
1

1. (Is Matlab’s operator * “smart” in the sense that it is able to compute matrix products
faster than the nominal cost of O(n3) in special cases, like for instance A\b is faster when A
is triangular?)

No, it is not (as far as I know, at least — it’s closed-source, so there could be anything
in it. . .). It always computes the product with the general method: the product between
A ∈ Cm×n and B ∈ Cn×p is computed by doing mp scalar products between vectors of
length n, and costs O(mnp).

In the cases where there is a smarter strategy to compute a product (e.g., A is an identity-
plus-rank-1, A is diagonal, A has zero rows. . .), you will have to implement it yourself.

There is one exception: Matlab has a type sparse for sparse matrices (that is, matrices with
lots of zeros), although we haven’t discussed it in detail in the course, which is implemented
by storing only the triples (i, j, Aij) with Aij 6= 0. Products with a matrix of type sparse

iterate only on the nonzero values.

2. (In the end of the November 29 lecture, why do we choose shift σk = (Ak)nn in shifted QR,

and why does this choice give local convergence with ‖Ek‖ = O(‖Ek‖2))

We did not prove this statement – I just claimed it. A proof for it will not be required.
If you are curious, there is an ‘informal analysis’ in Section 4.4.4 of Demmel’s book. This
analysis captures the typical behavior of the method. A general statement that works for all
matrices is more difficult to obtain. There are convergence proofs under special assumptions,
but convergence of the QR iteration in full generality (with the various shifting strategies
that are used in practice, repeated eigenvalues, and keeping track also of errors in computer
arithmetic) is still a research topic.

3. (Again in the November 29 lecture, we quickly describe how Hessenberg matrices can be
used to reduce the complexity of a method to compute eigenvalues; does this apply to the
QR iteration only, or also to the other methods?)

We just outlined this method, and only for the QR iteration.

There might be some minor advantages in reducing A to Hessenberg form before starting
one of the other methods (we have more zeros in the matrix, so the products are cheaper),
but since the cost of the procedure is O(n3) I don’t think it is worth it in general. It is not
used in practice.

In particular, I don’t see a simple way to exploit the Hessenberg form to reduce the complex-
ity of orthogonal iteration with p = n directly, without transforming it into QR iteration.

For subspace iteration with p � n and the power method (which is its p = 1 variant),
the methods cost O(n2p) per iteration, so applying a O(n3) precomputation is not worth
it, unless we have a very large number of iterations. But at that point full QR iteration
starts to become competitive: one typically uses power iteration and its variants to compute
eigenvalues only when either the number of iterations p is small, or we have some particular
structure that allows one to perform matrix products with costs less than O(n2) (such as
sparsity).

4. (At the top of page 4 of the November 29 lecture, shouldn’t |λp| > |λp+1| be |λp′ | > |λp′+1|
instead?) Yes, you are correct. My bad. I will add a correction to the slides.

