Exercises (Schur form)

1. (a) Let $T \in \mathbb{C}^{n \times n}$ be an upper triangular matrix, partitioned in blocks as

$$
\left[\begin{array}{ccc}
T_{11} & T_{12} & T_{13} \\
0 & T_{22} & T_{23} \\
0 & 0 & T_{33}
\end{array}\right]
$$

where T_{11} and T_{33} are square, and T_{22} is 1×1 (i.e., the second block has width 1), and contains the value z. The matrix $T-z I$ is singular (since it is triangular with a 0 on the diagonal). Show that if T_{11} does not have the value z on its diagonal then the vector

$$
\left[\begin{array}{c}
-\left(T_{11}-z I\right)^{-1} T_{12} \\
1 \\
0
\end{array}\right]
$$

is in the kernel of $T-z I$.
(b) Let $T \in \mathbb{C}^{n \times n}$ be an upper triangular matrix, such that its diagonal entries $t_{11}, t_{22}, \ldots, t_{n n}$ are all different. Find an algorithm to compute its eigenvectors.
(c) Find an algorithm to compute an eigenvector for each distinct eigenvalue of a matrix A given the factors Q, T of its Schur form $A=$ $Q T Q^{-1}$. Your algorithm should have complexity $O\left(n^{3}\right)$ (check this!).
2. (a) Let $A \in \mathbb{C}^{n \times n}$ be block triangular, i.e.,

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]
$$

Given the factors of the Schur forms of $A_{11}=Q_{11} T_{11} Q_{11}^{*}$ and $A_{22}=$ $Q_{22} T_{22} Q_{22}^{*}$, can you compute explicitly the Schur form of A ?
(b) Use the previous point to give another proof that the eigenvalues of A are given by the union of the eigenvalues of A_{11} and those of A_{22}.
3. A matrix $A \in \mathbb{C}^{n \times n}$ is called normal if $A^{*} A=A A^{*}$.
(a) Show that A is normal if and only if the triangular factor of its Schur form T is normal.
(b) Show that an upper triangular matrix T is normal if and only if it is diagonal. (Hint: compute the diagonal entries of $T T^{*}$ and $T^{*} T$).
(c) Use the previous two points to show that A is normal if and only if in its Schur form the factor T is diagonal.

