
Lab Class (Eigenvalue Problems)

1 Review of methods to compute eigenvalues and
eigenvectors

Power method The power method is the iteration

xk+1 = Axk, k = 0, 1, 2, . . . ,

starting from a given vector x0. To prevent overflow / underflow, we rescale the
resulting vector after each iteration so that it has norm 1; i.e., we modify the
iteration to

xk+1 =
Axk
‖Axk‖

, k = 0, 1, 2,

The power method converges (under suitable assumptions, and in a suitable
sense to keep track of normalization) to the eigenvector v1 relative to the eigen-
value λ1 of A with maximum modulus.

Inverse iteration Inverse iteration means applying the power method to B =
(A− tI)−1, for a given t ∈ C. The eigenvalues of B are given by 1

λi−t , where λi
are the eigenvalues of A. Hence its eigenvalue of maximum modulus corresponds
to the eigenvalue λi which is closest to t.

Orthogonal (subspace) iteration Starting from a given Ẑ0 ∈ Cn×p, with
n ≥ p, orthogonal iteration corresponds to performing at each step a thin QR
factorization

Ẑk+1R̂k+1︸ ︷︷ ︸
thin QR

= AẐk, , k = 0, 1, 2, . . . ,

where for each k the matrix Ẑk ∈ Cn×p has orthonormal columns, and R̂k ∈
Cp×p is upper triangular. Under suitable assumptions, Ẑk converges (in a
suitable sense) to a basis of the invariant subspace span(v1, v2, . . . , vp), where
v1, . . . , vp are the eigenvectors of A corresponding to its p largest (in absolute
value) eigenvalues.

Orthogonal iteration with p = n When one runs orthogonal iteration with
p = n, starting from Ẑ0 = I, the n×n matrix Ẑ∗

kAẐk converges (under suitable
assumptions) to a triangular matrix.

1

2 Power method 2

QR iteration Shifted QR iteration is the iteration [Qk, Rk] = qr(Ak−1−σkI),
Ak = RkQk + σkI. At each step, we will choose σk as the bottom right entry
Ak−1(end, end) of Ak−1

1.

2 Power method

We shall use the following function to generate random matrices with prescribed
eigenvalues.

function A = random_matrix_with_eigenvalues(ev)

% given a vector ev, returns a matrix whose eigenvalues are its entries.

V = randn(length(ev));

A = V * diag(ev) / V;

You can check in a few examples that the eigenvalues of A coincide with the
elements of ev.

Moreover, before starting with the exercises, type at the Matlab prompt the
command format short e. This instruction tells Matlab to use exponential
notation to display each matrix entry separately. It makes it easier to assess the
magnitude of each entry.

1. We want to plot (as points in the plane R2) the first iterates of the
power method (without normalization) for a 2 × 2 matrix. Generate a
matrix A = random_matrix_with_eigenvalues([1.1, 0.3]) and a ran-
dom vector z0 ∈ R2. Then, compute the vectors z0, Az0, A

2z0, . . . , A
20z0 ∈

R2. Save their first entry in x ∈ R21, and their second entry in y ∈ R21,
and then display them with plot(x, y, ’o-’);.

You should see that the vectors tend to line up along the same direction,
which is the one of the eigenvector v1 of A. An example is in the following
picture.

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

1 Note that this strategy will not lead to convergence if A has complex eigenvalues, because
all the entries that we compute stay in R. In this case, we need a different shifting strategy,
such as taking σk as one of the eigenvalues of the 2×2 matrix Ak−1(end−1 : end, end−1 : end).

3 Inverse iteration 3

2. Write a function function [v, lambda] = powermethod(A) that per-
forms 100 steps of the power method, with normalization, starting from
a random vector x0. At the end of the function, right before it ends, plot

the value of the residual ‖Axk−(
x∗
kAxk

x∗
kxk

)xk‖ as a function of the step num-

ber k: after generating a 100 × 1 array residuals, Use the instruction
semilogy(1:100, residuals), which produces a plot using a logarithmic
scale on the y axis.

3. Test the previous function on matrices with different ratios λ2/λ1; for
instance, random_matrix_with_eigenvalues(ev) with ev=[2,1,0.5,0],
ev=[-10,1,0.2], or [2,1.9,-0.5,0], or [2,-1.9,0.5,0]. You should
see from the plot that the convergence speed is faster for the first two
cases and slower in the other two (indeed, it depends on the ratio λ2

λ1
).

3 Inverse iteration

1. Write a function function [v, lambda] = inverse_iteration(A, t)

that executes 10 steps of inverse iteration (starting from a random initial
value x0), and returns the corresponding estimate of the closest eigenvalue
λ of A to v. Compute the LU factorization A = LU only once with
[L, U] = lu(A - t*eye(length(A))) at the beginning of the algorithm,
and then at each step use the factors L,U to solve the linear systems.

2. Test your function on A = random_matrix_with_eigenvalues(-5:5), and
choose the shift to get convergence to an internal eigenvalue, for instance
t = 1.7. How accurate is the computed eigenvalue?

4 Orthogonal iteration

We shall write code for the orthogonal iteration only for the case p = n, for sim-
plicity. Recall that the Matlab command to compute the thin QR factorization
of a matrix M is [Zhat, Rhat] = qr(M, 0).

1. Write a function function orthogonal_iteration(A, kmax) that per-
forms kmax iterations of orthogonal iteration, with p = n, starting from
Ẑ0 = I, and after each step prints the matrix Ak = Ẑ∗

kAẐk.

2. Test the function on A = random_matrix_with_eigenvalues(-4.7:4.3),
to verify that the method indeed converges to the Schur form of A.

3. Test the method on A = random_matrix_with_eigenvalues(-5:5). Note
that this matrix has several pairs of eigenvalues with the same absolute
value. Which entries converge to zero and which do not?

5 Shifted QR 4

5 Shifted QR

1. Write a function function qr_iteration(A, kmax) that performs kmax

steps of QR iteration on the matrix A. Take as shift the last entry
Ak−1(end, end) of Ak−1. Again, after each step print the matrix Ak.

2. Test the function on A = random_matrix_with_eigenvalues(-5:5). You
should see that the entries in the last row of Ak (apart from the last one)
decrease sharply. For instance, in one of the random-generated examples
I have obtained

>> qr_iteration(A, 10)

A_1(end,1) = 0.290177

A_2(end,1) = -0.0481675

A_3(end,1) = 0.00270503

A_4(end,1) = -2.39121e-06

A_5(end,1) = 1.32516e-11

A_6(end,1) = -1.09329e-20

A_7(end,1) = 8.60834e-38

A_8(end,1) = -5.31815e-71

A_9(end,1) = 1.98253e-136

A_10(end,1) = -2.70929e-266

The exponents in the sequence −6,−11,−20,−38,−71,−136,−266 ap-
proximately double at each step. This kind of convergence (called quadratic
convergence) is much faster than what we have seen in the previous algo-
rithms.

3. Implement deflation in your QR iteration: once the convergence crite-
rion norm(Ak(end, 1:end-1)) <= eps * norm(A) is satisfied, you have
found a matrix Ak which has the same eigenvalues as A and is essentially
in the form

Ak =

[
B c
0 d

]
,

with B ∈ C(n−1)×(n−1) and d ∈ C1×1. Hence the eigenvalues of A are
given by the union of the eigenvalues of B and the complex number d.
Hence we can replace replace Ak with B and continue on this submatrix.
Keep track of the eigenvalues d that you have computed at each step and
return them all together at the end of the function. This procedure should
return the exact eigenvalues of A.

6 Additional exercises

1. Verify on an example that orthogonal iteration and QR iteration (with
shifts σk = 0) give the same matrices Ak.

6 Additional exercises 5

2. In orthogonal_iteration and qr_iteration, instead of printing the ma-
trices Ak at each step, display them visually using the command imagesc(log(abs(Ak))).
This command uses squares in different colors to display the absolute value
of each element of A (in a logarithmic scale). An example is in the follow-
ing picture.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

To be able to see clearly the pictures after each iteration, you may want
to introduce a short pause with the command pause(0.2).

3. Modify qr_iteration so that you use as shift the smallest eigenvalue of
the 2×2 matrix S = Ak(end-1:end, end-1:end), as suggested in the first
page. (In this exercise you can be lazy and use Matlab’s function eig() on
S, but in order to get a self-contained function to find eigenvalues in theory
one should compute them by solving the quadratic equation det(S−xI) =
0.) Test the resulting method on a matrix having non-real eigenvalues; for
instance, generate them randomly with A = randn(10, 10). A random
matrix generated in this way has nonreal eigenvalues the vast majority
of the times. Compare the eigenvalues that you have computed with the
output of Matlab’s own eig(A).

4. Modify qr_iteration so that instead of removing the last row after it
has converged, you keep the whole matrix in memory but you find at each
step the QR factorization of its top “active block” B = Ak(1:p, 1:p).
Note that the proper way of applying the p × p factor Qk that you have
obtained is using the similarity transformation[

Q∗
k 0

0 I

] [
B C
0 D

] [
Qk 0
0 I

]
,

6 Additional exercises 6

which modifies the block labeled C as well. If implemented properly, this
procedure should end by computing an upper triangular matrix which is
similar to A, i.e., it should compute its Schur factorization.

	Review of methods to compute eigenvalues and eigenvectors
	Power method
	Inverse iteration
	Orthogonal iteration
	Shifted QR
	Additional exercises

