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1. (Why on page 2 of the November 24 slides there is xk = (A − tI)−1qk
earlier and qk = (A − tI)−1xk later) You are correct - I switched xk and
qk in the second formula. The correct version is the one in the pseudocode.

2. (Is it correct that when using the non-normalized power method xk →∞
when |λ1| > 1) You are correct: the typical behavior for the power method
when |λ1| > 1 is that the entries of xk diverge. Two things happen: xk
gets longer as k increases, and it also gets aligned with the direction of
the leading eigenvector v1. This is discussed in the November 23 lecture,
starting from page 4: first I draw an example of this typical behavior in
R2, then we prove a more precise assertion:

Lemma 1. If A is diagonalizable (i.e., A = V DV −1 with D diagonal),
whenever x0 is chosen such that the first entry of V −1x0 is nonzero, then
1
γk
xk tends to a multiple of the eigenvector v1 (where γk = λk1).

This is proved first in the case in which A is diagonal and then in page 6
we extend the proof to a diagonalizable A.

In particular, the fact that 1
γk
xk → v1 implies that for each index h =

1, 2, ..., n such that the entry (v1)h of v1 is nonzero, the corresponding
entry (xk)h diverges:

lim(xk)h = lim

(
1

γk
xk

)
h

· lim γk = (v1)h · ∞ =∞.

(Note that the last steps works only if (v1)h 6= 0.)

3. (In subspace iteration, why can we ignore factors that post-multiply Zk
(or Xk) — I hope I understand this question correctly.) The main reason
is the following result: let ImM denote the column space of a matrix M
(also called image, or range; i.e., the space spanned by all its columns).

Lemma 2. Let X,Z ∈ Cn×p, with n ≥ p, be such that X = ZR, with
R ∈ Cp×p nonsingular. Then, ImX = ImZ.

Proof. Let Xh = Xeh be the hth column of X (and similarly for Rh and
Zh): then, we have for each h

Xh = (ZR)h = Z1R1h + Z2R2h + · · ·+ ZkRph.

This shows that Xh ∈ ImZ, because it is a linear combination of the
columns of Z. Since this holds for each h, we have ImX ⊆ ImZ.

We have Z = XR−1, so we can repeat the same argument swapping X
and Z, with R−1 instead of R, and prove that ImZ ⊆ ImX.

So if we are only interested in the column space of a matrix X, we are
free to replace it with itself multiplied (to the right) by a square invertible
matrix.
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We use this lemma in several places: when we implement subspace itera-
tion, we replace at each step Xk with Ẑk = Xk(R̂k)−1. In particular, if we
start from the same X0 = Ẑ0, the sequences Xk (defined by Xk = AXk−1

or Xk = AkX0, hence obtained without ‘replacements’) and Ẑk (defined
by [Ẑk, Rk] = thin_qr(AẐk−1), so with ‘replacements’ at each step) have
the same image: indeed,

X1 = AX0 = Ẑ1R̂1, (1a)

X2 = AX1 = AẐ1R̂1 = Z2R̂2R̂1, (1b)

X3 = AX2 = AẐ2R̂2R̂1 = Ẑ3R̂3R̂2R̂1, (1c)

. . . . . . (1d)

so at each stepXk is equal to Ẑk multiplied by the matrix R̂kR̂k−1 · · · R̂2R̂1

(this argument can be easily turned into an induction proof).

Similarly, when we analyze the method, we make a QR factorization X∗
0 =

QS∗, or, transposing, X0 = SQ∗, and then we focus on computing the
image of AkS rather than AkX0, because they only differ by multiplication
by the invertible Q∗.

(In the November 24 lecture I did not give an explicit name to S, but I
just replaced X0 with X0Q = S at some point; I am sorry if this made
things more confusing.)

(In the beginning of the November 29 lecture, I tried to re-explain better
this part on why we can multiply by an invertible matrix on the right.)

There is one last thing that you may be asking yourself about at this
point, and it is ‘for the lemma to work, you need the R̂k to be invertible
at each step; why is this the case?’. The answer is that R̂k is not always
invertible (for instance, if A = 0, no matter what X0 we choose, AX0 = 0,
and so we must have R̂1 = 0 in the thin QR) but it is invertible under the
hypotheses that we made in our convergence analysis of the method. For
completeness, here is a proof.

Lemma 3. Let A be diagonal, and suppose that the square submatrix
formed by the first p rows of X0 = Ẑ0 is invertible. Then, at each step k
of the subspace iteration,

• the submatrix formed by the first p rows of Xk is invertible;

• the submatrix formed by the first p rows of Ẑk is invertible;

• R̂k is invertible.

Proof. For ease of notation, for a matrix M ∈ Cn×p we call F (M) the
p× p matrix formed by its first p rows.
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As in the Nov 24 lecture, we make the thin QR factorization X∗
0 = QS∗,

or

X0 = SQ∗ =



x11 0 0 . . . 0
x21 x22 0 . . . 0

...
. . .

. . .
. . .

...
xp−1,1 xp−1,2 . . . xp−1,p−1 0
xp1 xp2 . . . . . . xpp
xp+1,1 xp+2,2 . . . . . . xp+1,p

...
...

...
...

...
xn1 xn2 . . . . . . xnp


Q∗

If we take only the leading p × p block of both sides of this equality, we
have the equation F (X0) = F (S)Q∗. Here F (X0) and Q∗ are invertible,
so F (S) must be invertible too: to see this, you can take determinants,
for instance: 0 6= detF (X0) = det(F (S)Q∗) = detF (S) detQ∗, so none of
the determinants in the right-hand side can be zero.

In particular, we have x11, x22, . . . , xpp 6= 0 (a triangular matrix is nonsin-
gular if and only if its diagonal entries are nonzero).

It follows from the computation in our Nov 24 lecture (page 6 in the
handwritten notes) that

F (AkS) =


λk1x11 0 0 . . . 0
λk2x21 λk2x22 0 . . . 0

...
. . .

. . .
. . .

...
λkp−1xp−1,1 λkp−1xp−1,2 . . . λkp−1xp−1,p−1 0
λkpxp1 λkpxp2 . . . . . . λkpxpp

 ,

and this matrix is invertible, too (because it is a triangular matrix with
nonzeros on the diagonal). So also F (Xk) = F (AkX0) = F (AkSQ∗) =
F (AkS)Q∗ is invertible. In view of the Equations (1) above in this note,
F (Xk) = F (ẐkR̂kR̂k−1 . . . R̂1) = F (Ẑk)R̂kR̂k−1 . . . R̂1, and this implies
that F (Ẑk), R̂k, R̂k−1, . . . , R̂1 must all be nonsingular. (Again, you can
take determinants to see it.)

Again, we can generalize from the case of A diagonal to the one of A
diagonalizable:

Lemma 4. Let A be diagonalizable (i.e., A = V DV −1 with D diago-
nal), and suppose that the square submatrix formed by the first p rows
of V −1X0 = V −1Ẑ0 is invertible. Then, at each step k of the subspace
iteration,

• the submatrix formed by the first p rows of V −1Xk is invertible;

• the submatrix formed by the first p rows of V −1Ẑk is invertible;

• R̂k is invertible.
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(Note that the condition on the p× p block of V −1X0 is a generalization
of the condition on the first entry of V −1x0 in the power method.)

Demmel’s book deals with orthogonal iteration in Section 4.4.3, but he
only states without proof that Im Ẑi = Im(AiẐ0), and then makes some
arguments about convergence of subspaces (which I find less convincing
than the version I explained to you – that is why I chose to go through a
different route.)

4. (How can one prove that Xk and Ẑk span the same subspace) I have
already answered to this in the previous point: the computation around
Equations 1 shows that Xk = ẐkR̂kR̂k−1 · · · R̂1; Lemma 4 shows that
under our suitable hypotheses R̂k is invertible for each k, and Lemma 2
shows that in this case Ẑk and Xk span the same subspace.


