
1

1. (Why does my QR implementation in Matlab get some entries correct and some wrong —
sometimes only by a sign?)
The QR factorization is not unique. For instance, if D is any diagonal matrix with ±1 on
the diagonal, one can replace Q and R with (QD), (D−1R). So it is possible that your
implementation just returns a different factorization. To check the result, you can verify
that norm(A-Q*R) / norm(A) is small. For instance, a good test is

assert(norm(Q*R-A)/norm(A) < sqrt(eps));
assert(norm(Q*Q’ - eye(size(Q))) < sqrt(eps));
assert(all(all(R == triu(R))));

Many of you wrote your for loop as

n = size(A, 1);
for i = 1:n

(compute HH reflector that maps A(k,k:end) to a multiple of e1)
(apply reflector to the last n-i+1 rows of the matrix)

end

Note that the last iteration of the loop works on a 1×1 matrix, so it can be omitted (a 1×1
matrix is already upper triangular!) and the for loop can stop at n − 1. If you check what
your code does for a 1× 1 matrix, it turns out that H = −1, so this last step does nothing
but changing signs.

2. (Why does M=qr(A) return a different result than [Q,R] = qr(A))
Matlab is a weird language, and functions can have a different behavior according to the
number of return values they are called with.
In particular, for a dense matrix, the one-output version of QR returns a matrix M such that
its upper triangular part triu(M) is R, and its lower triangular part contains a compressed
representation of Q (its jth column contains a compressed representation of the vector uj

that defines Hj). All of this is described in the docs (see doc qr).

3. (In conjugate gradient, why do we claim that dk+1 is orthogonal to dj for j = 1, 2, . . . , k if
in the algorithm we enforce only orthogonality to dk)?
It is a consequence of the symmetry/Hermitianity of A that dk+1 is always orthogonal also
to d1, d2, . . . , dk−1, even if we do not enforce it explicitly in the algorithm.
Formally, one proves simultaneously by induction (we did not see the details during the
course).

Lemma 1. Let dk, rk be the sequences of search directions and residuals produced in conju-
gate gradient. Suppose that no breakdown happens in the process. Then,

(a) rk ∈ Kk+1(A, b), i.e., rk = αk0b+αk1Ab+· · ·+αkkA
kb for some choice of the coefficients

αkj. Moreover, αkk 6= 0.
(b) r0, r1, . . . , rk−1, rk are a basis of Kk+1(A, b);
(c) dk ∈ Kk+1(A, b), i.e., dk = γk0b+γk1Ab+· · ·+γkkA

kb for some choice of the coefficients
γkj. Moreover, γkk 6= 0.

(d) d0, d1, . . . , dk−1, dk are a basis of Kk+1(A, b);
(e) r∗

j rk = 0 for each j < k;
(f) d∗

jAdk = 0 for each j < k.

Proof (sketch). Let us focus on the induction step k → k+ 1, i.e., we assume that the result
holds already for a certain value of k and prove it for k + 1.



2

(a)

rk+1 = rk + tkAdk = (αk0b+αk1Ab+ · · ·+αkkA
kb)+ tkA(γk0b+γk1Ab+ · · ·+γkkA

kb),

so rk+1 is a linear combination of b, Ab, . . . , Ak+1b. The coefficient in front of Ak+1b is
tkγkk; tk can’t be zero otherwise there would be breakdown, and γk−1 can’t be zero by
induction.

(b) r0, r1, . . . , rk−1, rk are a basis of Kk+1(A, b), and rk+1 is in Kk+2(A, b) but not in
Kk+1(A, b), so it is independent from them.

(c) Analogous to 1.
(d) Analogous to 2.
(e)

r∗
j rk+1 = r∗

j (rk − tkAdk). (1)

If j = k, orthogonality is enforced in the algorithm by the choice of tk. If j < k, then
r∗

j rk = 0 by induction hypothesis, so we only need to prove that r∗
jAdk = 0. We have

rj ∈ Kj+1(A, b), so rj = δ0d0 + δ1d1 + · · ·+ δjdj , hence if j < k r∗
jAdk = 0 by induction

hypothesis.
(f) Similarly to 5,

d∗
jAdk+1 = d∗

jA(rk+1 + βk+1dk). (2)

If j = k, d∗
kAdk+1 = 0 follows by the choice of βk+1. If j < k, we have d∗

jAdk = 0 by
induction, so we only need to show that d∗

jArk+1 = 0. The vector Adj is in the Krylov
space Kk(A, b), hence it is a linear combination of r0, r1, . . . , rk, so (Adj)∗rk+1 = 0.

4. (How does one get the formula βk = r∗
krk

r∗
k−1rk−1

?)

We choose the value βk so that dk = rk + βkdk−1 satisfies d∗
k−1Adk = 0. Substituting and

expanding one gets

0 = d∗
k−1Adk = d∗

k−1A(rk + βkdk−1) = d∗
k−1Ark + βk(d∗

k−1Adk−1) =⇒ βk = −
d∗

k−1Ark

d∗
k−1Adk−1

.

This gives already an expression for βk; now we prove that it is also equal to r∗
krk

r∗
k−1rk−1

.

We manipulate the numerator using the other formula that defines the CG iteration, that
is, rk+1 = rk − tkAdk. We have

r∗
k+1rk+1 = (rk − tkAdk)∗rk+1 = 0− tk(d∗

kArk+1)

(here the bar denotes a complex conjugate), so, shifting indices, r∗
krk = −tk−1(d∗

k−1Ark).
For the denominator, we have similarly

r∗
k−1rk−1 = (rk+tk−1Adk−1)∗rk−1 = 0+tk−1d

∗
k−1Ark−1 = tk−1d

∗
k−1A(dk−1−βk−1dk−2) = tk−1d

∗
k−1Adk−1.

Combining these two last formulas one gets the equivalent expression for βk.


