
Chapter 5

Asynchronous Iterations

Introduction

In the grid computing framework, especially when the clusters are distant,
the ratio computation time/communication time can be weak and thus give
a considerable importance to the communications. For this reason, powerful
algorithms, such as those based on the minimization of a function, can para-
doxically become less powerful in such environments. The synchronizations
between the iterates provide the same convergence of algorithms as in the
sequential case. Nevertheless, those synchronizations are penalizing in the
distant clusters framework.

The asynchronous algorithms allow processors to compute at their own
rhythms and to send the data when they become available. The communi-
cations as well as the iterations are desynchronized, avoiding the penalizing
synchronizations and carrying out a kind of automatic overlapping of commu-
nications by computations. It is, however, necessary to precede any implemen-
tation of asynchronous iterative algorithms by a study of their convergence;
this is due to the desynchronization of the iterations (notice that the study of
the convergence is also necessary for all the iterative algorithms, even in the
synchronous or the sequential framework).

In this chapter, we are interested in the multisplitting methods and their
two-stage variants and in their coupling with the Newton method. Multi-
splitting algorithms allow us to carry out coarse grained parallelism which is
very suited in the field of grid computing. Moreover, the two-stage multisplit-
ting algorithms make it possible to choose, at the level of each processor, the
best adapted sequential algorithm to the subproblem. We thus obtain coarse
grained asynchronous algorithms with a coupling of different sequential algo-
rithms.

111

© 2008 by Taylor & Francis Group, LLC

5.1 Advantages of asynchronous algorithms

Contrary to synchronous implementations, in Asynchronous Iterations -
Asynchronous Communication (AIAC) execution modes the processors are
not coordinated in order to obtain a solution of a fixed point problem. Some
processors are allowed to compute faster than others; some communications
are allowed to be more frequent than others. The delays between processors
are unpredictable and the transmission of messages may be accomplished in
an unspecified order. Asynchronous iterations have been introduced in [38] by
Chazan and Miranker for linear problems under the name chaotic relaxation.
The pioneers in the study and the generalization to asynchronous algorithms
are Miellou [86], Baudet [30], Robert, Charnay and Musy [101], Bertsekas and
Tsitsiklis [32, 33], Bahi et al. [25] and Bahi [12].

The asynchronous iterations model describes a wide generalization of the
successive approximation method in the case of a fixed point mapping defined
on a product space, or even a product set.

This formulation is sufficiently general in order to contain:

• The successive approximation method which includes an inherent par-
allelism

• The Gauss-Seidel method which is often strictly sequential. The first of
these two standard algorithms is well designed for parallelization while
the second one is often, but not always, sequential. On the other hand,
Gauss-Seidel iterations satisfy the so-called Gauss principle, which as-
serts that a new partial result is immediately used anew. Jacobi it-
erations do not satisfy the Gauss principle. The aim of asynchronous
iterations is to satisfy in the best way the Gauss principle in a parallel
framework. In some sense they afford a compromise between the usual
good properties of the Jacobi and Gauss-Seidel methods.

Asynchronous executions have several potential advantages; we list some of
them below (see [80]):

1. They reduce the effect of bottlenecks. Indeed, if for example the com-
munication link between two processors is drastically slowed down then,
contrary to synchronous executions, all the processors will go on and
the two processors with the slow link will not slow down the processors
which do not directly depend on them.

2. They reduce the synchronization penalty. A processor can compute the
next iteration without waiting for the iterations computed by slower
processors.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 113

3. They are well designed for systems in which synchronizations are unre-
alistic such as very dense systems and for systems where global infor-
mation is impossible to obtain such as decentralized systems.

4. They are easily restartable. For example, suppose that while solving
an optimization problem, a change happens in one parameter, as may
be the case in data networks. Then, while in synchronous computations
the system has to be stopped and restarted, in asynchronous executions,
the parameter is incorporated in each processor without waiting for all
processors to do so.

5. They provide an improvement of the convergence thanks to the Gauss
principle.

The major drawback of asynchronous algorithms is that they may diverge
while their synchronous counterparts converge. Indeed, asynchronous itera-
tions cannot be described mathematically by x(k+1) = T (x(k)).

Below, we give the mathematical model of asynchronous algorithms and we
recall their convergence conditions.

5.2 Mathematical model and convergence results

5.2.1 The mathematical model of asynchronous algorithms

Suppose again that we have L processors and that an n-dimensional un-
known vector is partitioned into L subvectors of dimension ni,
i.e., n =

∑L
i=1 ni, so that each processor i can compute a vector of dimension

ni.
Consider the system of n equations

F (x) = 0, (5.1)

and suppose that (5.1) has a unique solution x∗. Suppose that after some
algebraic transformations the above system of equations is rewritten as

x = T (x). (5.2)

Asynchronous executions of iterative algorithms associated to the above fixed
point problem are described by the behavior of the following sequence (k
denoting the kth iteration)

Given x(0) = (x
(0)
1 , ..., x

(0)
L)

for k = 0, 1, 2...
for i = 1, ..., L

x
(k+1)
i =

{
Ti(x

(ρi
1(k))

1 , ..., x
(ρi

i(k))
i , ..., x

(ρi
L(k))

L) if i ∈ s(k)

x
(k)
i if i /∈ s(k),

(5.3)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

114 Parallel Iterative Algorithms

where S = {s(k)}k∈N is a sequence of nonempty subsets of {1, ..., L}. The
subsets s(k) represent the set of components updated at the iteration k; it is
usually called the steering of the algorithm.

For i ∈ {1, ..., L}, ρi = {ρi
1(k), ..., ρi

L(k)}k∈N is a sequence of integers such
that:

∀i, j ∈ {1, ..., L}, ρi
j(k) ≤ k,

where ρi
j(k) represents the iteration number of the data coming from processor

j and available on processor i at iteration k. In other words, the quantity
k − ρi

j(k) represents the delay of processor j according to processor i when

the latter processor computes the ith block at the kth iteration. That delay
could be due to the communication time or to the computation time of the
jth block.

The sequence (5.3) describes the behavior of iterative algorithms executed
asynchronously on a parallel computer with L processors: at each iteration

k, either the processor i computes x
(k+1)
i by using the ith component Ti (so

the ith component is updated) or it does not perform any computation and it

keeps the value of x
(k)
i computed at the previous iteration.

The two following conditions have to be ensured

card{k ∈ N, i ∈ s(k)} = +∞ (5.4)

and

∀i, j ∈ {1, ..., L}, lim
k→+∞

ρi
j(k) = +∞. (5.5)

Condition (5.4) corresponds, in a standard way, to the fact that none of the
equations is definitively forgotten and so, none of the corresponding compo-
nents is not refreshed after a certain rank of the iterations.

Condition (5.5) implies that old information is purged from the system.
This results from the fact that any information is transmitted during a delay
shorter than the one of a finite number r of refreshment of components. So

ρi
j(k) = k − r

and (5.5) is satisfied.

It should be noted that in the model (5.3), we do not need to have knowledge
of the delays nor of the updated components; we only have to be sure that
conditions (5.4) and (5.5) are satisfied.

Two asynchronous executions of the same algorithm do not give rise to the
same iterations, but when the convergence of an asynchronous algorithm is
proved, this means that it converges whatever the actual conditions of exper-
imentation, provided that conditions (5.4) and (5.5) are satisfied. In what
follows, we will refer to asynchronous algorithms associated to the successive
approximations generated by a fixed point mapping T by (T, Async).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 115

5.2.2 Some derived basic algorithms

Asynchronous fixed point methods are not only a family of algorithms suit-
able for asynchronous computations on multiprocessors, but also a general
framework allowing a general formulation of iteration methods associated
to a fixed point mapping on a product space, including the most standard
ones such as the successive approximation method (linear or nonlinear Jacobi
method) and linear or nonlinear Gauss-Seidel method among many others.

If we take ρi
j(k) = k for all processors i and j and all k ∈ N, then (5.3)

describes synchronous parallel algorithms.
If we take ρi

j(k) = k for all processors i and j, all k ∈ N and

s(k) = {1, ..., L} for k ∈ N

then (5.3) describes the successive approximation method applied to (5.2).
If we take ρi

j(k) = k for all processors i and j, all k ∈ N and

s(k) = {1 + k(mod)L} for k ∈ N

then (5.3) describes the synchronous Gauss-Seidel algorithm.
Suppose that each of the L processors deals with m equations so that

Lm = n

then to modelize the Gauss-Seidel method executed synchronously on the L
processors, it is sufficient to take

{
∀k ∈ N, s(k) =

⋃L
l=1 {(l − 1)m + 1 + k(mod)m}

∀i ∈ {1, 2, ..., n} , ρi
j(k) = k.

This method corresponds to a situation associated to Gauss’s principle, which
asserts that any obtained partial result is immediately used anew. This al-
gorithm corresponds to an ideal case in which not only each processor syn-
chronously swaps with the others the m equations to which it is devoted, but
also synchronously accesses produced results, independently of the fact that
they are produced by itself or by another.

Suppose now that each processor runs a sequential Gauss-Seidel algorithm
along the m equations to which it is devoted, and that the L processors run
asynchronously. If we suppose that each processor has a local steering

sk(ql) = (l − 1)n + 1 + ql(mod)m

then we get the asynchronous Gauss-Seidel method.
It is worthwhile to note that in the general situation of asynchronous algo-

rithms we do not know the global steering s(k), nor the delays ρi
j(k) of such

algorithms and so we are unable to specify their exact formulations. But to
study the behavior of an asynchronous algorithm it is not important to know
the exact expression of the steerings and delays; we only have to be sure that
this algorithm admits such a formulation of the form (5.3) and that conditions
(5.4), (5.5) are satisfied.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

γi

(5.6)

where for i ∈ {1, ..., L} , | . |i is a norm defined on Ei and γi are positive real
numbers.

THEOREM 5.1

Let T be a mapping from D(T) ⊂ E in E and suppose that:

(a) D(T) =
∏Li=1 Di(T)

(b) T (D(T)) ⊂ D(T)
(c) ∃u∗ ∈ D(T), such that u∗ = T (u∗)
(d) ∀u ∈ D(T), ||T (u)− u∗||γ,∞ ≤ β||u− u∗||γ,∞ with 0 < β < 1,
then each asynchronous algorithm (T, Async) associated to T converges to the
fixed point u∗ of T , whatever the starting point u0 ∈ D(T).

In fact, this theorem gives a generalization of a theorem due to Miellou
[86]: Miellou’s theorem is placed in a contraction matrix framework (with
respect to a vectorial norm) which is included in the maximum weighted norm
framework (with respect to a scalar norm). The weights γi are obtained by
the Perron-Frobenius theorem in the case of monotone operators.

Bertsekas and Tsitsiklis established a more general convergence result based
on nested sets [33]. This theorem is true in the general case of a Cartesian
metric space. We give below its formulation in the case of the n-dimensional
real space.

THEOREM 5.2

Let E =
∏L

i=1 Ei ⊂
∏L

i=1 Rni . Suppose that for each i ∈ {1, ..., L} , there

exists a sequence of nested sets E
(k)
i of subsets of Ei such that for all k ≥ 0,

1. E
(k+1)
i ⊂ E

(k)
i ,

2. T (E(k)) ⊂ E(k+1), where E(k) =
∏L

i=1 E
(k)
i ,

then under assumptions (5.4) and (5.5) every limit point of the sequence{
x(k)

}
k∈N

generated by algorithm (5.3) and starting with x(0) ∈ E(0) is a

solution of the fixed point problem (5.2).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

118 Parallel Iterative Algorithms

THEOREM 5.3

Assume that there exists x∗ ∈ E such that T (x∗, x∗) = x∗ and assume that
there exist γ ∈ [0, 1[and a weighted maximum norm such that for all x, y ∈ E,

||T (x, y)− x∗||γ,∞ ≤ γ max(||x− x∗||γ,∞, ||y − x∗||γ,∞),

then the asynchronous iterations described by (5.7) converges to x∗.

Asynchronous algorithms which satisfy conditions (5.4) and (5.5) are called
totally asynchronous algorithms in opposition to partial asynchronous ones.
The difference between the two kinds of algorithms mainly lies in the assump-
tions made on the delays between the processors. Condition (5.5) is replaced
by the following conditions.

There exists a positive integer B such that for every iteration k, we have

∀i, j ∈ {1, ..., L}, k −B + 1 ≤ ρi
j(k) ≤ k (5.8)

∀i ∈ {1, ..., L}, ρi
i(k) = k (5.9)

Note that condition (5.8) means that old information is purged from the
network after at most B iterations. This condition is satisfied in practice.
Condition (5.9) means that the own computed components of a processor are
never outdated. This last condition is also generally satisfied.

5.3 Convergence situations

5.3.1 The linear framework

Consider again the linear system

Ax = b, (5.10)

where A is a n× n square nonsingular matrix and let

A = M −N (5.11)

be a splitting of A, i.e., M is a nonsingular matrix. Consider the iterative
algorithm associated to the splitting (5.11) and defined by

{
x(0) given

x(k+1) = M−1Nx(k) + M−1b, for all k ∈ N
(5.12)

Let T = M−1N and |T | denotes the matrix whose entries are the absolute
values of the entries of T. Then we have the following result due to Chazan
and Miranker [38].

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

120 Parallel Iterative Algorithms

PROPOSITION 5.2

If ω ∈]0, 2
1+ρ(M−1N) [then any asynchronous algorithm associated to Tω

converges to the solution of (5.10). Moreover,

ρ(M−1N) < ρ(D−1B) < 1.

It should be noticed that, as stated in [26], the above proposition is also
true in the case where A is an H-matrix with positive diagonal elements.

5.3.2 The nonlinear framework

Suppose that in the system of equations (5.1), F is a nonlinear mapping and
that there exists a unique solution x∗ on D(F) ⊂ Rn. Suppose also that we
have an iterative algorithm whose convergence is described by a fixed point
mapping T which satisfies x∗ = T (x∗), then in [50] we have the following
result on the local convergence of asynchronous iterations associated to T.
This theorem can be considered as a generalization of the Ostrowski theorem
[95] on successive iterations.

THEOREM 5.5

Assume that T is Fréchet differentiable at x∗ and that x∗ lies on the interior
of D(F). If ρ(|T ′(x)|) < 1 then there exists a neighborhood Vx∗ of x∗ such
that any asynchronous iteration associated to T and started with x(0) ∈ Vx∗

converges to x∗.

An important iterative algorithm to solve (5.1) is the Newton algorithm for
which

T (x) = x− F ′(x)−1F (x).

As T ′(x∗) = 0, the above theorem can be applied.
In practice, the computation of F ′(x)−1 is expensive so one may use the

quasi Newton methods by replacing F ′(x)−1 by a more simple computation.
The above theorem is then applied by considering the spectral radius of the
new |T ′(x)| .

5.4 Parallel asynchronous multisplitting algorithms

In this section we come back to parallel multisplitting algorithms and we an-
alyze their convergence when they are executed asynchronously on a grid envi-
ronment. Multisplitting algorithms are well suited for parallel computing be-
cause each splitting gives rise to a subproblem which can be solved by a proces-
sor. Parallel asynchronous multisplitting algorithms may have several advan-

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 121

tages. Indeed, in general, when the ratio communication time/computation
time is not negligible, asynchronous execution may reduce the total time of
computation by cancelling the idle times due to synchronizations between the
iterations.

Another important point of multisplitting algorithms is that a processor
may use a direct solver which is adapted to its problem independently from
the other processors, which induces an interesting coupling of different solvers
to treat a large problem on a grid environment.

In the next part of this section we follow the paper of Bahi et al. [27]
and we give a unified mathematical framework of asynchronous multisplitting
algorithms and then we consider the linear and nonlinear contexts.

5.4.1 A general framework of asynchronous multisplitting
methods

We consider problems of the form (5.1)

F (x) = 0, x ∈ D ⊂ R
n

where F is a nonlinear operator defined on a closed set D where

D =

n∏

i=1

di and di ⊂ R are closed and convex. (5.13)

Suppose that the solution of (5.1) is x∗. Suppose also the existence of L
mappings T (l) on D such that

T (l)(D) ⊂ D (5.14)

and
T (l)(x∗) = x∗, ∀l ∈ {1, ..., L} (5.15)

Assume that for l ∈ {1, ..., L}, T (l) is contractive with respect to x∗ and to a
norm | . |∞,γ ,

|x|∞,γ = max

1≤i≤n

|xi|
γi

γi > 0.
(5.16)

Here, |xi| denotes the absolute value of xi in R, i.e.,

∣∣∣T (l)(x)− x∗
∣∣∣
∞,γ
≤ νl |x− x∗|∞,γ (5.17)

DEFINITION 5.1 A formal multisplitting associated to (5.1) is a col-
lection of fixed point problems

x− T (l)(x) = 0, l ∈ {1, ..., L}

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 123

Under the assumptions of (5.14), (5.17), (5.19) we have the following result
on T :

PROPOSITION 5.3

Denote X∗ = (x∗, ..., x∗) where x∗ is the solution of (5.1), then T is contrac-
tive with respect to X∗ and to | . |∞,γ which is defined by

|X |∞,γ = max
1≤k≤L

max
1≤i≤n

∣∣(xk
)
i

∣∣
γi

(5.21)

Its constant of contraction is

ν = max
1≤l≤L

νl (5.22)

and X∗ is the fixed point of T .

PROOF Take any Y = T (X), by (5.18) we have

∣∣yl − x∗
∣∣
∞,γ

=

∣∣∣∣∣T
(l)

(
L∑

k=1

Elk(X)xk

)
− x∗

∣∣∣∣∣
∞,γ

we have

∣∣∣∣
(

L∑
k=1

Elk(X)
(
xk − x∗

))

i

∣∣∣∣
γi

=

∣∣∣∣∣
L∑

k=1

n∑
j=1

(Elk(X))i,j

(
xk − x∗

)
j

∣∣∣∣∣
γi

Since the weighting matrices Elk(X) are diagonals, we have

∣∣∣∣∣∣

n∑

j=1

(Elk(X))i,j

(
xk − x∗

)
j

∣∣∣∣∣∣
=
∣∣∣(Elk(X))i,i

(
xk − x∗

)
i

∣∣∣

condition (5.19) gives

∣∣∣∣∣

L∑

k=1

(Elk(X))i,i

(
xk − x∗

)
i

∣∣∣∣∣ ≤
L∑

k=1

(Elk)i,i (X)

︸ ︷︷ ︸
1

max
1≤k≤L

∣∣(xk − x∗
)
i

∣∣

so

max
1≤i≤n

∣∣∣∣
(

T (l)

(
L∑

k=1

Elk(X)xk

)
− x∗

)

i

∣∣∣∣
γi

≤ νl max
1≤i≤n

max
1≤k≤L

∣∣(xk − x∗
)
i

∣∣
γi

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

γi
≤ max

1≤l≤L

(
νl max

1≤i≤n

∣∣(xl − x∗
)
i

∣∣

γi

)

by (5.21) and (5.22) we have

|Y −X∗|∞,γ ≤ ν |X −X∗|∞,γ

since
L∑

k=1

Elk(X) = In and x∗ = T (l)(x∗) we have T (X∗) = X∗.

The above result gives the important following general convergence result of
asynchronous multisplitting algorithms described by the fixed point mapping
T for solving (5.1).

COROLLARY 5.1

Under the assumptions of Proposition 5.3, any asynchronous algorithm
(T , Async), corresponding to T and starting with X0 ∈ U , converges to the
solution of (5.1).

PROOF Condition (5.20) implies that T has a unique fixed point; Theo-
rem 5.1 and Proposition 5.3 end the proof.

5.4.2 Asynchronous multisplitting algorithms for linear
problems

In Chapter 4, we have shown how to build convergent synchronous multi-
splitting algorithms by splitting the nonsingular square matrix A of the linear
system. We will now give a convergence result on asynchronous multisplitting
algorithms for the solution of linear systems.

Consider again, as in Section 5.3.1, the linear system (5.10)

Ax = b,

where A is a n× n square nonsingular matrix and consider L splittings of A
which are supposed to be regular

A = Ml −Nl, l = 1, ..., L

Then we can build a multisplitting as in definition (5.1) by setting

T (l)(x) = M−1
l Nlx + M−1

l b.

Thus the successive approximations associated to the extended fixed point
mapping T defined in (5.18) describe the behavior of parallel multisplitting
algorithms for the solution of (5.10).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

126 Parallel Iterative Algorithms

DEFINITION 5.2 The block
(
Il, I

C
l

)
splittings are defined by the follow-

ing mappings Fl

∀x ∈ D, ∀i ∈ {1, ..., n} , T (l)
i (x) = Ti

(
σl

i

(
T (l)(x), x

))
(5.26)

In such a case we usually take

(Elk)i,j = 0 or (Ek)i,j = 0 for j ∈ IC
k (5.27)

It should be noticed that if we except particular problems which admit a
natural block decomposition structure suitable for block iterative algorithms,
the previous condition (5.27) is very important, especially for overlapping
block decomposition techniques, because in the evaluation of T (l), for any k
we never have to use any component the index of which lies in IC

k , so in the
block

(
Il, I

C
l

)
splitting the solution of a diagonal block subproblem associated

to any IC
l never has to be computed.

PROPOSITION 5.5

For l ∈ {1, ..., L} , T (l) is | . |∞,γ contractive, its constant is less than or equal
to the constant of T and the fixed point of T (l) is x∗.

PROOF
∣∣∣T (l)

i (x) − T
(l)
i (y)

∣∣∣
γi

=

∣∣Ti

(
σl

i

(
T (l)(x), x

))
− Ti

(
σl

i

(
T (l)(y), y

))∣∣
γi

≤ ν
∣∣∣σl

i

(
T (l)(x), x

)
− σl

i

(
T (l)(y), y

)∣∣∣
∞,γ

≤ ν max

 max
1≤j≤n

∣∣∣T (l)
j (x)− T

(l)
j (y)

∣∣∣
γj

, max
1≤j≤n

|xj − yj |
γj

so either ∣∣∣T (l)
i (x)− T

(l)
i (y)

∣∣∣
γi

≤ ν max
1≤j≤n

∣∣∣T (l)
j (x)− T

(l)
j (y)

∣∣∣
γj

which implies that
∣∣∣T (l)

i (x)− T
(l)
i (y)

∣∣∣ = 0
or ∣∣∣T (l)

i (x)− T
(l)
i (y)

∣∣∣
γi

≤ ν max
1≤j≤n

|xj − yj|
γj

so ∣∣∣T (l)(x)− T (l)(y)
∣∣∣
∞,γ
≤ ν |x− y|∞,γ

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

5.4.3.1 Extended fixed point mapping associated with
(
Il, I

C
l

)
mul-

tisplitting

Take the diagonal positive matrices Elk(X) depending only on k

Elk(X) = Ek

and satisfying

L∑
k=1

Ek = In

(Ek)i,i = 0, ∀i /∈ Ik

(5.28)

The asynchronous iterations corresponding to
(
Il, I

C
l

)
multisplitting are de-

fined by the fixed point mapping

T OW (x1, ..., xL) = (y1, ..., yL) such that

yl = T (l)(z)

z =
L∑

k=1

Ekxk (5.29)

where for l ∈ {1, ..., L} , T (l) is defined by (5.26). We remark that this mul-
tisplitting algorithm is analogous to O’Leary and White multisplitting algo-
rithms for nonlinear problems.

As a consequence of Propositions 5.3 and 5.5 we have

COROLLARY 5.2

Any asynchronous algorithm (T OW , Async) corresponding to T OW and start-
ing with X0 ∈ U converges to the solution of (5.1).

5.4.3.2 The discrete analogue of Schwarz alternating method and
its multisubdomain generalizations

Asynchronous Schwarz alternating methods and their multisubdomain gen-
eralizations are obtained by choosing the weighted matrices exactly as in
Chapter 4. In the following, we point out, once again, these choices.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

5.5 Coupling Newton and multisplitting algorithms

The standard algorithm for solving the system of nonlinear equations (5.1)
is the Newton algorithm; an effective way to use the Newton algorithm in a
parallel environment is to couple it with multisplitting algorithms.

There are two ways to realize this coupling. The first one consists in split-
ting the linear problems involved in each iteration of the Newton algorithm
and the second one consists in splitting the nonlinear problem (5.1) itself
into subproblems and solving each subproblem using the Newton algorithm.
Below, we describe the algorithmic formulation of these two kinds of mixed
Newton multisplitting algorithms.

5.5.1 Newton-multisplitting algorithms: multisplitting algo-
rithms as inner algorithms in the Newton method

Recall that the Newton algorithm for solving the nonlinear system of equa-
tion (5.1), F (x) = 0 is described by the iterations

x(k+1) = x(k) − F ′(x(k))−1F (x(k)), k = 0, 1, 2, ...

As in Chapter 4, we will suppose that (5.1) has a solution x∗, that F is
Fréchet differentiable on a neighborhood of x∗ and that F ′ is nonsingular and
Lipschitz continuous on a neighborhood of x∗. We have seen in Chapter 4 that
the Newton method involves the solution of a linear system

F ′(x(k))y = F (x(k)) (5.34)

and that this solution allows the computation of the next Newton iterates
x(k+1) by setting y(k) = y in the following equation:

x(k+1) = x(k) − y(k), k = 0, 1, 2, ...

The solution of (5.34) by splitting F ′(x(k)) gives rise to the multisplitting
methods to solve this kind of problem. We call the global algorithm to solve
(5.1) the Newton-multisplitting algorithm.

So, suppose we have L processors and that, as explained in Chapter 4, we
have L splittings of F ′(x(k)) at each iteration k, so that we have

F ′(x(k)) = Ml(x
(k))−Nl(x

(k)), l = 1, ..., L. (5.35)

For simplicity sake, suppose that the weighting matrices only depend on one
index and that the solution of system (5.34) is approximated by performing
q iterations of the multisplitting method.

The parallel Newton-multisplitting method can be defined as follows

x(k+1) = G(x(k)), (5.36)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

130 Parallel Iterative Algorithms

where

G(x) = x−A(x)F (x), (5.37)

and

A(x) =

L∑

l=1

El(x)

q−1∑

j=0

(Ml(x)−1Nl(x))jMl(x)−1.

If we take y(0) = 0, then

A(x) =

L∑

l=1

El(x)(I − (Ml(x)−1Nl(x))q(F ′(x))−1. (5.38)

THEOREM 5.6

If the splittings (5.35) are weak regular convergent, then there exists a neigh-
borhood Vx∗ of the solution x∗ such that any asynchronous Newton-
Multisplitting algorithm associated to (5.37) and (5.38), and starting from
x(0) ∈ Vx∗ converges to x∗.

PROOF We apply Theorem 5.5. We have

G′(x∗) = I −A(x∗)F ′(x∗). (5.39)

From (5.38) we have

G′(x∗) = I −
L∑

l=1

El(x
∗)(I − (Ml(x

∗)−1Nl(x
∗))q . (5.40)

The properties of the weighting matrices imply that

|G′(x∗)| = G′(x∗) =

L∑

l=1

El(x
∗)(Ml(x

∗)−1Nl(x
∗))q. (5.41)

As the splittings (5.35) are convergent, we deduce by the application of Propo-
sition 3.2 of [27] that

ρ(G′(x∗)) ≤ max
1≤l≤L

ρ((Ml(x
∗)−1Nl(x

∗))q) < 1.

The result follows from Theorem 5.5.

There exist particular situations which satisfy the assumptions of the above
convergence result. For example, if F ′(x) is monotone (i.e., F ′(x)−1 ≥ 0) then
every weak regular splitting of F ′(x) is convergent [31].

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 131

5.5.2 Nonlinear multisplitting-Newton algorithms

Another way to mix the Newton method and the multisplitting approach is
to use the result of Bahi et al. [26], [27] on nonlinear multisplitting. Indeed,
the Newton method applied to the nonlinear problem (5.1) is described by
the iterations associated to the contractive fixed point mapping

x = T (x), x ∈ R
n,

where

T (x) = x− F ′(x)−1F (x).

Consider now L subsets Il of {1, ..., n} and weights Elk, l, k ∈ {1, ..., L} , then
Definition 5.2 of Section 5.4.3 allows us to generate L splittings of (5.2),

x = T (l)(x), x ∈ R
n,

with
xi = Ti

(
σl

i

(
T (l)(x), x

))
.

The application of Proposition 5.5 implies that T (l) are contractive mappings,
so they define a nonlinear formal multisplitting: x− T (l)(x), l ∈ {1, ..., L} as
in Definition 5.1. We consider asynchronous algorithms associated to those
splittings and weights Elk. We call those algorithms nonlinear multisplitting-
Newton algorithms.

Practically, the iterations, generated by each fixed point mapping T (l) de-
fined just above, correspond to the iterations generated by the Newton algo-
rithm and applied to a subproblem of (5.1). These subproblems are defined by
the (Il, I

C
l) splittings; they correspond to the computation of card(Il) com-

ponents of x. We then have the convergence result which is a consequence of
Proposition 5.3 and Corollary 5.1.

PROPOSITION 5.6

Suppose that the Newton algorithm with the initial guess x(0) ∈ Vx∗ converges
to x∗, a solution of (5.1) in Vx∗ ⊂ D(F), then the nonlinear multisplitting-
Newton algorithm started with x(0) converges to x∗.

5.6 Implementation

The implementation of an asynchronous iterative algorithm may seem easier
to achieve since there is no more synchronization. Nevertheless, as described
in the previous section, the convergence detection is different and is not the

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 133

as a message for the convergence arrives it must be detected. That is why
it is essential to dissociate the communications from the computations. For
that, the only solution from our point of view lies in using a multithreaded
environment which allows us to execute the computations in one thread and
the management of the communications in other threads.

In order to keep the same formalism, we do not focus on the implementation
of AIAC algorithms with shared memory architectures. With such environ-
ments, as soon as a mechanism to simulate communications between AIAC
algorithms has been implemented, the following algorithms are quite easy to
adapt.

5.6.1 Some solutions to manage the communications using
threads

According to the flexibility of the communications in an AIAC algorithm,
it is possible to distinguish different levels of communications management.
The simplest solution, from the programmer point of view, consists in using an
environment suited to the design of AIAC algorithms. Currently two program-
ming environments fulfill those requirements, namely, JACE [23, 22, 24, 19]
and CRAC [40]. Both environments have been developed in order to provide a
communication library that allows us to design synchronous and asynchronous
iterative algorithms. They use two queues that are executed into two threads:
one for the message sendings and another one for the receptions. According
to the execution mode (synchronous or asynchronous), the operating of those
queues is different. In the synchronous mode, those queues are managed tra-
ditionally, i.e., when a computation task needs to send a message, the message
is put in the sending queue that actually sends it, the reception queue receives
it on the destination processor and the computation task on the other machine
can use the message. In the asynchronous mode, the sending queue first checks
whether a similar version of the message is not already in the queue (based
on its tag, sender and receiver). In this case, the previous one is replaced by
the newest one. The reception queue acts similarly when receiving a message.
It checks the reception queue and replaces an old message by a recent one
whenever possible. So, when a computation task receives a message, it is
ensured to have the latest version available. Of course, in JACE and CRAC,
the programmer does not need to interact with the threads which transpar-
ently manage the communications. Those two environments are detailed in
Sections 6.2.1 and 6.2.2.

With a multithreaded version of MPI [7], or Corba [98] or PM2 [89] which
are implicitly multithreaded, it is possible to implement AIAC algorithms.
However, this requires a stronger endeavor from the programmer point of
view since the management of threads is explicit. Using an environment with
explicit management of threads, a programmer may assign one or more threads
in charge of sending some messages and as many in charge of receiving them.
Although the endeavor is stronger, it allows us to manage more precisely the

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

134 Parallel Iterative Algorithms

communications. For example, it is possible to implement flexible models
defined in Section 3.4.3. The sending of a message is as flexible as using
any message passing interface since a user can send a message anywhere in
a program. However, using a thread that can directly handle a message as
its reception occurs is a possible source of convergence speed-up. As network
resources in a distant environment often are a critical point, a possible strategy
consists in assigning a thread to each destination neighbor and in waiting
for the previous message to have arrived at its destination before sending
another one. For that, the use of a mutex combined with an acknowledgment
message allows the programmer to control the sending of each message. The
principle is the following: when a processor wants to send a message to a given
neighbor, the thread that is dedicated to this neighbor is locked (unless it was
already locked and in that case, the message is not sent). Then the message
is sent, the thread on the emitter processor is blocked until the neighbor
confirms that it has received the message. When the emitting thread has
received the acknowledgement of reception, it unlocks the mutex. So, it is
then ready to send another message. If another message was supposed to be
sent, then the mutex would be locked so the sending would not be possible. As
a consequence, the network would not be overloaded with a useless message,
since the previous one would not have been handled yet. One of the drawbacks
of this explicit management of threads is that when the number of neighbors
per processor is not known in advance or is dynamic, it is difficult to define
a number of threads a priori. Moreover, that difficulty comes for both the
sending and the reception. Furthermore, the explicit management of threads
requires much more attention than traditional programming because they may
lead to deadlock situations if the programmer is not very attentive. When
the number of threads running simultaneously becomes too important, the
scheduling may be less fair, which is not acceptable. In fact, the fairness is
an essential requirement of the threads management since the convergence
conditions of AIAC algorithms involve that each processor should be able to
regularly update its components.

In the following we present some asynchronous iterative algorithms in which
we consider that messages arrive in their emitted order. If this is not the case,
a simple mechanism should be added which consists in adding the iteration
number at which the sent data have been produced on the sender. Then,
on the receiver, the iteration number included in the message is compared
to the one of the last message taken into account from that source. Finally,
if the number in the message is smaller than the current one, the message
is suppressed without being taken into account. Otherwise, the message is
used and the current iteration number related to that source is updated.
Implementing that mechanism allows us to ensure a faster convergence.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

136 Parallel Iterative Algorithms

Algorithm 5.1 Asynchronous Jacobi algorithm

NbProcs : number of processors
MyRank : rank of the processor
Size : local size of the matrix
SizeGlo : global size of the matrix
Offset : offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
XOld[SizeGlo]: global solution vector
B[Size]: local part of the right-hand side vector
Error : local error
Epsilon: desired accuracy
Converged: convergence state

repeat
for i=0 to Size−1 do

X[i] ← 0
for j=0 to i+Offset−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for
for j=i+Offset+1 to SizeGlo−1 do

X[i] ← X[i]+A[i][j]×XOld[j]
end for

end for
for i=0 to Size−1 do

X[i] ← (B[i]−X[i])/A[i][i+Offset]
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(A[i]−XOld[i+Offset]))
XOld[i+Offset] ← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 137

Algorithm 5.2 Asynchronous block Jacobi algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][SizeGlo]: local part of the matrix
X[Size]: local part of the solution vector
B[Size]: local part of the right-hand side vector
BTmp[Size]: intermediate local part of the right-hand side vector
XOld[SizeGlo]: global solution vector
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
for i=0 to Size−1 do

BTmp[i]← B[i]
end for
for i=0 to Size−1 do

for j=0 to Offset−1 do
BTmp[i] ← BTmp[i]−A[i][j]×XOld[j]

end for
for j=Offset+Size to SizeGlo−1 do

BTmp[i] ← BTmp[i]−A[i][j]×XOld[j]
end for

end for
X← Solve(A, BTmp)
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i+Offset]))
XOld[i+Offset]← X[i]

end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Send(k, X)

end if
end for
for k=0 to NbProcs−1 do

if k 6= MyRank then
Recv(k, XOld[k×Size])

end if
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

138 Parallel Iterative Algorithms

5.6.4 Asynchronous multisplitting algorithm for solving lin-
ear systems

The asynchronous version of the multisplitting method for solving linear
systems is designed to be efficient for grid or distant clusters. This method
actually features interesting characteristics for this. It is a coarse grained
algorithm since a processor solves the subsystem it is in charge of at each it-
eration either using a sequential iterative solver (i.e., so we obtain a two-stage
algorithm) or a direct one. According to the characteristics of the subsys-
tems obtained by the splitting and the parameters of the architecture, a good
choice of the inner method can drastically change the performances. This
method allows us to overlap communications with computations. This fea-
ture is typically provided by the asynchronism of the method. Consequently,
we strongly believe that this method is particularly well suited to solve large
linear systems in grid environments. Compared to the synchronous version,
the asynchronous one only has two modifications. Those two modifications
concern the two main differences between a synchronous and an asynchronous
version of the same algorithm for which the convergence proof in the asyn-
chronous mode has been previously studied, that is to say, the management of
the communications and the convergence detection, as previously mentioned
in this section.

With this method, it is strongly recommended to count the number of mes-
sages received per iteration and to take into account this number in order to
decide if the program should wait for other messages or run the next iteration.
As previously mentioned, running a new iteration without any new message
will produce the same result, which is not interesting from the computational
point of view. In order to increase the convergence speed it is sometimes more
interesting to wait for a small span of time, for example 1 ms, to receive some
new messages rather than using only one new message before running the next
iteration. In the synchronous version of this algorithm we have presented the
multiple ways of overlapping some components. In Algorithm 5.4 we present
the small changes in the multisplitting algorithm in order to take into account
the Overlap components which are overlapped. Obviously, we consider that
the size of the Overlap parameter is less than the size of the subsystem.

Using the overlapping of components has two main impacts on the execution
of an AIAC algorithm. The first one is that the number of iterations required
to reach the convergence threshold is smaller. That is the positive point. The
second impact, which is a drawback, is that the size of each subsystem is
larger, and consequently, the time to solve a subsystem is longer. That is
why using the overlapping mechanism may reduce the number of iterations
when this number is high, i.e., the spectral radius of iteration matrix is close
to one. Nevertheless, according to the method used to solve subsystems, the
solving time may change. If a direct method is used, then one of the most
time-consuming tasks consists in factorizing the matrix. At each iteration of
the multisplitting method, only the right-hand side changes, so the factorized

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 139

Algorithm 5.3 Asynchronous linear multisplitting algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
A[Size][Size]: local block-diagonal part of the matrix
DepLeft[Size][Offset]: submatrix with left dependencies
DepRight[Size][SizeGlo-Offset-Size]: submatrix with right dependencies
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
B[Size]: right-hand side vector of the subsystem
X[Size], XOld[Size]: local part of solution vectors of the subsystem
XLeft[Offset]: left part of the solution vector of the system
XRight[SizeGlo-Offset-Size]: right part of the solution vector of the system
BLoc[Size]: array containing the local computations on the right-hand side
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
BLoc ← B
if MyRank 6=0 then

BLoc ← BLoc−DepLeft×XLeft
end if
if MyRank 6= NbProcs−1 then

BLoc ← BLoc−DepRight×XRight
end if
X ← Solve(A, BLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update XLeft or Xright with TLoc according to the processor i
end if

end if
end for
Error← 0
for i=0 to Size−1 do

Error ← max(Error, abs(X[i]−XOld[i]))
XOld[i]← X[i]

end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Algorithm 5.4 Parameter to take into account the overlapping for the mul-
tisplitting method

if MyRank=0 or MyRank=NbProcs−1 then
Size ← Size+Overlap

else
Size ← Size+2×Overlap

end if
if MyRank 6=0 then

Offset ← Offset−Overlap
end if

form of the matrix can be re-used for the next iterations. So, when the number
of iterations to reach the convergence threshold is high, the time to factorize
a matrix may not be so important in comparison to the number of times that
the factorized form will be used. If an iterative method is used, the time to
solve a subsystem may vary linearly with the size of a sparse matrix. Hence,
it may be worth overlapping some components but it is difficult to define
an optimal overlapping size. Furthermore, the optimal size may depend on
the network speed, because if the bandwidth is low, it may be preferable to
compute longer and communicate less.

5.6.5 Asynchronous Newton-multisplitting algorithm

In Algorithm 4.8 we have described the synchronous version of the Newton-
multisplitting algorithm. In order to define the asynchronous version of that

boolean Converged as in all other AIAC algorithms. It should be noted that
in the asynchronous Newton-multisplitting algorithm only one part is asyn-
chronous, this is the computation of the solution of the linear system obtained
at each iteration of the Newton process. So, the Newton iterations are still
synchronous.

In Figure 5.1, we illustrate the behavior of the algorithm. At each Newton

the figure. The synchronization corresponds to the computation of the global
error of the Newton process and to the diffusion of the local values of compo-
nents of vector X computed on each processor. Rectangles represent iterations
of the multisplitting method used to solve the linear system obtained at each
Newton iteration. So, this figure clearly highlights that Newton iterations are
synchronized whereas multisplitting iterations are asynchronous.

© 2008 by Taylor & Francis Group, LLC

algorithm, presented in Algorithm 5.5, we can use the same variables (c.f. Al-

iteration, a synchronization step is used; it is represented by a vertical line in

gorithm 4.7), except that instead of the variable MaxErrorMulti we need a

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 141

Algorithm 5.5 Asynchronous Newton-multisplitting algorithm

repeat
if first iteration or required then

Computation of the Jacobian rectangular matrix and storage of the
respective parts into J , JDepLeft and JDepRight

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
Converged ← false
repeat

FLoc ← F
if MyRank 6= 0 then

FLoc ← FLoc−JDepLeft×DXLeft
end if
if MyRank 6= NbProcs−1 then

FLoc ← FLoc−JDepRight×DXRight
end if
DX ← Solve(J, FLoc)
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(DX, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update DXLeft or DXRight with TLoc according to processor i
end if

end if
end for
ErrorMulti← 0
for i=0 to Size−1 do

ErrorMulti ← max(ErrorMulti, abs(DX[i]−DXOld[i]))
DXOld[i]← DX[i]

end for
Converged ← convergence(ErrorMulti, EpsilonMulti)

until Converged = true
X ← X+DX
ErrorNewton← 0
for i=0 to Size−1 do

ErrorNewton ← max(ErrorNewton, abs(DX[i]))
end for
AllToAllV(X[Offset], X, Size)
AllReduce(ErrorNewton, ErrorNewtonMax, Max)

until stopping criteria of Newton is reached
(MaxErrorNewton ≤ EpsilonNewton)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 143

Algorithm 5.6 Asynchronous multisplitting-Newton algorithm

NbProcs: number of processors
MyRank: rank of the processor
Size: local size of the matrix
SizeGlo: global size of the matrix
Offset: offset of the global index
JLoc[Size][Size]: local block-diagonal part of the Jacobian matrix
DependsOnMe[NbProcs]: array of the dependent processors
IDependOn[NbProcs]: array of the processors this processor depends on
F[Size]: right-hand side vector of the subsystem
X[SizeGlo]: solution vector of the subsystem
DX[Size]: solution vector of the multisplitting subsystem
TLoc[Size]: array used for the receptions of the dependencies
Error: local error
Epsilon: desired accuracy
Converged: convergence state

repeat
if first iteration or required then

Computation of the Jacobian submatrix and storage of the result into
JLoc

end if
Computation of −F depending on X from components Offset to
Offset+size−1 and storage of the result into F
DX ← Solve(JLoc, F)
for i=0 to Size−1 do

X[Offset+i] ← X[Offset+i]+DX[i]
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and DependsOnMe[i] then
Send(i, PartOf(X, i))

end if
end for
for i=0 to NbProcs−1 do

if i 6= MyRank and IDependOn[i] then
if Recv(i, TLoc) then

Update X according to processor i
end if

end if
end for
Error← 0
for i=0 to Size−1 do

ErrorMulti ← max(Error, abs(DX[i]))
end for
Converged ← convergence(Error, Epsilon)

until Converged = true

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

144 Parallel Iterative Algorithms

JLoc DX -F

0

0

00

FIGURE 5.2: Decomposition of the multisplitting-Newton.

In Figure 5.3 we represent iterations of the multisplitting-Newton method.
The rectangles represent the iterations of the Newton process on each pro-
cessor. As can be seen, those iterations are asynchronous. So, compared
to Figure 5.1 it is obvious that the multisplitting-Newton algorithm may be
faster than the Newton-multisplitting one when communication delays are in
favor of asynchronous iterations. This is typically the case in distant clusters
in which the communication links and the machines are generally hetero-
geneous, implying large disparities in the communication and computation
speeds in the system.

Time

Processor 1

Processor 2

FIGURE 5.3: Iterations of the multisplitting-Newton method.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 145

5.7 Convergence detection

As seen in Section 4.5, the convergence detection is an important issue of
iterative algorithms. In the asynchronous context, the convergence detection
is even hardened by the difficulty to get a correct image of the global state at
any time during the process.

The most common techniques used in distributed computing to recover
that information are centralized [55, 43, 100] and synchronous [84]. By their
nature, those detection algorithms are efficient in parallel systems with a small
physical radius but are not suited to large scale and/or distant distributed
systems. Moreover, they are not suited to asynchronous iterative algorithms
either, as the global synchronizations required at each recovery of the global
state would indirectly synchronize the iterative process itself and then would
drastically reduce the ratio of asynchronism and its benefit.

In fact, specific studies about the termination detection have been led in
the context of asynchronous iterative algorithms [33, 104, 37]. But, most of
them were either centralized or based on particular assumptions sometimes
including some modifications of the iterative process itself.

So, in order to preserve the benefit of the asynchronism, the convergence
detection algorithm must also be asynchronous. Moreover, the centralization
of such an algorithm may not only generate the classical problem of bottle-
necks but may also induce a loss of generality in its possible contexts of use.
Indeed, in the classical centralized algorithms, all processors directly com-
municate their information to the central one. However, that communication
scheme, implying that one machine can directly be contacted by all the others,
is not possible in all parallel systems, particularly in the distributed clusters
in which each site may have restricted access policies for security reasons. In
most cases, only one machine of a given cluster is reachable from the outside.
In order to bypass that problem, an explicit forwarding of the messages can be
performed from any node in the system toward the central one. That method
presents the advantage of only involving communications between neighboring
nodes and is adapted to the hierarchical communication systems that can be
found in distributed clusters. Unfortunately, that scheme implies more com-
munications, slowing down the network and indirectly the iterative process
itself. Moreover, it also implies larger delays toward the central node.

So, the most suitable detection algorithm in that context must not only
be asynchronous but also completely decentralized. Such an algorithm is
presented below.

5.7.1 Decentralized convergence detection algorithm

The decentralized algorithm for global convergence detection presented here
works on all parallel iterative algorithms, either asynchronous or synchronous.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

146 Parallel Iterative Algorithms

Although the version described in the following is closer to asynchronous
algorithms, which represent the most general case, only a few adaptations are
necessary to use it in the synchronous context.

The major difficulty with termination detection lies in the proof that the
proposed algorithm does not detect convergence prematurely. Indeed, in asyn-
chronous algorithms, the delays between iterations could lead to a false re-
alization of the convergence criterion. This situation typically occurs in het-
erogeneous contexts, for example when a processor computes a new iteration
whereas a slower processor computes a former iteration. That difficulty is in-
creased with distant processors where the communication/computation ratio
may be important.

As for the classical convergence detection algorithms, the principle of the
decentralized detection algorithm is based on two steps. The first one con-
sists in detecting the local convergence on each processor and the second one
properly consists in the global convergence detection. Those two steps are
described in the following paragraphs.

5.7.1.1 Local convergence detection

The local convergence step is quite similar to the one used in the syn-
chronous case. As explained in Section 4.5, there is usually no information
about the distance between the current state of the system and its fixed point.
So, in place, the residual is used according to a chosen metric to get an idea of
the stabilization of the process. Finally, that stabilization is itself determined
by the setting of a threshold on the residual. However, it has also been seen in
the previous chapter that when the metric used is not the contraction one, the
residual does not follow a monotonous decrease but there may be oscillations
around the given threshold. Hence, if no care is taken, a local convergence
can be detected too early, leading in turn to a false detection of the global
convergence. Once again, we insist on the fact that this problem is common
to all iterative algorithms and is not due to the asynchronism.

Currently, there is no way to ensure a definitive local convergence on a pro-
cessor without modifying the iterative process, as in [33]. The common heuris-
tic is then to assume that local convergence is achieved when the node has
performed a given number of successive iterations under the residual thresh-
old. That mechanism is used in Algorithm 5.7. It implies the use of a constant,
called THRESHOLD LOCAL CV , which represents the required number
of successive iterations under the residual threshold to ensure the local conver-
gence. It is important to note that this THRESHOLD LOCAL CV value
theoretically exists and is finite since, by hypothesis, the asynchronous it-
erative process converges. However, that value is quite difficult, not to say
impossible, to evaluate in practice. Consequently, the use of an approximate
value implies that the detection of the local convergence may not be definitive
as the residual may rise again over the threshold after the considered number
of iterations passed under it. Hence, in that context, the local state of a node

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 147

may alternatively vary between convergence and non-convergence. This is
why two versions of the detection algorithm are presented in the following: a
theoretical version, not affected by that problem, which is useful to describe
and prove the overall detection scheme, and a practical version which takes
into account that problem of local states alternation.

5.7.1.2 Global convergence detection

The goal here is to obtain a similar stopping criterion as in the sequen-
tial/synchronous modes, that is to say, having all the nodes in local conver-
gence at the same time. Unfortunately, if the asynchronism is not responsible
for the difficulty in evaluating the local convergence, it hardens the global
convergence detection by making the building of a representative image of
the global state of the system more difficult. The process described below
allows us to detect the global convergence on any one node of the system in
a decentralized manner. Its correctness is proved in the context where the
contraction norm is used. In other cases, often encountered in practice, the
process is still correct but an additional verification step is necessary after the
global detection to ensure that the system was in the correct global state at
the detection time.

5.7.1.2.1 Global detection scheme: The decentralization of the detec-
tion algorithm is based upon a scheme quite similar to the leader election pro-
tocol [83]. That protocol consists in dynamically designating one processor
to perform a given task. In that case, the task will be the global convergence
detection. However, in that particular context, the leader election process
requires some specific adaptations which imply the use of a tree graph. For-
tunately, that does not reduce the generality of the algorithm since it is always
possible to compute (off-line or in-line) a spanning tree from any connected
graph.

The election process works with what can be called PartialCV messages
between processors. Such a message informs the receiver that all the pro-
cessors in the subtree depending on the sender (behind the sender according
to the receiver) have reached local convergence. Hence, on each processor,
the algorithm considers the number of neighbors (in the tree) from which no
PartialCV message has already been received.

When that number is equal to one and the node is in local convergence, it
sends a PartialCV message to its last neighbor which has not sent it such a
message yet. It is at that point that the spanning tree is necessary. It ensures
that there always exists at least one node in the system which only has one
neighbor (all the leaves of the spanning tree). Thus, the partial convergence
detections will propagate from the leaves of the spanning tree toward the inner
nodes and will meet on one node. So, as depicted in Figure 5.4, a node will
detect the global convergence when it has received the PartialCV messages
from all its neighbors and is itself in local convergence.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

148 Parallel Iterative Algorithms

1

1
2

1

2

1

1

1

01

1

1

1

1

1

0

1

1

global convergencenormal state local convergence

PartialCV messagecommunication graph spanning tree

1

2

1

3

2

1

FIGURE 5.4: Decentralized global convergence detection based on the leader
election protocol. For each node, the number of its neighbors in the spanning
tree from which no partial convergence message has been received is indicated.

The way the process is designed implies that such a detection may happen
on two neighboring nodes in place of only one. This occurs when all the nodes
in the system are in local convergence and the propagation of the PartialCV
messages ends at two neighboring nodes which are for each other the last one
which has not yet sent its PartialCV message to the other one. So, both
those nodes send their message to the other, implying a double detection
of the global convergence on the two nodes. Such a particular situation is
presented in Figure 5.5.

PartialCV message

1

1

0

0

global convergence spanning treelocal convergence

FIGURE 5.5: Simultaneous detection on two neighboring nodes.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 149

Fortunately, that situation is not a problem per se in that context since it
does not correspond to a false detection but only to a multiple one. Moreover,
as the halting procedure is performed by the propagation of halting messages
throughout the system from the elected node(s) and each node forwards the
halting message to its other neighbors only once, that special case generates
only two useless messages between the two elected nodes. So, it does not alter
the halting process and does not actually require any particular treatment.
However, if for some reason (often a practical one) only one node had to be
elected, this could be easily achieved with, for example, a simple verification
and choice mechanism between a node which detects the global convergence
and its neighbor from which has come the last PartialCV message.

NbNeig integer representing the number of neighbors in the
spanning tree

RecvdPCV[NbNeig] boolean array indicating for each neighbor of the cur-
rent node in the spanning tree if a PartialCV message
has been received from that node

NbNotRecvd number of neighbors from which no PartialCV mes-
sage has been received yet

NbUnderTh number of successive iterations with a residual under
the threshold

UnderTh boolean equals true when the residual is under the
threshold and false otherwise

LocalCV boolean equals true when the local convergence is
detected and false otherwise

GlobalCV boolean equals true when the global convergence is
detected and false otherwise

Table 5.1: Description of the variables used in Algorithm 5.7.

The decentralized detection algorithm obtained is given in Algorithm 5.7.
For clarity sake, a description of the variables used in that algorithm is given
in Table 5.1.

The receipts of messages are handled by distinct functions and do not
directly appear in the main algorithm. That organization is particular to
asynchronous algorithms where communications are not performed and man-
aged at specific times in the algorithm but as soon as they are required or
they occur.

The function RecvPartialCV only consists in decreasing the number of
neighbors which have not yet reached local convergence. The function
recvGlobalCV consists in stopping the iterative process on the node by set-
ting the GlobalCV variable to true.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

150 Parallel Iterative Algorithms

Algorithm 5.7 Decentralized global convergence detection

for all Pi, i ∈ {1, . . . , N} do
NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
NbUnderTh ← 0
UnderTh ← false
LocalCV ← false
GlobalCV ← false
repeat

if LocalCV = false then
. . . iterative process and evaluation of UnderTh . . .
if UnderTh = true then

NbUnderTh ← NbUnderTh + 1
if NbUnderTh = THRESHOLD LOCAL CV then

LocalCV ← true
end if

else
NbUnderTh ← 0

end if
end if
if LocalCV = true then

if NbNotRecvd = 0 then
GlobalCV ← true

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding to the
unique cell of RecvdPCV[] being false

end if
end if

end if
until GlobalCV = true
Broadcast a GlobalCV message to all neighbors in the spanning tree from
which no GlobalCV message has arrived

end for

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 151

Algorithm 5.8 Function RecvPartialCV()

Extract SrcNode from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
//the test is just a precaution since such a message should always come
//from one of the neighbors in the spanning tree
if SrcIndNeig ≥ 0 then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1

end if

Algorithm 5.9 Function RecvGlobalCV()

GlobalCV ← true

5.7.1.2.2 Validity proof: We remind the reader that the convergence de-
tection algorithm above is to be used with any asynchronous iterative process
which converges. It is important to underline that this process does not force
the convergence of any asynchronous iterative process but ensures the correct
convergence detection of a converging asynchronous iterative process.

Preliminary definitions:
Let P = {P1, ..., PN} be the set of the processors.
Let us define NoPCVmsg(Pi, Pj , t) between two neighboring processors Pi and
Pj at time t as:

NoPCVmsg(Pi, Pj , t) ={
true if Pi has not yet received a PartialCV message from Pj

false if Pi has received a PartialCV message from Pj

The detection algorithm is based on two particular properties of the pro-
cessors which are the local convergence and the number of neighbors having
communicated their partial convergence. Since these properties evolve dur-
ing the iterative process, the set P (t) of processors Pi can be written as the
following partition:

P (t) = Sc
0(t) ∪ Sc

1(t) ∪ . . . ∪ Sc
N−1(t)

∪ Sd
0 (t) ∪ Sd

1 (t) ∪ . . . ∪ Sd
N−1(t)

where Se
k(t) is the set of processors having at time t:

NbNotRecvd = k

LocalCV =

{
true if e = c
false if e = d

The particular presentation of P (t) is only for intuitive representation of the
partition.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

152 Parallel Iterative Algorithms

Finally, we note tc(i) the time at which processor Pi reaches local convergence
and we define tr(k, j) as the receipt time of the PartialCV message on Pk

from Pj and tm(j, k, t) as the communication time from Pj to Pk at time t (t
is included because communication times may vary during the process).
We have then:

tr(k, j) = tc(j) + tm(j, k, tc(j))

THEOREM 5.7

If the following hypotheses are satisfied:

(H1) The communication graph used for the detection process is connected
and acyclic

(H2) The asynchronous iterative process converges

(H3) Communications between neighbors are achieved in a finite time

then, there exists td ∈ N such that

Sc
0(td) 6= ∅
|Sc

1(td)| ≥ 0
Sc

k(td) = ∅ k ∈ {2, ..., N − 1}
Sd

k(td) = ∅ k ∈ {0, ..., N − 1}
2

The second statement only appears to point out that there is no particular
condition on Sc

1(td).

The proof of Theorem 5.7 is made in two steps:

(A) we prove that Sc
0(td) 6= ∅ implies all the other statements of Theorem 5.7

(B) we prove that ∃td ∈ N such that Sc
0(td) 6= ∅

Part (A):

Let us define Neigh(Pi) the set of physical neighbors of processor Pi. In
order to get the processor Pi in Sc

0(t), we must have by Algorithm 5.7:

∀Pj ∈ Neigh(Pi), NoPCVmsg(Pi, Pj , t) = false

which implies in turn for all the Pj that

∀Pk ∈ Neigh(Pj) \ {Pi}, NoPCVmsg(Pj , Pk, t) = false

and by recursion, we deduce that

∀Pa ∈ P (t) \ {Pi}, ∃Pb ∈ P (t), NoPCVmsg(Pb, Pa, t) = false (5.42)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 153

This means that all the Pa in that equation have sent a PartialCV message
to the corresponding Pb and by Algorithm 5.7, this is only possible once Pa

has reached local convergence.

Thus, we have:

∀Pa ∈ P (t) \ {Pi}, Pa 6∈
N−1⋃

u=0

Sd
u(t)

and since Pi ∈ Sc
0(t), then

N−1⋃

u=0

Sd
u(t) = ∅

Moreover, by Algorithm 5.7, we also know that the condition for a processor
Pa to verify Equation (5.42) (sending of a PartialCV message to another
node) is to have its NbNotRecvd equal to one.

Hence:

∀Pa ∈ P (t) \ {Pi}, Pa ∈
1⋃

u=0

Sc
u(t)

and then
N−1⋃

u=2

Sc
u(t) = ∅

and all the other statements of Theorem 5.7 are verified. 2

Part (B):

By definition, at the beginning of the process, the following statements are
verified:

Sc
k(0) = ∅ ∀k ∈ {0, ..., N − 1}

Sd
0 (0) = ∅

Sd
1 (0) 6= ∅

(5.43)

The third statement comes from (H1) which implies that the graph always
has at least one node with only one neighbor.

By (H2), we have:

Pi ∈ Sd
k(t), i ∈ {1, ..., N}, k ∈ {0, ..., N − 1}

⇒ ∃ tc(i) ∈ N, ∀t ≥ tc(i), Pi ∈
⋃k

u=0 Sc
u(t)

(5.44)

hence

∃t′(k) ∈ N, ∀t ≥ t′(k), |Sd
k(t)| = 0, k ∈ {0, ..., N − 1} (5.45)

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

154 Parallel Iterative Algorithms

Equation (5.43), Equation (5.45) and Algorithm 5.7 imply that

∃tdn,

Sc
1(tdn) 6= ∅
∀t < tdn,

⋃N−1
u=0 Sd

u(t) 6= ∅
∀t ≥ tdn,

⋃N−1
u=0 Sd

u(t) = ∅
∀t < tdn, Sc

0(t) = ∅

(5.46)

The last statement is, in fact, a deduction from the second one. As seen in
part (A), Sc

0(t) 6= ∅ implies that
⋃N−1

u=0 Sd
u(t) = ∅ which is in contradiction

with the second statement for each t < tdn.

Now, at tdn, we know by Equation (5.46) that Sc
1(tdn) 6= ∅. So, every

Pi ∈ Sc
1(tdn), according to Algorithm 5.7, sends a PartialCV message to

its unique neighbor Pk which verifies NoPCVmsg(Pi, Pk, tdn) = true.
We define:

A(t) = {Pi ∈ Sc
1(t), ∃!Pk ∈ P (t),

NOpCVmess(Pi, Pk, t) = NOpCVmess(Pk, Pi, t) = true}

and

B(t) = {Pk ∈ P (t), ∃Pi ∈ A(t) such that NoPCVmsg(Pi, Pk, t) = true}

So, A(t) is the set of processors whose sending of the PartialCV message to
exactly one element of B(t) (corresponding set of destination nodes) has not
yet arrived at time t.

From (H1), we deduce the following lemma.

LEMMA 5.1

Considering the set A and time t′ ≥ tdn:

A(t′ − 1) 6= ∅, A(t′) = ∅ ⇒
{
∀t ≥ t′, A(t) = ∅
∃Pi ∈ Sc

0(t
′)

2

Justification of Lemma 5.1:

Since t′ ≥ tdn, we are in the context of Equation (5.46) where all the
processors are in the subsets Sc

u, u ∈ {0, ..., N − 1}.
If we consider the state of the system at time t′, it is not possible to have

one node in another subset than Sc
0 or Sc

1 since this would imply that this
node has not yet received the PartialCV message from at least two of its
neighbors.

So, either these neighbors are communicating their PartialCV message to
this node, which is a contradiction to A(t′) = ∅, or the other possibility is

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 155

that these neighbors have not sent their PartialCV message to this node
yet. Nevertheless, the only way for these neighbors not to have sent their
PartialCV message to this node yet is that they have themselves at least two
neighbors from which they have not received the PartialCV message yet. If
we continue this reasoning by recursion, we come to the conclusion that this
situation is only possible if all these nodes form a cycle in the graph which is
a contradiction to hypothesis (H1).

Hence, we are sure that all the nodes have reached their local convergence
and sent a PartialCV message which has already arrived at the destination
node.

Finally, (H1) also implies that there is at least one node which has received
the PartialCV messages from all its neighbors and is then located in Sc

0(tdn).

REMARK 5.1 One consequence is that as soon as the set A becomes
empty, it cannot become nonempty again.

REMARK 5.2 Another consequence is that time t′ is equivalent to time
td in Theorem 5.7 since Sc

0(t
′) 6= ∅ and then Part (A) of the proof implies all

the other statements of the theorem.

REMARK 5.3 At time tdn, all the processors have reached their local
convergence and since Sd

1 (0) 6= ∅ it is sure that the set A becomes nonempty
at the latest at time tdn.

Now, let us examine the set A(tdn):

If it is empty, Lemma 1 and Remark 5.3 imply that it was nonempty at the
time just before and then tdn corresponds to the time t′ in Lemma 1 which
also corresponds to the time td in Theorem 5.7 as pointed out by Remark 5.2.

If it is nonempty, Equation (5.46) implies that B(tdn) ⊆ ⋃N−1
u=1 Sc

u(tdn) and
there are two distinct possibilities over the set B(tdn): (5.47)

(1) ∀Pl ∈ B(tdn), Pl ∈ Sc
1(tdn)

(2) ∀Pl ∈ B(tdn), Pl ∈
⋃N−1

u=2 Sc
u(tdn)

Case (1):

In this case, there exists at least one Pl ∈ B(tdn) such that ∃!Pi ∈ A(tdn) for
which NoPCVmsg(Pl, Pi, tdn) = true and NoPCVmsg(Pl, Pi, tr(l, i)) = false
implying Pl ∈ Sc

0(tr(l, i)), and leading to the detection of the global conver-
gence on Pl at time tr(l, i). Hypothesis (H3) ensures that tr(l, i) < ∞ and
then statement (B) is verified with td = tr(l, i).

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

156 Parallel Iterative Algorithms

Case (2):
In this case, Pl ∈ B(tdn) implies that there is one Sc

u(tdn), u ∈ {2, ..., N−1}
such that Pl ∈ Sc

u(tdn), and then by Algorithm 5.7:

Pl ∈
u−1⋃

v=0

Sc
v(tr(l, i)), with i such that Pi ∈ A(tdn)

and NoPCVmsg(Pi, Pl, tdn) = true

(5.48)

This means that each time a processor receives a PartialCV message, its
number of neighbors which have not sent it a PartialCV message yet de-
creases by one. Moreover, we use a union of the u − 1 first subsets because
this processor may receive other PartialCV messages from other neighbors
in the interval time between tdn and tr(l, i), making it move down by more
than one subset.

Hence, by Lemma 1:

• either there exists at least one Pl ∈ B(tdn) for which Pl ∈ A(tr(l, i)),
with tr(l, i) < ∞ by (H3), and we come back to a similar context as
in (5.47) where A(t) 6= ∅ by replacing tdn by tr(l, i) and we obtain

a recursion on
⋃N−1

u=1 Sc
u(t). Equation (5.48) ensures that this recursion

will empty all the subsets Sc
u(t), u ∈ {2, ..., N−1} and will then converge

toward case (1).

• or none of the nodes of B(tdn) comes in the set A which becomes empty
as soon as all the nodes of B(tdn) have received their PartialCV message
(in a finite time by (H3)), directly leading to Theorem 5.7 by Remark 5.2.

2

As a last remark, it can be noticed that hypothesis (H3) also implies that
the termination of the iterative process on all nodes happens in a finite time
after the global convergence detection on the elected node (at time td in
Theorem 5.7).

5.7.1.2.3 Practical version: As mentioned at the beginning of
Section 5.7.1.2, Algorithm 5.7 is only usable in that form when the contrac-
tion metric is known and used to compute the residual. When that metric
is unknown, the difficulty of ensuring the local convergence on each node im-
plies the use of two additional mechanisms: an optional one which is useful
to regulate the local detections better, and a vital one which permits us to
get a correct image of the global state of the system. Indeed, the possible
alternation of the local state of the nodes requires a more accurate snapshot
of the global state of the system to ensure that all the nodes have verified the
local convergence conditions at the same time.

The practical version presented here is somewhat different from the one
proposed in [17]. That previous version has the drawback of requiring the

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 157

determination of the maximal communication time between any couple of
nodes in the system during the entire iterative process. In practice, it is
quite difficult, if not to say impossible, to get an accurate estimation of such a
value. The version described here does not use that value and, more generally,
presents the advantage of not requiring any specific information on the parallel
system used. Its approach is closer to the theoretical version presented in the
previous part in the sense that it lets the global detection happen even if the
local evolutions on the nodes change during the election process. Then, after
the global detection, it includes an additional verification phase to ensure
its validity. It is important to notice here that the iterative process is not
interrupted either during the global convergence detection process or during
the verification phase. There are two reasons for that; the most obvious one
is not to slow down the iterative process itself and the second one is that its
evolution during the global detection and verification processes represents a
mandatory piece of information.

Concerning the first of the two mechanisms mentioned above, it concerns
the local convergence detection on each node and consists in taking into ac-
count what we call pseudo-periods in place of a given number (arbitrary in
practice) of successive iterations. In the domain of dynamic systems, a period
corresponds to a minimal span of time during which all the components of the
system are updated at least once with different data values from its depen-
dencies. The pseudo-period is quite a local version of that global progression
step. So, for each node, a pseudo-period corresponds to the minimal span of
time during which that node receives at least one newer data message from all
its dependencies. In this way, the local evolution of one node is fully represen-
tative between two consecutive pseudo-periods. Thus, the local convergence
detection is no longer assumed after a given number of successive iterations
with the residual under the threshold but after at least one (but possibly
several successive ones) pseudo-period verifying that constraint. This has a
drastic regulating effect on the local convergence detections in practice and,
if it cannot avoid all the false detections due to an inadequate used norm,
it sharply limits them. It is therefore strongly recommended although not
essential.

For its part, the second mechanism is imperative and takes place at the
global level of the system just after the global convergence detection. Its aim
is to verify that all the nodes were still in local convergence at the time of the
global detection and that their states were representative of their evolution.
Hence, that verification is decomposed in four main steps:

1) Diffusion of a verification message from the elected node through the
spanning tree to initiate the verification phase.

2) Elaboration on each node of its response to the verification request.

3) Gathering of the responses of all the nodes toward the elected node
through the spanning tree to get the verdict.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

158 Parallel Iterative Algorithms

4) Diffusion of a verdict message from the elected node through the span-
ning tree to finish the verification phase.

When one node is elected by the global convergence detection process, it
sends a verification message to all its neighbors (step 1). Each node which
receives such a message from one of its neighbors (referred to as the asking
node in the following) forwards it to all its other neighbors in the spanning
tree (step 1) and, while waiting for their responses, elaborates its own response
(step 2). The response of a node does not only depend on its own state and
evolution but also on the responses of its neighbors in the spanning tree, except
the asking one. As soon as the response is available, the node returns it to its
asking node (step 3). Finally, when the elected node has its own response and
those of its neighbors, it deduces the verdict and sends it to all its neighbors
(step 4). Then, each node receiving a verdict message forwards it to its other
neighbors in the spanning tree (step 4). At the end of the verification phase,
the state of each node is set up according to the final verdict. The global
scheme of that verification mechanism is depicted in Figure 5.6.

As mentioned above, the response of each node depends on its state but also
on its evolution during the verification phase. Effectively, in order to ensure
that all the nodes have been in local convergence at the same time (which is
the criterion used in the sequential and synchronous versions), the response of
a node is positive if and only if its residual never goes back over the threshold
during the span of time between its last sending of a PartialCV message and
the sending of its response to the verification request.

Moreover, to be sure that the response of each node is representative of its
actual state and is not illusory, a particular mechanism is inserted to ensure
that each node actually evolves during the span of time between the receipt
of the verification request and the sending of its response. That mechanism
roughly corresponds to the waiting of a particular pseudo-period. The ideal
way to ensure the pertinence of the global state image would be to wait for
a period and watch the resulting state. However, periods are quite difficult
and expensive to identify in dynamical systems implemented on distributed
environments. So, a lighter concept is used here which is better suited to the
decentralization constraint while giving pertinent information about the evo-
lution of the system as well. Hence, each node sends its response (depending
on its residual evolution) only after having performed at least one iteration
with versions of all its data dependencies at least as recent as the global detec-
tion time. In this way, the response will be fully representative of the actual
evolution and state of that node until that time.

In order to force the nodes to use specific data versions during the verifi-
cation phase, a tagging system is included in the data messages in order to
differentiate them between the successive phases of the iterative process (nor-
mal processing and verification phase). Moreover, since there may be several
verification phases during the whole iterative process, due to possible cancel-
lations of global detections, that tagging is also useful to distinguish the data

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 159

communication graph

normal state

global convergence

local convergence

unknown state

1

01

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
0

0

0

0

2

32

response message

verdict message

verification message

spanning tree

1

1

1

1

1

1

1

1

1

Step 1

Steps 2 & 3

Global convergence

detection

Step 4

FIGURE 5.6: Verification mechanism of the global convergence. The two pos-
sibilities are illustrated, cancellation on the left and confirmation on the right.
The unknown states in the first two steps are from the elected node point of
view. The value beside each node corresponds to the variable NbNotRecvd.

messages related to the different verification phases. Finally, there is another
good reason to use tagged messages not only for the data communications
but also for the information related to the global detection and verification
processes: the reactivity of the verification phase.

In fact, as quite an important number of verification phases is likely to
occur during an entire iterative process, it is rather important to increase its
reactivity. This has the indirect effect of reducing the latency between the
actual global convergence of the system and its detection. In order to do so,
each node is allowed to send its response as soon as it is able to deduce it,
that is to say, when its residual goes over the threshold or when it receives
a negative response from one of its neighbors. Such events imply a negative
response of the node, whatever the values of the other elements constituting

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

160 Parallel Iterative Algorithms

its response are. It is then a waste of time to wait for the responses of the
other neighbors or the local completion of a pseudo-period. The same behavior
takes place on the elected node except that it directly sends a negative verdict
message to its neighbors instead of sending a response to an asking node.
However, as the order of the messages is not ensured in the asynchronous
computing context, this strategy also implies that messages related to a given
verification phase may arrive on a node after the termination of that phase
(in the case of a verification phase canceled faster). Thus, in order to avoid
confusions in the messages related to the global detection scheme, a tagging
system must also be inserted.

Finally, in order to respond to all those message distinction constraints,
each phase of the iterative process (normal computing and verification of the
global convergence) is distinguished in time by an integer tag incremented
at each phase transition, as shown in Figure 5.7, with four nodes linearly
organized for a span of time beginning with the tag equal to k.

Tag=k+2Tag=k Tag=k+1

P2

P1

P3

time

P4

verdict msg

GC

detection

GC

verdict

verification msg

FIGURE 5.7: Distinction of the successive phases during the iterative
process.

The whole detection and verification mechanism is detailed in Figure 5.8 in
the same computing context as above and in the case of a global convergence
detected and confirmed on node P2. As can be seen, the whole process ensures,
in case of a positive verdict, that all the nodes in the distributed system
have had their residual under the threshold at least at the time at which the
global convergence was detected on the elected node, and possibly during a
larger span of time after it. Moreover, the pseudo-period performed on each
node during the verification phase with data as recent as the global detection
ensures that their states are representative of their actual evolutions. In this
way, that entire global convergence detection mechanism provides a similar

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 161

stopping criterion as in the sequential/synchronous cases.

Ensured instant of

local CV on every node

P4

P2

P1

time

P3

verification msg

tagged data msg

response msg

iteration with

tagged (recent)

data dependencies

the threshold

iterations under

detection

GC

PartialCV msg

confirmation

GC

LC detection

FIGURE 5.8: Mechanism ensuring that all the nodes are in representative
stabilization at least at the time of global convergence detection.

As the behavior of the nodes is not the same according to the different
steps in the detection process and verification phase, it is also necessary to
introduce four different states:

• NORMAL: the basic state during the whole iterative process when the
node is not in the global convergence detection mechanism.

• WAIT4V: when the node is waiting for the local start of the verification
phase after its sending of a PartialCV message.

• VERIF: when the node is performing the verification phase, either after
the receipt of the corresponding message or by election.

• FINISHED: when the global convergence has been confirmed.

The transitions between those states are depicted in Figure 5.9.
The final scheme obtained is given in Algorithm 5.15. In order to get an

easy reading of it, the list of the additional variables according to the previous
algorithm is given in Table 5.2.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

162 Parallel Iterative Algorithms

PartialCV msg

 WAIT4VNORMAL

VERIF FINISHED

negative verdict

electionnegative verdict

verdict
positive

election or receipt
of a verification msg

sending of a

FIGURE 5.9: State transitions in the global convergence detection process.

The different types of messages are listed below together with their contents:

• data message:

– identifier of the source node
– source node iteration number at the sending time
– source node phase tag at the sending time
– data

• PartialCV message:

– identifier of the source node
– source node phase tag at the sending time

• verification message:

– identifier of the source node
– source node phase tag at the sending time

• response message:

– identifier of the source node
– source node phase tag at the sending time
– response of the source node

• verdict message:

– identifier of the source node
– new phase tag to use on the receiver
– verdict

The algorithm also uses additional functions which are briefly described
below:

• InitializeState(): (re-)initializes the variables related to the conver-
gence detection process and sets the node in NORMAL state.

• ReinitializePPer(): (re-)initializes the variables related to the pseudo-
period detection.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 163

MyRank integer identifying uniquely the current node
State integer indicating the current state of the

node among NORMAL, WAIT4V, VERIF and
FINISHED

PhaseTag integer identifying the current phase on the current
node

PseudoPerBeg boolean indicating that a pseudo-period has begun
PseudoPerEnd boolean indicating the end of a pseudo-period
NbDep integer representing the number of computational de-

pendencies of the current node
NewerDep[NbDep] boolean array indicating for each data dependency

if a newer version has been received since the last
pseudo-period

LastIter[NbDep] integer array indicating for each dependency node
the iteration of production of the last data received
from that node

PartialCVSent boolean indicating that a PartialCV message has
been sent

ElectedNode boolean indicating that the node is the elected one
Resps[NbNeig] integer array containing the responses of the neigh-

bors of the current node in the spanning tree. The
values are either −1 (negative), 0 (no response yet)
or 1 (positive)

ResponseSent boolean indicating that the response has been sent

Table 5.2: Description of the additional variables used in Algorithm 5.15.

• InitializeVerif(): initializes the verification phase. In particular, the
PhaseTag variable is incremented to distinguish the new verification
phase from the potential previous ones.

• RecvDataDependency(): manages the receipts of data dependencies.
In the general asynchronous model, each received datum is taken into
account, whenever it was produced. However, taking only newer data
(produced after the locally available ones) tends in practice to speed up
the iterative process. So, the function takes into account any newer data
when the receiver is not in verification phase (VERIF state). Otherwise,
it filters the data produced after the last global convergence detection,
that is to say, with the same phase tag as the receiver.

• RecvPartialCV(): manages the receipts of PartialCV messages. Also
updates the local state of the node when an election is possible. How-
ever, the mutual exclusion mechanism mentioned on page 149 is per-
formed to ensure that only one node is elected in the system.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

164 Parallel Iterative Algorithms

• RecvVerification(): manages the receipts of verification messages.
The message is taken into account only when its phase tag corresponds
to the following phase on the receiver. In that case, the state of the
receiver is changed to enter the verification phase (VERIF state) and
the message is propagated to its other neighbors in the spanning tree.

• RecvResponse(): manages the receipts of response messages. The
message is taken into account only when the phase tag in the message
corresponds to the current phase tag on the receiver.

• RecvVerdict(): manages the receipt of the verdict of the verification
phase on the non-elected nodes. The verdict is always taken into account
and propagated through the spanning tree to set all the nodes either in
FINISHED state or back in NORMAL state with a new phase tag. As
the state of the non-elected nodes cannot change before the receipt of
that message, no other global convergence detection may happen before
all the nodes have received it. Therefore, there cannot be any confusion
with a similar message coming from a previous verification phase.

• ChooseLeader(integer, integer): takes two integer parameters iden-
tifying two nodes which are potential candidates to the leader election
and returns the one which is chosen by the election referee policy.

The last function of the list is not detailed in the following since it directly
depends on the referee policy used. The choice of that policy is quite free as
its only constraint is to make a choice between the two proposed nodes.

Algorithm 5.10 Function InitializeState()

NbNotRecvd ← NbNeig
for Ind from 0 to NbNeig−1 do

RecvdPCV[Ind] ← false
end for
ElectedNode ← false
LocalCV ← false
PartialCVSent ← false
ReinitializePPer()
State ← NORMAL

Algorithm 5.11 Function ReinitializePPer()

PseudoPerBeg ← false
PseudoPerEnd← false
for Ind from 0 to NbDep−1 do

NewerDep[Ind] ← false
end for

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 165

Algorithm 5.12 Function InitializeVerif()

ReinitializePPer()
PhaseTag ← PhaseTag + 1
for Ind from 0 to NbNeig−1 do

Resps[Ind] ← 0
end for
ResponseSent ← false

Algorithm 5.13 Function RecvDataDependency()

Extract SrcNode, SrcIter and SrcTag from the message
SrcIndDep ← corresponding index of SrcNode in the list of dependencies

of the current node (−1 if not in the list)
if SrcIndDep ≥ 0 then

if LastIter[SrcIndDep] < SrcIter
and (State 6= VERIF or SrcTag = PhaseTag) then
Put the data in the message at their corresponding place according to
SrcIndDep in the local data array used for the computations
LastIter[SrcIndDep] ← SrcIter
NewerDep[SrcIndDep] ← true

end if
end if

Algorithm 5.14 Function RecvPartialCV()

Extract SrcNode and SrcTag from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
if SrcIndNeig ≥ 0 and SrcTag = PhaseTag then

RecvdPCV[SrcIndNeig] ← true
NbNotRecvd ← NbNotRecvd−1
if NbNotRecvd = 0 and PartialCVSent = true

and ChooseLeader(MyRank, SrcNode) = MyRank then
ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

end if
end if

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

166 Parallel Iterative Algorithms

Algorithm 5.15 Practical version of Algorithm 5.7 (1/3)

for all Pi, i ∈ {1, . . . , N} do
InitializeState()
UnderTh ← false
PhaseTag ← 0
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

if UnderTh = false then
ReinitializePPer()

else
if PseudoPerBeg = false then

PseudoPerBeg ← true
else

if PseudoPerEnd = true then
LocalCV ← true
if NbNotRecvd = 0 then

ElectedNode ← true
InitializeVerif()
Broadcast a verification message to all its neighbors
State ← VERIF

else
if NbNotRecvd = 1 then

Send a PartialCV message to the neighbor corresponding
to the unique cell of RecvdPCV[] being false
PartialCVSent ← true
State ← WAIT4V

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd← true
end if

end if
end if

end if
else if State = WAIT4V then

see that part on page 167...
else if State = VERIF then

see that part on pages 167 and 168...
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 167

Algorithm 5.15 bis Practical version of Algorithm 5.7 (2/3)

for all Pi, i ∈ {1, . . . , N} do
see that part on page 166...
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

see that part on page 166...
else if State = WAIT4V then

if UnderTh = false then
LocalCV ← false

end if
else if State = VERIF then

if ElectedNode = true then
if UnderTh = false or LocalCV = false

or at least one cell of Resps[] is negative then
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

else
if PseudoPerEnd = true then

if there are no more 0 in Resps[] then
if all the cells of Resps[] are positive then

Broadcast a positive verdict message to all its neighbors
State ← FINISHED

else
PhaseTag ← PhaseTag + 1
Broadcast a negative verdict message to all its neighbors
InitializeState()

end if
end if

else
if all the cells of NewerDep[] are true then

PseudoPerEnd← true
end if

end if
end if

else
see that part on page 168...

end if
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

168 Parallel Iterative Algorithms

Algorithm 5.15 ter Practical version of Algorithm 5.7 (3/3)

for all Pi, i ∈ {1, . . . , N} do
see that part on page 166...
repeat

. . . iterative process, data sendings and evaluation of UnderTh . . .
if State = NORMAL then

see that part on page 166...
else if State = WAIT4V then

see that part on page 167...
else if State = VERIF then

if ElectedNode = true then
see that part on page 167...

else
if ResponseSent = false then

if UnderTh = false or LocalCV = false
or at least one cell of Resps[] is negative then
Send a negative response to the asking neighbor
//by construction, that is the neighbor to which has been sent
//the last PartialCV message ⇔ false cell of RecvdPCV[]
ResponseSent ← true

else
if PseudoPerEnd = true then

if there remains only one 0 in Resps[] then
//that last 0 is located in the cell of the asking neighbor
if the other cells of Resps[] are all positive then

Send a positive response to the asking neighbor
else

Send a negative response to the asking neighbor
end if
ResponseSent ← true

end if
else

if all the cells of NewerDep[] are true then
PseudoPerEnd← true

end if
end if

end if
end if

end if
end if

until State = FINISHED
end for

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 169

Algorithm 5.16 Function RecvVerification()

Extract SrcNode and SrcTag from the message
if SrcTag = PhaseTag + 1 then

InitializeVerif()
State ← VERIF
Broadcast the verification message to all its neighbors but SrcNode

end if

Algorithm 5.17 Function RecvResponse()

Extract SrcNode, SrcTag and SrcResp from the message
SrcIndNeig ← corresponding index of SrcNode in the list of neighbors

of the current node (−1 if not in the list)
if SrcIndNeig ≥ 0 and PhaseTag = SrcTag then

Resps[SrcIndNeig] ← SrcResp
end if

Algorithm 5.18 Function RecvVerdict()

Extract SrcNode, SrcTag and SrcVerdict from the message
if SrcVerdict is positive then

State ← FINISHED
else

InitializeState()
PhaseTag ← SrcTag

end if
Broadcast the verdict message to all its neighbors but SrcNode

5.8 Exercises

1. Consider a linear system

Ax = b,

where A is an M -matrix and ε is a positive scalar. Prove that asyn-
chronous algorithms associated to the Jacobi algorithm for solving this
linear system converge.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

2

xT Ax.

6. Consider the 2 dimensional Dirichlet problem

−∆u = f on Ω =]0, 1[×]0, 1[
u = 0 on the boundary ∂ΩofΩ.

(a) By using the finite difference method to approximate the second
derivatives and following the illustration example of Chapter 1,
show that the approximate solution is the solution of a linear sys-
tem

Ax = b

where A is a block tridiagonal and where each block is also a tridi-
agonal matrix of the form

4 −1

−1
. . .

. . .

. . .
. . . −1
−1 4

.

(b) Propose a convergent asynchronous algorithm to solve the approx-
imate solution of the Dirichlet problem.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

Asynchronous Iterations 171

(c) Propose a parallel block convergent asynchronous algorithm to
solve the approximate solution of the Dirichlet problem.

7. Consider the ordinary differential equation

dx
dt = f(x, t)
x(0) = x0

t ∈ [0, T] .
(5.49)

Let’s denote by C1 the space of continuous functions defined on [0, T]
with values in Rn. Then, we suppose that the unknown function x ∈ C1

and that f is a continuous function.

(a) Prove that the following mapping is a norm on C1,
for x = (x1, ..., xn) ,

n(x) = ‖x‖∞ = max
1≤i≤n

max
0≤t≤T

‖xi(t)‖

(b) We suppose that f is Lipschitz continuous with respect to x, with
constant L, i.e.,

‖f(x, t)− f(y, t)‖∞ ≤ L ‖x− y‖∞
and consider the following fixed point mapping

T (x) = y ⇔ dyi

dt
= f(x1, ..., xn, t), yi(0) = (x0)i .

Let K be a real number such that

1− e−KT

K
<

1

L

Prove that T is contractive with respect to the norm
‖x‖K = max1≤i≤n max0≤t≤T e−Kt ‖xi(t)‖ .

(c) Propose a parallel asynchronous algorithm which converges to the
solution of (5.49).

(d)
multisplitting algorithm to solve (5.49).

8. Implement a centralized detection convergence procedure and a decen-
tralized one. Then compare the performances on algorithms presented
in this chapter.

9. With AIAC multisplitting algorithms (linear or not), compare the be-
havior of versions using different solvers for solving linear subsystems. It
is interesting to compare the behavior of iterative solvers against direct
ones. Nevertheless, the comparison between a simple iterative solver and
a more complex one, like GMRES, is also instructive. Try to point out
cases where simple iterative solvers perform faster than more complex
ones. Try to explain when this situation is possible.

© 2008 by Taylor & Francis Group, LLC

Following Section 5.4.3 of Chapter 5, build a parallel asynchronous

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

172 Parallel Iterative Algorithms

10. Try to implement the tips described in Section 5.6.4 which consist in
waiting for some new messages to arrive before running the next it-
erations with multisplitting algorithms for solving linear systems. Ac-
cording to the number of neighbors of each processor try to define an
appropriate number of messages to wait for before running the next
iterations.

11. Try to implement the same mechanisms as in the previous exercise with
nonlinear multisplitting algorithms.

12. Compare the behavior of the Newton-multisplitting algorithm and the
multisplitting-Newton algorithm for some nonlinear problems. Try to
point out the threshold for which one of those algorithms seems better
than the other in a distant cluster context.

© 2008 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d

by
 [

U
ni

ve
rs

ita
 D

eg
li

St
ud

i d
i P

is
a]

 a
t 0

5:
37

 1
0

Ju
ne

 2
01

6

	Chapter 5: Asynchronous Iterations
	Introduction
	5.1 Advantages of asynchronous algorithms
	5.2 Mathematical model and convergence results
	5.2.1 The mathematical model of asynchronous algorithms
	5.2.2 Some derived basic algorithms
	5.2.3 Convergence results of asynchronous algorithms

	5.3 Convergence situations
	5.3.1 The linear framework
	5.3.2 The nonlinear framework

	5.4 Parallel asynchronous multisplitting algorithms
	5.4.1 A general framework of asynchronous multisplitting methods
	5.4.2 Asynchronous multisplitting algorithms for linear problems
	5.4.3 Asynchronous multisplitting algorithms for nonlinear problems
	5.4.3.1 Extended fixed point mapping associated with…
	5.4.3.2 The discrete analogue of Schwarz alternating method and its multisubdomain generalizations
	5.4.3.3 Discrete analogue of the Schwarz alternating method
	5.4.3.4 Discrete analogue of the multisubdomain Schwarz method

	5.5 Coupling Newton and multisplitting algorithms
	5.5.1 Newton-multisplitting algorithms: multisplitting algorithms as inner algorithms in the Newton method
	5.5.2 Nonlinear multisplitting-Newton algorithms

	5.6 Implementation
	5.6.1 Some solutions to manage the communications using threads
	5.6.2 Asynchronous Jacobi algorithm
	5.6.3 Asynchronous block Jacobi algorithm
	5.6.4 Asynchronous multisplitting algorithm for solving linear systems
	5.6.5 Asynchronous Newton-multisplitting algorithm
	5.6.6 Asynchronous multisplitting-Newton algorithm

	5.7 Convergence detection
	5.7.1 Decentralized convergence detection algorithm
	5.7.1.1 Local convergence detection
	5.7.1.2 Global convergence detection

	5.8 Exercises

