1. (Why does my QR implementation in Matlab get some entries correct and some wrong sometimes only by a sign?)
The QR factorization is not unique. For instance, if D is any diagonal matrix with ± 1 on the diagonal, one can replace Q and R with $(Q D),\left(D^{-1} R\right)$. So it is possible that your implementation just returns a different factorization. To check the result, you can verify that norm $(A-Q * R) / \operatorname{norm}(A)$ is small. For instance, a good test is
```
assert(norm(Q*R-A)/norm(A) < sqrt(eps));
assert(norm(Q*Q' - eye(size(Q))) < sqrt(eps));
assert(all(all(R == triu(R))));
```

Many of you wrote your for loop as

```
n = size(A, 1);
for i = 1:n
    (compute HH reflector that maps A(k,k:end) to a multiple of e1)
    (apply reflector to the last n-i+1 rows of the matrix)
end
```

Note that the last iteration of the loop works on a 1×1 matrix, so it can be omitted (a 1×1 matrix is already upper triangular!) and the for loop can stop at $n-1$. If you check what your code does for a 1×1 matrix, it turns out that $H=-1$, so this last step does nothing but changing signs.
2. (Why does $M=q r(A)$ return a different result than $[Q, R]=\operatorname{qr}(A))$

Matlab is a weird language, and functions can have a different behavior according to the number of return values they are called with.
In particular, for a dense matrix, the one-output version of QR returns a matrix M such that its upper triangular part triu(M) is R, and its lower triangular part contains a compressed representation of Q (its j th column contains a compressed representation of the vector u_{j} that defines H_{j}). All of this is described in the docs (see doc qr).
3. (In conjugate gradient, why do we claim that d_{k+1} is orthogonal to d_{j} for $j=1,2, \ldots, k$ if in the algorithm we enforce only orthogonality to $\left.d_{k}\right)$?
It is a consequence of the symmetry/Hermitianity of A that d_{k+1} is always orthogonal also to $d_{1}, d_{2}, \ldots, d_{k-1}$, even if we do not enforce it explicitly in the algorithm.
Formally, one proves simultaneously by induction (we did not see the details during the course).

Lemma 1. Let d_{k}, r_{k} be the sequences of search directions and residuals produced in conjugate gradient. Suppose that no breakdown happens in the process. Then,
(a) $r_{k} \in K_{k+1}(A, b)$, i.e., $r_{k}=\alpha_{k 0} b+\alpha_{k 1} A b+\cdots+\alpha_{k k} A^{k} b$ for some choice of the coefficients $\alpha_{k j}$. Moreover, $\alpha_{k k} \neq 0$.
(b) $r_{0}, r_{1}, \ldots, r_{k-1}, r_{k}$ are a basis of $K_{k+1}(A, b)$;
(c) $d_{k} \in K_{k+1}(A, b)$, i.e., $d_{k}=\gamma_{k 0} b+\gamma_{k 1} A b+\cdots+\gamma_{k k} A^{k} b$ for some choice of the coefficients $\gamma_{k j}$. Moreover, $\gamma_{k k} \neq 0$.
(d) $d_{0}, d_{1}, \ldots, d_{k-1}, d_{k}$ are a basis of $K_{k+1}(A, b)$;
(e) $r_{j}^{*} r_{k}=0$ for each $j<k$;
(f) $d_{j}^{*} A d_{k}=0$ for each $j<k$.

Proof (sketch). Let us focus on the induction step $k \rightarrow k+1$, i.e., we assume that the result holds already for a certain value of k and prove it for $k+1$.
(a)
$r_{k+1}=r_{k}+t_{k} A d_{k}=\left(\alpha_{k 0} b+\alpha_{k 1} A b+\cdots+\alpha_{k k} A^{k} b\right)+t_{k} A\left(\gamma_{k 0} b+\gamma_{k 1} A b+\cdots+\gamma_{k k} A^{k} b\right)$,
so r_{k+1} is a linear combination of $b, A b, \ldots, A^{k+1} b$. The coefficient in front of $A^{k+1} b$ is $t_{k} \gamma_{k k} ; t_{k}$ can't be zero otherwise there would be breakdown, and γ_{k-1} can't be zero by induction.
(b) $r_{0}, r_{1}, \ldots, r_{k-1}, r_{k}$ are a basis of $K_{k+1}(A, b)$, and r_{k+1} is in $K_{k+2}(A, b)$ but not in $K_{k+1}(A, b)$, so it is independent from them.
(c) Analogous to 1.
(d) Analogous to 2.
(e)

$$
\begin{equation*}
r_{j}^{*} r_{k+1}=r_{j}^{*}\left(r_{k}-t_{k} A d_{k}\right) \tag{1}
\end{equation*}
$$

If $j=k$, orthogonality is enforced in the algorithm by the choice of t_{k}. If $j<k$, then $r_{j}^{*} r_{k}=0$ by induction hypothesis, so we only need to prove that $r_{j}^{*} A d_{k}=0$. We have $r_{j} \in K_{j+1}(A, b)$, so $r_{j}=\delta_{0} d_{0}+\delta_{1} d_{1}+\cdots+\delta_{j} d_{j}$, hence if $j<k r_{j}^{*} A d_{k}=0$ by induction hypothesis.
(f) Similarly to 5 ,

$$
\begin{equation*}
d_{j}^{*} A d_{k+1}=d_{j}^{*} A\left(r_{k+1}+\beta_{k+1} d_{k}\right) . \tag{2}
\end{equation*}
$$

If $j=k, d_{k}^{*} A d_{k+1}=0$ follows by the choice of β_{k+1}. If $j<k$, we have $d_{j}^{*} A d_{k}=0$ by induction, so we only need to show that $d_{j}^{*} A r_{k+1}=0$. The vector $A d_{j}$ is in the Krylov space $K_{k}(A, b)$, hence it is a linear combination of $r_{0}, r_{1}, \ldots, r_{k}$, so $\left(A d_{j}\right)^{*} r_{k+1}=0$.
4. (How does one get the formula $\beta_{k}=\frac{x_{k}^{*} r_{k}}{r_{k-1}^{*} r_{k-1}}$?)

We choose the value β_{k} so that $d_{k}=r_{k}+\beta_{k} d_{k-1}$ satisfies $d_{k-1}^{*} A d_{k}=0$. Substituting and expanding one gets
$0=d_{k-1}^{*} A d_{k}=d_{k-1}^{*} A\left(r_{k}+\beta_{k} d_{k-1}\right)=d_{k-1}^{*} A r_{k}+\beta_{k}\left(d_{k-1}^{*} A d_{k-1}\right) \Longrightarrow \beta_{k}=-\frac{d_{k-1}^{*} A r_{k}}{d_{k-1}^{*} A d_{k-1}}$.
This gives already an expression for β_{k}; now we prove that it is also equal to $\frac{r_{k}^{*} r_{k}}{r_{k-1}^{*} r_{k-1}}$.
We manipulate the numerator using the other formula that defines the CG iteration, that is, $r_{k+1}=r_{k}-t_{k} A d_{k}$. We have

$$
r_{k+1}^{*} r_{k+1}=\left(r_{k}-t_{k} A d_{k}\right)^{*} r_{k+1}=0-\overline{t_{k}}\left(d_{k}^{*} A r_{k+1}\right)
$$

(here the bar denotes a complex conjugate), so, shifting indices, $r_{k}^{*} r_{k}=-\overline{t_{k-1}}\left(d_{k-1}^{*} A r_{k}\right)$.
For the denominator, we have similarly

$$
r_{k-1}^{*} r_{k-1}=\left(r_{k}+t_{k-1} A d_{k-1}\right)^{*} r_{k-1}=0+\overline{t_{k-1}} d_{k-1}^{*} A r_{k-1}=\overline{t_{k-1}} d_{k-1}^{*} A\left(d_{k-1}-\beta_{k-1} d_{k-2}\right)=\overline{t_{k-1}} d_{k-1}^{*} A d_{k-1} .
$$

Combining these two last formulas one gets the equivalent expression for β_{k}.

