methods. The next section introduces Newton-multisplitting algo-
rithms which are a generalization of Newton-Jacobi algorithms.

4.2.2 Newton-multisplitting algorithms

We suppose that (4.13) has a solution x∗ and that F is Fréchet differentiable
on a neighborhood of x∗. We also suppose that F ′ is nonsingular and Lipschitz
continuous on a neighborhood of x∗. Newton iterations can be rewritten in
the form

x(k+1) = x(k) − y(k), k = 0, 1, 2, ...

where y(k) is the solution of the linear system

F ′(x(k))y = F (x(k)) (4.16)

Using an iterative method to solve (4.16) gives rise to the so-called Newton
iterative methods [5], [6]. In [117], White proposes the parallel Newton-SOR
method in order to solve nonlinear systems on parallel computers. In [5] and
[6], the authors propose nonstationary multisplitting methods to solve (4.16),
i.e., they consider for each k, a collection of L splittings of F ′(x(k)),

F ′(x(k)) = Ml(x
(k))−Nl(x

(k)), l = 1, ..., L, (4.17)

Suppose that the weighting matrices (4.5) only depend on one index and
that the solution of system (4.16) is approximated by performing q iterations
of the multisplitting method and that y(0) = 0.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Onecanalsosupposethattheapproximatesolutionof(4.16) isdoneby

performingdi�erent qk,l inner linear iterations based on the linear splittings as
explained in [5]. The obtained two-stage algorithm is called a nonstationary
Newton iterative algorithm. The following convergence result is proved in [6].

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

4.3 Preconditioning

Some preconditioning algorithms have been adapted to parallel synchronous
algorithms. In this case, depending on the amount of communications and
of synchronizations, on the granularity of the method, on the degree of par-
allelism and especially on the network efficiency, the performances of those
algorithms are relatively limited with a large number of processors. Never-
theless, some preconditioners have been designed for parallel architectures.
For example, parallel preconditioners, based on ILU, are very sensitive to the
ordering of the unknowns. The more independent the unknowns are, the more
efficient the parallel preconditioner ILU is. For more explanations on parallel
preconditioners, interested readers are invited to read [29, 102, 121, 41] and
the references therein.

4.4 Implementation

Implementing a synchronous parallel algorithm depends on the platform
used to execute it. In fact, it is possible to distinguish at least two different
paradigms from the programming point of view. The first one is only ded-
icated to shared memory architectures. The second one is commonly called
message passing and is mainly used in distributed architectures.

On shared memory architectures, at least two different kinds of program-
ming exist. The first class aims at parallelizing most consuming loops. Con-
sequently we obtain what is usually called a data parallel code which fits the
class of fine grained parallelism. In this model, the same set of instructions
runs simultaneously on different pieces of data. More precisely, each proces-
sor executes only a part of the loop. The other parts are achieved by other
processors. In this context, the best-known programming model is certainly
OpenMP [36] for which a programmer only needs to add compiler directives

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 83

in its code. In some particular cases the programmer does not need to modify
its code. Compiler directives are interpreted in order to split the initial work
of loops into smaller parts that are executed by the available processors.

The second class aims at decomposing the work into large parts with smaller
parts in which processors exchange some data. Usually this method is efficient
if the parts are relatively independent. This model is frequently called coarse
grained parallelism.

In both these models, processors can access to the whole memory for reading
and writing. If two processors access the same data in writing, the behavior
is often nondeterministic. So the programmer must carefully check that only
one processor writes into a part of data at each instant. However, the big
advantage of this model is its programming simplicity since a processor can
directly read any part of the memory without asking it to any processor.
Of course according to the architecture, the time to read data is not always
constant and this often leads to bottlenecks.

Concerning the programming of synchronous iterative algorithms both mod-
els are interesting but do not provide the same programming work. Using
fine grained parallelism with loops splitting is quite easy. Nevertheless such
codes are not as scalable as coarse grained parallelism codes which require
a longer programming endeavor. Now, most programmers do agree with the
fact that the transformation of a sequential program into a parallel one using
shared memory mechanism requires less work than using other parallelization
paradigms. Moreover, as few architectures provide a shared memory mecha-
nism, an application parallelized using that paradigm would not be as portable
as if it were parallelized using another programming model.

An interesting alternative, if we are interested in code reuse, lies in design-
ing an application with the message passing paradigm. This is the classical
model used for distributed architectures in which processors communicate
by sending/receiving messages to/from each other. Using a message passing
paradigm often requires rather a lot more work and time to design a paral-
lel application compared to using a shared memory paradigm. Nonetheless,
such a program is more portable since it can be executed on many architec-
tures: either distributed ones or shared memory ones. Even if it is not as
efficient on shared memory architecture as using a shared memory paradigm,
it is possible to run a program designed with a message passing paradigm on
such an architecture. Message passing programs generally require the use of
buffers in order to send or receive messages; that is why on shared memory
architectures, they could be less efficient.

With the development of multi-core processors, scientists have access to
clusters in which both paradigms can be used in order to benefit from the
best performance. On the one hand, communications between processors
linked by a network should be achieved using a message passing interface.
On the other hand, inside a multiprocessor or a multi-core machine, a shared
memory paradigm is preferable to obtain efficient codes. So, in this kind of
architecture, which will probably be used more and more in the next years,

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

86 Parallel Iterative Algorithms

Algorithm 4.3 Synchronous Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
XOld[SizeGlo]: global solution vector
B[Size]: local part of the right-hand side vector
Error: local error
MaxError: global error
Epsilon: desired accuracy

repeat
for i=0 to Size−1 do

X[i] ← 0
for j=0 to Offset−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for
for j=Offset+Size to SizeGlo−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for

end for
for i=0 to Size−1 do

X[i] ← (B[i]−X[i])/A[i][i+Offset]
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset] ← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 87

X
O

ldS
iz

e

SizeGlo

O
ff
se

t
X X A

FIGURE 4.3: Splitting of the matrix for the synchronous Jacobi method.

and putting the result in the variable ErrorMax. In that case, the MAX

operator is used in order to compute the maximum of the local error (or
norm here). The result is available on each processor. As a consequence, the
result is strictly identical to the result obtained using the sequential version
(neglecting the potential rounding errors).

The communication part consists for each processor in sending its results
(the vector X) to all the processors that need it. In the case of a dense ma-
trix, processor k sends its result to all the other processors. Then a processor
receives all the results and directly puts them in their right places in the ar-
ray XOld; each place is computed in function of the rank of the sender and
the (local) size of the matrix (considered constant). From a practical point
of view, the programmer should rather use nonblocking communications in
order to perform the exchange of data. According to the programming envi-
ronment, it is possible that the use of blocking sends and receptions leads to a
deadlock situation in which some processors are blocked while communicating
simultaneously with each other.

With some high level implementation libraries (like MPI) it is possible to
use a single call to a function to realize this exchange operation. In the code
corresponding to this example we use it, so interested readers are invited
to test it with MPI. For example, it is possible to use a procedure called
AllToAllV(X[Offset],X,Size) that produces the same results as the communi-
cation part in Algorithm 4.3.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

88 Parallel Iterative Algorithms

4.4.3 Synchronous conjugate gradient algorithm

The conjugate gradient algorithm can be parallelized using basically the
same procedure, i.e., splitting the work and synchronizing every part of the
code requiring it. Algorithm 4.4 describes the synchronous version of the
conjugate gradient algorithm. In the following, we use X[Offset]=Y in order
to copy the elements of the vector Y into X at the offset Offset. Likewise, for
some operations we specify the number of elements that are concerned. For
example, P[Offset]=R (copy Size elements) means that size elements of R are
copied into P with the offset Offset.

Compared to the synchronous parallel Jacobi algorithm, the parallel version
of the conjugate gradient requires more synchronizations. With the parallel
Jacobi only two steps act as a synchronization, the exchange of data and
the computation of the global error. In opposition, the parallel conjugate
gradient algorithm contains twice the synchronization steps: three AllReduce
operations and one AllT oAllV .

4.4.4 Synchronous block Jacobi algorithm

The synchronous block Jacobi algorithm is relatively easy to write having
the sequential version in mind. In fact, each processor is responsible for the
computation of a block and after an iteration, all processors send their local
solution to their neighbors that need it. In Algorithm 4.5, we describe the
synchronous version of this algorithm. At the end of an iteration, processors
exchange their local computation using an AllT oALLV procedure. Then,
they compute the global error. Consequently this algorithm requires two syn-
chronization steps. In order to solve the local subsystem, each processor uses
an appropriate method. In practice, depending on the size of the submatrix
and its degree of density, a sparse or a dense direct method can be used. The
solution of a subsystem is considered exact (neglecting rounding errors), so
an iterative method is not considered for solving a local subsystem.

At each iteration, three main steps may be distinguished in the block Jacobi
algorithm. The first one consists in updating the right-hand side using the
dependencies of other processors. In Algorithm 4.5, this step updates the
vector BTmp. The second step aims at solving the local subsystem on each
processor. Using an existing solver obviously simplifies the programming of
this method. According to the characteristics of the matrix, the choice of
the inner solver may drastically change the efficiency of the parallel solver.
Finally, the third step corresponds to the data exchanges and to the global
error computation.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 89

Algorithm 4.4 Synchronous conjugate gradient algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[SizeGlo]: solution vector
R[Size]: local part of the residual vector
B[Size]: local part of the right-hand side vector
P[SizeGlo]: search direction vector
Q[Size]: local part of the orthogonal vector to the search direction
DotPQ, DotPQGlo: local and global scalar product of (P,Q)
Alpha, Beta, Rho, RhoGlo: scalar variables
Error: local error
MaxError: global error
Epsilon: desired accuracy

Offset ← Size×MyRank
R ← B−A×X
repeat

Rho ← (R,R)
AllReduce(Rho, RhoGlo, SUM)
if i=1 then

P[Offset] ← R (copy Size elements)
else

Beta ← RhoGlo/RhoOldGlo
P[Offset] ← R+Beta×P[Offset] (copy Size elements)

end if
AllToAllV(P[Offset], P, Size)
Q ← A×P
DotPQ ← (P[Offset],Q)(for only Size elements)
AllReduce(DotPQ, DotPQGlo, SUM)
Alpha ← RhoGlo/DotPQGlo
X[Offset] ← X+Alpha×P[Offset] (for Size elements)
R ← R−Alpha×Q
RhoOldGlo ← RhoGlo
Error ← 0
for i=0 to Size−1 do

Error ← max(Error, abs(R[i]))
end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

90 Parallel Iterative Algorithms

Algorithm 4.5 Synchronous block Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
B[Size]: local part of the right-hand side vector
BTmp[Size]: intermediate local part of the right-hand side vector
XOld[SizeGlo]: global solution vector
Error: local error
MaxError: global error
Epsilon: desired accuracy

Offset← Size×MyRank
repeat

for i=0 to Size−1 do
BTmp[i]← B[i]

end for
for i=0 to Size−1 do

for j=0 to Offset−1 do
BTmp[i]← BTmp[i]−A[i][j]×XOld[j]

end for
for j=Offset+Size to SizeGlo do

BTmp[i]← BTmp[i]−A[i][j]×XOld[j]
end for

end for
X← Solve(A, BTmp)
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset]← X[i]

end for
AllToAllV(XOld[Offset], XOld, Size)
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 91

4.4.5 Synchronous multisplitting algorithm for solving lin-
ear systems

This algorithm comes directly from the formulation of Equations (4.3)-(4.5).
In the following we explain how to obtain the algorithm without overlapping
components and then we introduce the overlapping of components.

The first step consists in defining the weighting matrices. Without intro-
ducing overlapping, those matrices are diagonal and either contain 1 or 0 on
the diagonal. For example, if we take three processors (L = 3), the weighting
matrices are defined as in Figure 4.4.

El3 =El1 = El2 = 01

1 0

0 0 1

0

0

FIGURE 4.4: An example with three weighting matrices.

Having defined those matrices, we need to define the matrices Ml and Nl.
With Equation (4.4) and by defining T (l) as in Equation (4.6), with three
processors, we obtain the following system

y1 = M−1
1 N1(E11x

1 + E12x
2 + E13x

3) + M−1
1 b

y2 = M−1
2 N2(E21x

1 + E22x
2 + E23x

3) + M−1
2 b

y3 = M−1
3 N3(E31x

1 + E32x
2 + E33x

3) + M−1
3 b

(4.23)

In that system, matrices M−1
l and Nl and vectors yl, xl and b are not

decomposed. From a practical point of view, a processor does not handle the
whole vectors and matrices, it only has the parts it is in charge of. In the
example with three processors, each processor has a third of data. So we can
define y′l, x′l and b′l that correspond to the parts handled by the processors.
And Equation (4.23) can be rewritten as

y′1 = (A−1
11 ×−A12)x

′2 + (A−1
11 ×−A13)x

′3 + A−1
11 b′1

y′2 = (A−1
22 ×−A21)x

′1 + (A−1
22 ×−A23)x

′3 + A−1
22 b′2

y′3 = (A−1
33 ×−A31)x

′1 + (A−1
33 ×−A32)x

′2 + A−1
33 b′3

(4.24)

with, for example, the splittings depicted in Figure 4.5.
By multiplying each previous equation by Aii we obtain:

A11 × y′1 = b′1 −A12x
′2 −A13x

′3

A22 × y′2 = b′2 −A21x
′1 −A23x

′3

A33 × y′3 = b′3 −A31x
′1 −A32x

′2
(4.25)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

92 Parallel Iterative Algorithms

0

0 0 0

0 0

0 0

0

0

0

00

00

0

0

0

00

0 0

0 0

0

00

A31

A12A11 A13

A21 A22 A23A =

A33A32

A32 A33

A13A12

A21

A13

A23

A12

A32

A21

A31

A13

A23

A32A31

A22

A11

A22

A31

M3 =

M2 =

M1 =

N3 =

N2 =

N1 =

A11

A11

A21

A22

A12

A33

A23

A33

FIGURE 4.5: An example of possible splittings with three processors.

In this example, each processor i has a local linear subsystem to solve. The
right-hand side contains the corresponding part of the vector b′i minus all the
block off-diagonal (Aij with j 6= i) multiplied by the corresponding x′j with
j 6= i.

From a practical point of view, we call the off-diagonal block the dependen-
cies of the computation. So, processor 1 depends, respectively, on processors
2 and 3 if blocks A12 and A13 are, respectively, nonempty. In the follow-
ing practical algorithm we want to gather all dependencies before the current
processor in an array called LeftDep and all the dependencies after the cur-
rent processor in an array called RightDep. Likewise, each processor has two
vectors XLeft and XRight.

In Figure 4.6, the decomposition of the matrix is illustrated. Each processor
is in charge of a rectangular part of the matrix. This rectangular part is
split into three parts. The left dependencies (DepLeft) involve components
computed by processors whose rank is strictly smaller than the one of the
considered processor. The submatrix (noted A) is the square matrix that a
processor is in charge of; it corresponds to the matrix Aii in Equation (4.25).
And finally, the right dependencies (DepRight) involve components computed
by processors whose rank is strictly greater than the one of the considered
processor. With such a decomposition, a processor needs to solve:

A×X = B −DepLeft×XLeft−DepRight×XRight (4.26)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 93

which exactly corresponds to the lines in Equation (4.25). As soon as it has
computed the solution of the subsystem, this solution needs to be sent to all
processors depending on it.

B

X
L
eft

ADepLeft

X
R

ight

DepRight X

FIGURE 4.6: Decomposition of the matrix.

Algorithm 4.6 illustrates the synchronous version of the multisplitting al-
gorithm to solve linear systems. At the beginning of an iteration, a processor
computes the right-hand side as in Equation (4.26). Then it solves the lin-
ear system composed of the submatrix it is in charge of with the right-hand
side that takes into account the dependencies just computed. To solve this
linear system, it is possible to use either a direct algorithm or an iterative
one (with or without using a preconditioner); in this latter case we obtain a
two-stage method. In Section 6.4, we report an experiment that highlights the
impact of using this or that algorithm. The next step consists in exchanging
dependencies. Before starting the iterative process, processors exchange their
dependencies in order to initialize the arrays DependsOnMe and IDependOn.
This part involves the use of the offset computed on each processor. More-
over, a processor takes into consideration what parts of the solution vector it
needs. With those arrays, a processor knows its neighbors. Consequently, it
can send to each of its neighbors the part of its vector that they need. Then it
is ready to receive dependencies from its neighbors. According to the rank of
a neighbor, a processor integrates the dependency in DepLeft or DepRight.
Globally, this exchange part acts as a synchronization step. The last step lies
in computing the error locally and then globally using for a second time a
synchronization step so that all the processors know the global error.

As explained, one particularity of the multisplitting method is that it allows
the processors to overlap components in order to speed up the convergence.
The principle is to let some processors compute simultaneously some com-

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

94 Parallel Iterative Algorithms

Algorithm 4.6 Synchronous linear multisplitting algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][Size]: local block-diagonal part of the matrix
DepLeft[Size][Offset]: submatrix with left dependencies
DepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
B[Size]: right-hand side vector of the subsystem
X[Size], XOld[Size]: local part solution vectors of the subsystem
XLeft[Offset]: left part of the solution vector of the system
XRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
BLoc[Size]: array containing the local computations on the right-hand side
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
MaxError: global error
Epsilon: desired accuracy

repeat
BLoc ← B
if MyRank 6=0 then

BLoc ← BLoc−DepLeft×XLeft
end if
if MyRank 6= NbProcs−1 then

BLoc ← BLoc−DepRight×XRight
end if
X ← Solve(A, BLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
Recv(i, TLoc)
Update XLeft or Xright with TLoc according to the processor i

end if
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i]))
XOld[i]← X[i]

end for
AllReduce(Error, ErrorMax, MAX)

until stopping criteria is reached (MaxError ≤ Epsilon)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 95

ponents and to mix the results in order to obtain an accurate result faster.
It corresponds to splitting the matrix into rectangular matrices that are not
disjoint (J sets in the theoretical framework). In Figure 4.7, we give an ex-
ample with a small matrix of size 9 × 9 for which the corresponding linear
system is solved with three processors using one overlapped component with
each neighbor. Without using overlapping, each processor has three compo-
nents (processor 1 has components 1 to 3, processor 2 has components 4 to 6
and processor 3 has components 7 to 9). If we allow some components to be
overlapped, processors with only one neighbor (i.e., processors 1 and 3 in the
figure) have four components. Processor 2 has five components. In Figure 4.7,
the hatched parts represent the submatrices that processors are in charge of
(matrix A in Algorithm 4.6) and black dots represent non-null values of the
matrix. Parts in the matrix that are doubly hatched highlight components
that are computed by two processors. Subvectors x′i (X in Algorithm 4.6)
also have overlapped components that are represented in gray in the figure.
Non-null values that are not in submatrices represent dependencies. In Fig-
ure 4.7, circled dots illustrate dependencies that are simultaneously computed
by two processors. Dependencies on lines 1 and 2 are computed by processors
2 and 3. Likewise, dependencies on lines 8 and 9 are computed by processors
1 and 2.

P 1

P 3

x′2

x′3

A

P 2

x′1

FIGURE 4.7: An example of decomposition of a 9 × 9 matrix with three
processors and one component overlapped at each boundary on each processor.

There are multiple ways to mix the overlapped components. In the follow-
ing, we explain four ways to mix overlapped components.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

96 Parallel Iterative Algorithms

4.4.5.1 Overlapping strategy that uses locally computed values

In this case, a processor only uses components that it has computed while
ignoring the values corresponding to the same set of components computed by
its neighbors. With the example defined in Figure 4.7, it consists in defining
the weighting matrices as in Figure 4.8. In this figure, matrices E1k, E2k and
E3k, respectively, correspond to weighting matrices of processors 1, 2 and 3.
Overlapped components are represented in gray in the figure. For example,
components 3 and 4 are computed simultaneously by processors 1 and 2. For
a processor i, we can remark that the sum of weighted matrices Eik is equal
to the identity matrix (as expressed in Equation (4.5)). Hence, with this
strategy, processor 1 uses its components 1 to 4, it uses components 5 and
6 of processor 2 and components 7 to 9 of processor 3. Processor 2 uses its
components 3 to 7 and uses components 1 and 2 of processor 1 and components
8 and 9 of processor 3. Processor 3 proceeds similarly to processor 1; since it
has its 4 components, it uses 2 components of processor 2 and 3 components
of processor 1. This strategy is quite easy to implement since it does not
require any mixing of overlapped components. It simply consists in using all
the components computed by a processor.

4.4.5.2 Overlapping strategy that uses values computed by close
neighbors

This strategy has similarities to the previous one because it does not require
any mixing of overlapped components either. The principle consists in using
all the overlapped components of its close neighbors. Weighting matrices,
corresponding to the same example, are illustrated in Figure 4.9. In that case,
processor 1 is close to processor 2 but not to processor 3. So processor 1 only
uses its components 1 and 2, it uses components 3 to 6 that are computed by
processor 2 and it uses components 7 to 9 computed by processor 3. Processor
2 has two close neighbors (processors 1 and 3); it uses components 1 to 4 of
processor 1, it uses its single component 5 and it uses components 6 to 9
of processor 3. Processor 3 proceeds similarly to processor 1 and it uses
components 1 to 3 of processor 1, components 4 to 7 of processor 2 and its
components 8 and 9. Compared to the previous strategy, this one requires
more data exchange since a processor requires all overlapped components of
its close neighbors.

4.4.5.3 Overlapping strategy that mixes overlapped components
with close neighbors

With this strategy a processor mixes its overlapped components with its
close neighbors. In Figure 4.10, we give an example of the mixing which
consists in taking half of the value computed by a processor and half of the
value computed by the close neighbor. So, processor 1 has its components 1
and 2 and it mixes its components 3 and 4 with processor 2, it uses components

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 97

1

0

0

0

0

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

1

1

0

1

1

0

0

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

0

0

0

1

1

0

0 1

0

0

0

0

1

0

0

0

0

1

1

0

0

0

0

0

0

0

E13E11 E12

E21 E22 E23

E31 E32 E33

FIGURE 4.8: Overlapping strategy that uses values computed locally.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

98 Parallel Iterative Algorithms

1

1

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

0

0

0

0

1

1

0

0

0

0

1

1

1

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

1

0

0

0

0

1

0

0

1

1

0

0

1

1

0

0

E11 E12 E13

E21 E22 E23

E31 E32 E33

FIGURE 4.9: Overlapping strategy that uses values computed by close neigh-
bors.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 99

5 and 6 of processor 2 and components 7 to 9 of processor 3. Processor 2 uses
components 1 and 2 of processor 1, it mixes its components 3 and 4 with
processor 1, it uses it component 5, it mixes its components 6 and 7 with
processor 3 and it uses components 8 and 9 of processor 3. Processor 3 uses
components 1 to 3 of processor 1, it uses components 4 and 5 of processor 2,
it mixes its components 6 and 7 with processor 2 and it uses its components
8 and 9. Compared to the previous strategy, the amount of data exchange is
strictly equal. With this strategy it is possible to use different ratios of mixing
as soon as the sum of ratios on one line of all the matrices Elk is equal to 1.
For instance, it is possible to take 75% of the computed components and 25%
of the values computed by the other processor.

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5 0,5

1

1

0,5

0

0

0

1

1

0

0

0

1

1

0

0

1

0

0

1

1

1

0

0

0

0

1

0

0

0

0

0

0,5

1

1

E11 E12

E21 E22

E31 E32

E13

E23

E33

FIGURE 4.10: Overlapping strategy that mixes overlapped components with
close neighbors.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

100 Parallel Iterative Algorithms

4.4.5.4 Overlapping strategy that mixes all overlapped compo-
nents

This strategy mixes all components that are overlapped (not only with its
close neighbors). In Figure 4.11 we illustrate a possible example of values of
the weighted matrices Elk for this strategy. All the gray parts, corresponding
to overlapped components, contain values that are different from 0 and 1.
This strategy offers the most freedom to mix overlapping components. In
our example, all processors use components 1 and 2 from processor 1, they
mix components 3 and 4 from processors 1 and 2, they use component 5 of
processor 2, they mix components 6 and 7 from processors 2 and 3 and they
use components 8 and 9 of processor 3. If different values of mixing are used
according to processors, all overlapped components must be sent to processors
that need them. Consequently the amount of data transfered may be greater.

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5 0,5

1

1

0,5

0

0

0

1

0

0

1

1

0

0

1

0

0

1

1

0

0

1

0

0

0

0

0

0,5

1

1

0,5

0,5

0,5

0,5

0,5

0,5

0,5

0,5

E12

E21 E22

E31 E32 E33

E13

E23

E11

FIGURE 4.11: Overlapping strategy that mixes all overlapped values.

Implementing all those strategies in Algorithm 4.6 is quite easy. The ma-
trix distribution should be achieved by taking into account the overlapped

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 101

components on each processor. So, the offsets and the local size of matrices
are different. Then, according to the overlapping strategy chosen, the amount
of data might be different. For example with the first strategy presented,
the amount of data is smaller, whereas with the last strategy the amount of
data transfered is greater. According to the structure and dependencies of
the problem, the choice of the best strategy is not a trivial task.

4.4.6 Synchronous Newton-multisplitting algorithm

In the previous sections we have explained how to implement the multisplit-
ting method in order to solve linear systems. Now we describe how to design
the algorithm based on the Newton-multisplitting method. As described for-
merly, this method uses the Newton method to linearize the problem. Using
synchronous iterations, the algorithm first builds the Jacobian matrix and
then it needs to solve the linear system obtained. The multisplitting method
to solve a linear system is used for this. In Algorithms 4.7 and 4.8, both
methods are coupled. The outer iterations perform the Newton iteration,
whereas the inner ones solve the linear system. Variables of this algorithm
are described in Algorithm 4.7 and its core is given in Algorithm 4.8.

At each Newton iteration, a processor starts by computing the rectangular
part of the Jacobian matrix it is in charge of. Then it computes the right-hand
side of the nonlinear function as described in Equation (4.16). Of course, each
processor has a different set of components according to the block distribu-
tion. As soon as the Jacobian submatrices have been defined simultaneously
on processors, they start to solve the linear system using the multisplitting
algorithm for linear systems. To solve the subsystem it is possible to use a
direct method or an iterative one. In this latter case, we obtain a two-stage
algorithm. The Jacobian is computed using the same computation as in the
sequential algorithm. The only difference is that the Jacobian is distributed
on all processors, as described in Figure 4.12. The computation of −F is also
distributed across the processors.

After the computation of the Jacobian, the method consists in solving the
whole linear system using the multisplitting method for linear systems. So,
until global convergence of the multisplitting algorithm, a processor computes
the local right-hand side and updates it using the dependencies computed by
its neighbors. In the algorithm, J represents the local submatrix for a pro-
cessor. JDepLeft and JDepRight, respectively, correspond to DepLeft and
DepRight defined in the multisplitting algorithm for linear systems, described
previously. At each multisplitting iteration, a processor solves the subsystem
composed of the Jacobian submatrix and the right-hand side using a sequen-
tial solver. Then, it sends its DX vector part to each of its neighbors that
need it, and it receives the part of the solution of its neighbors and updates
the vectors DXLeft and DXRight. Finally, it computes the local error
of the multisplitting process. When the multisplitting method has globally
converged, a processor computes the local error of the Newton process. Pro-

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

102 Parallel Iterative Algorithms

Algorithm 4.7 Variables used in the synchronous Newton-multisplitting al-
gorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
J[Size][Size]: local block-diagonal part of the Jacobian matrix
JDepLeft[Size][Offset]: submatrix with left dependencies of the Jacobian
JDepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies of
the Jacobian
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
F[Size], FLoc[Size]: right-hand side vectors of the subsystem
X[SizeGlo]: solution vector of the Newton subsystem
DX[Size], DXOld[Size]: local part solution vectors of the multisplitting sub-
system
DXLeft[Offset]: left part of the solution vector of the system
DXRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
TLoc[Size]: array used for the receptions of the dependencies
ErrorNewton: local error of the Newton process
MaxErrorNewton: global error of the Newton process
ErrorMulti: local error of the multisplitting
MaxErrorMulti: global error of the multisplitting process
EpsilonMulti: desired accuracy for the multisplitting process
EpsilonNewton: desired accuracy for the Newton process

JDepLeft

D
X

R
ight

D
X

L
eft

DX -FJDepRightJ

FIGURE 4.12: Decomposition of the Newton-multisplitting.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 103

Algorithm 4.8 Synchronous Newton-multisplitting algorithm

repeat
if first iteration or required then

Computation of the Jacobian rectangular matrix and storage of the
respective parts into J , JDepLeft and JDepRight

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
repeat

FLoc ← F
if MyRank 6= 0 then

FLoc ← FLoc−JDepLeft×DXLeft
end if
if MyRank 6= NbProcs−1 then

FLoc ← FLoc−JDepRight×DXRight
end if
DX ← Solve(J, FLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(DX, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
Recv(i, TLoc)
Update DXLeft or DXRight with TLoc according to processor i

end if
end for
ErrorMulti← 0
for i=0 to Size−1 do

ErrorMulti ← max(ErrorMulti, abs(DX[i]−DXOld[i]))
DXOld[i]← DX[i]

end for
AllReduce(ErrorMulti, MaxErrorMulti, MAX)

until stopping criteria of multisplitting is reached
(MaxErrorMulti ≤ EpsilonMulti)

ErrorNewton← 0
for i=0 to Size−1 do

X[Offset+i] ← X[Offset+i]+DX[i]
ErrorNewton ← max(ErrorNewton, abs(DX[i]))

end for
AllToAllV(X[Offset], X, Size)
AllReduce(ErrorNewton, MaxErrorNewton, MAX)

until stopping criteria of Newton is reached
(MaxErrorNewton ≤ EpsilonNewton)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

104 Parallel Iterative Algorithms

cessors execute Newton iterations until the global error is lower than a given
threshold.

Analyzing the number of synchronizations of this algorithm we can remark
that there are as many synchronizations as multisplitting iterations and New-
ton iterations (considering that there is only one synchronization per iteration,
we have seen previously that this is not the case). Thus this algorithm requires
quite an important number of synchronizations.

4.5 Convergence detection

We discuss here the problem of convergence detection in iterative processes
of the form:

x(k+1) = G(x(k)) (4.27)

where x(k+1) and x(k) are the global state vectors at the respective iterations
k+1 and k, and G is a contraction. The useful property of contractions is that
their convergence is ensured. This is why most of the iterative algorithms cur-
rently in use are contractions. In fact, an important constraint when designing
an iterative method is precisely to ensure that it is a contraction.

However, most of the theoretical results related to the convergence of it-
erative processes, including contractions, are of limited interest in practice
since they are often based on properties which are not directly calculable or
whose computation cost is of the same order as the problem to solve. Hence,
as explained in [33], practical methods for proving the convergence of iter-
ative methods generally consist in finding a suitable norm for which it can
be shown that each iteration reduces the distance between the current global
state vector and the fixed point which represents the solution of the problem.

Unfortunately, it is possible to ensure that an iterative process is a contrac-
tion without being able to find the suitable norm which allows us to detect its
convergence in practice. For example, in linear problems, we know that we
have a contraction when the spectral radius of the iteration matrix is smaller
than one but there is no information about the norm to use in practice. More-
over, as already mentioned in Section 1.2, a contraction is norm dependent
and may be contractive with a given norm and non-contractive with another
one. This is an important problem which may induce some difficulties in the
convergence detection.

Indeed, when the contraction norm is known (let’s note it || . ||C) there is
no problem detecting the convergence since, by definition, we have:

∀x, y, ||G(x)−G(y)||C ≤ L||x− y||C with L < 1 (4.28)

which implies
||x(k+1) − x(k)||C < ||x(k) − x(k−1)||C (4.29)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 105

So, the distance between two global state vectors obtained from two con-
secutive iterations decreases according to the contraction norm || . ||C . That
distance between two consecutive iterations is often called the residual and,
in some ways, represents the progression speed of the iterative process. Thus,
when the right norm is used, the residual monotonously decreases toward
zero, without reaching it if the convergence is asymptotic. However, when the
residual becomes small enough, it can be assumed that the iterative process
is sufficiently close to the exact solution to detect the convergence and stop
the process. Hence, the residual is regularly compared to a given threshold
defining a sufficiently small progression speed of the process to assume its
stabilization. A schematic example of such a behavior is given in Figure 4.13.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

Iterations

Absolute error

Residual

Threshold

FIGURE 4.13: Monotonous residual decreases toward the stabilization ac-
cording to the contraction norm.

Nevertheless, as mentioned above, it is not always possible to know the
contraction norm and it is then necessary to arbitrarily choose one metric
among all the possible ones. The most common metrics are the Euclidean
norm:

||x(k) − x(k−1)||2 =

√√√√
n∑

i=1

(x
(k)
i − x

(k−1)
i)2 (4.30)

and the max norm:

||x(k) − x(k−1)||∞ = max
i
|x(k)

i − x
(k−1)
i | (4.31)

where x
(k)
i and x

(k−1)
i are the respective ith component of state vectors x(k)

and x(k−1).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

106 Parallel Iterative Algorithms

So, when the norm used is not the contraction norm, nothing ensures that
Equations (4.28) and (4.29) still hold. Using such an arbitrary norm makes
the convergence detection far more difficult as there is no more valuable infor-
mation about the position of the current state according to the exact solution.
Thus, even when the residual becomes very small, nothing ensures us that the
process is actually close to the exact solution. Typically, if the path followed
by the iterative process toward the solution in the state space includes smaller
variations than the chosen threshold according to the chosen norm, the con-
vergence may be detected even though the current state may still be far from
the solution. Moreover, even when the iterative process has a monotonous
evolution toward the solution, i.e., when the distance between the current
state vector and the exact solution always decreases from an iteration to the
following one, the residual may not be monotonous. A schematic illustration
of such a case is depicted in Figure 4.14.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

Iterations

Absolute error

Residual

Threshold

FIGURE 4.14: A monotonous error evolution and its corresponding
non-monotonous residual evolution.

As can be seen, the problem induced by such variations of the residual is
that important slow-downs like the one at iteration 33 may not correspond to
the final stabilization of the process and lead to a false convergence detection
if the threshold is set too high. On the other hand, if the threshold is set
too low, the iterative process may not converge in reasonable time when the
convergence is asymptotic. Some attempts have been made to overcome that
problem by taking into account several consecutive residuals, for example:

residual(k) = ||x(k) − x(k−1)||+ ||x(k−1) − x(k−2)|| (4.32)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 107

in order to avoid false detections due to sharp slow-downs. However, that
does not completely solve the problem since temporary slow-downs under the
given threshold may have arbitrary lengths.

Thus, the choice of the norm used to compute the residual is a critical point
in the design of iterative algorithms and the setting of its associated threshold
often requires a careful analysis of the treated problem in order to ensure an
appropriate convergence detection.

4.6 Exercises

1. Show that a nonsingular M -matrix has the form

sI −B,

where B ≥ 0 and s > ρ(B).

2. Give examples of M -matrices and compute their principal minors.

3. Let A be a square matrix with Ai,j ≤ 0 for i 6= j. Show that A is an
M -matrix if and only if

A + εI

is a nonsingular M -matrix for all ε > 0.

4. Consider the two-point boundary-value problem:

−d2u

dx2
= 4π2 sin 2πx, 0 ≤ x ≤ 1 (4.33)

and
u(0) = u(1) = 0.

(a) Use the second central difference formulae with a constant step

size h = 1/(n + 1) to approximate d2u
dx2 and show that the discrete

approximation is the solution of a linear system Au = b where
u = (u1, ..., un).

(b) For n = 3 show that

A =

2 −1 0
−1 2 −1
0 −1 2

 , b =
π2

4

1
0
−1

 .

(c) Use a direct method to solve the ui.

(d) Use the Jacobi and the Gauss-Seidel methods to find the discrete
approximation.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

@x

2
+

∂2f

∂y2
= 0, (x, y) ∈ [0, 2]× [0, 1] ,

with

f(0, y) = 0, f(2, y) = 6

f(x, 0) = 6, ∀x ∈ [1, 2]

∂f

∂y
(x ≤ 1, y = 0) = 0,

∂f

∂y
(x, y = 1) = 0.

(a) By using the finite difference method to approximate the second
derivatives and following the illustration example of Chapter 1,
write the linear system Au = b whose solution coincides with the
approximate solution of the above Laplace equation.

(b) By choosing step sizes ∆x = 2×10−4 and ∆x = 10−4, write a pro-
gram to solve the obtained linear system by the Jacobi algorithm
and the Gauss-Seidel algorithm.

(c) Propose and write a program to solve the linear system by a mul-
tisplitting algorithm on 10 processors.

(d) Propose and write a program to solve the linear system by a two-
stage multisplitting algorithm on 10 processors.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Synchronous Iterations 109

9. Consider the Poisson equation

−∆u = −32x(1− x)y(1 − y) on Ω =]0, 1[
2
,

u = 0 on ∂Ω =]0, 1[× {0, 1}
⋃
{0, 1} ×]0, 1[.

(a) Following the above exercise, write a program to solve in parallel
the discretized solution of this Poisson equation by the conjugate
gradient method (∆x = ∆y = 10−4).

(b) Propose and write a program to solve the linear system by different
multisplitting algorithms on 10 processors.

(c) Compare the overall times of the synchronous executions obtained
with the different algorithms but with the same precision.

10. In all the algorithms presented in the implementation section, we have
used the AllToAllV procedure that allows all processors to broadcast a
part of a vector that they have computed. Write this procedure using
only Send and Recv operations.

11. Implement all the algorithms presented in the implementation section
using blocking and nonblocking receptions. Try to measure the perfor-
mances with twenty processors or so.

12. Using an AllReduce operation allows us to simply diffuse the maximum
of the local convergence on all processors. Try to implement the same
thing using a master processor that will receive the local convergence of
all processors, compute the global value and then diffuse the result to
all processors.

13. With a sparse matrix, split into rectangular matrices as in Figure 4.6
on each processor, implement an algorithm that allows us to compute
the arrays DependsOnMe and IDependOn as in Algorithm 4.6.

14. Most systems needing to be solved are sparse. Implement algorithms
described in this chapter with a sparse matrix representation. Then
compare the behavior of an algorithm optimized with a naive imple-
mentation.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

	Chapter 4: Synchronous Iterations
	Introduction
	4.1 Parallel linear iterative algorithms for linear systems
	4.1.1 Block Jacobi and O’Leary and White multisplitting algorithms
	4.1.2 General multisplitting algorithms
	4.1.2.1 Obtaining O’Leary and White multisplitting
	4.1.2.2 Obtaining discrete analogues of Schwarz alternating algorithms
	4.1.2.3 Obtaining discrete analogues of multisubdomain Schwarz algorithms
	4.1.2.4 Convergence of multisplitting and two-stage multisplitting algorithms

	4.2 Nonlinear systems: parallel synchronous Newton-multisplitting algorithms
	4.2.1 Newton-Jacobi algorithms
	4.2.2 Newton-multisplitting algorithms

	4.3 Preconditioning
	4.4 Implementation
	4.4.1 Survey of synchronous algorithms with shared memory architecture
	4.4.2 Synchronous Jacobi algorithm
	4.4.3 Synchronous conjugate gradient algorithm
	4.4.4 Synchronous block Jacobi algorithm
	4.4.5 Synchronous multisplitting algorithm for solving linear systems
	4.4.5.1 Overlapping strategy that uses locally computed values
	4.4.5.2 Overlapping strategy that uses values computed by close neighbors
	4.4.5.3 Overlapping strategy that mixes overlapped components with close neighbors
	4.4.5.4 Overlapping strategy that mixes all overlapped components

	4.4.6 Synchronous Newton-multisplitting algorithm

	4.5 Convergence detection
	4.6 Exercises

