
AI	Fundamentals:	Constraints	Satisfaction
Maria	Simi

Problem	solving

LESSON	1	– PROBLEM	SOLVING	AS	SEARCH

Problem	solving	as	search
The	dominant	approach	to	solving	problems	in	AI	is	formulating	a	problem	as	
search	in	a	state	space.	
The	paradigm	is	quite	general	and	follows	these	steps:
1. Define	a	goal	(a	set	of	states)
2. Formulate	the	problem	as	a	search	problem:

§ define	a	representation	for	states
§ define	legal	actions	and	transition	functions

3. Find	a	solution	(a	sequence	of	actions)	by	means	of	a	search	process
4. Execute	the	plan

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 3

Problem	structure
A	problem	can	be	defined	formally	by	five	components
1. Initial	state
2. Possible	actions	in	s:	Actions(s)
3. Transition	model:	a	function	Result:	state × action® state

Result(s,	a)	=	s’,	a	successor	state
3. Goal	test:	a	boolean function	

Goal-Test	(s)® {true,	false}
4. Path cost:	function that assigns a	numeric cost to	each path

the	sum	of	the	cost of	the	actions on	the	path c(s,	a,	s’)
Note:	1,	2,	3	implicitly	define	a	graph

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 4

Searching	algorithms
A	problem is	given	as	input	to	a	search	algorithm.	A	solution to	a	problem	is	a	
path	(action	sequence) that	leads	from	the	initial	state	to	a	goal	state.	
Solution	quality	is	measured	by	the	path	cost	function:	an	optimal	solution	has	
the	lowest	path	cost	among	all	solutions.
Different	strategies	(algorithms)	for	searching	the	state	space	and		their	quality
(time	and	space	complexity,	completeness,	optimality	…)
§ Uninformed	search	methods	vs	informed/heuristic	search	methods,	which	

use	an	heuristic	evaluation	function	of	the	nodes.	A*.
§ Direction	of	search
§ Local	search	methods

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 5

Assumptions	in	problem	solving
Simplifying	assumptions	(wrt to	agent’s	design):
1. States	are	treated	as	black	boxes,	we	only	need	to	know	their	“heuristic	value”	and	

whether	they	are	a	goal,	by	applying	the	Boolean	goal	function.	From	the	point	of	
view	of	searching	algorithms	their	internal	structure	does	not	matter.

2. The	agent	has	perfect	knowledge	of	the	state	(full	accessibility):	it	knows	in	which	
state	it	is.

3. Actions	are	deterministic:	the	agent	can	plan	in	advance.
On	the	other	hand:
The	state	space	is	generated	incrementally,	may	not	fit	in	memory,	may	be	
infinite.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 6

Dynamic	programming
Dynamic	programming	is	a	general	method	for	optimization	that	involves	storing	partial	
solutions	to	problems,	so	that	a	solution	that	has	already	been	found	can	be	retrieved	
in	a	table	rather	than	being	recomputed.	
Dynamic	programming for	graph	searching	can	be	seen	as	constructing	the	perfect
heuristic	function	in	advance	so	that,	by	keeping	only	one	element	of	the	frontier,	it	is	
guaranteed	to	find	an	optimal	solution.	 It	is	based	on	a	pre-computed	table	of	the	
lowest	cost_to_goal(n) value	for	each	node.
The	main	limitations	of	dynamic	programming	are	that:	
§ it	only	works	when	the	graph	is	finite	and	the	table	small	enough to	fit	into	memory,	
§ an	agent	must	re-compute	a	policy	for	each	different	goal.
Dynamic	programming	algorithms	are	not	typical	of	AI	but	are	used	throughout	AI.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 7

Constraints	satisfaction

LESSON	1	- AN	INTRODUCTION AND	PROBLEM	FORMULATION

Searching	vs	constraint	satisfaction
It	is	often	better	to	describe	states	in	terms	of	features	and	then	to	reason	in	
terms	of	these	features.	We	call	this	a	factored	representation.
For	real	world	states	it	is	usually	more	natural	and	efficient		to	describe	the	
features	that	make	up	the	state	rather	than	explicitly	enumerating	the	states.	10	
binary	features	can	describe	210=1024	states.
Often	these	features	are	not	independent	and	there	are	constraints that	specify	
legal	combinations	of	assignments	of	values	to	them.	
The	mind	discovers	and	exploits	constraints	to	solve	tasks.	For	many	important	
problems	this	strategy	can	make	problem	solving	more	efficient.	
Constraint	satisfaction	is	about	generating	assignments	that	satisfy	a	set	of	hard	
constraints	and	how	to	optimize	a	collection	of	soft	constraints	(preferences).
A	powerful	mechanism	spanning	a	large	number	of	applications.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 9

A	feature	representation	for	states
Electrical	circuit	in	a	house
§ a feature	for	the	position	of	each	switch	that	

specifies	whether	the	switch	is	up	or	down.
§ a	feature	for	each	light	that	specifies	whether	the	

light	is	lit	or	no
§ a	feature	for	each	component	specifying	whether	it	

is	working	properly	or	if	it	is	broken.	
A	state	consists	of	the	position	of	every	switch,	
the	status	of	every	device,	and	so	on,	i.e.	an	
assignment	of	a	value	to	each	feature.	
For	example,	a	state	may	be	described	as	switch	
1	is	up,	switch	2	is	down,	fuse	1	is	okay,	wire	3	is	
broken,	… the	role	of	constraints.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 10

What	is	a	constraint	satisfaction	problem?
A	CSP	is	a	problem	composed	of
§ a	finite	set	of	variables,	
§ each	variable	is	associated	with	a	finite	domain
§ and	a	set	of	constraints	that	restrict	the	values	the	variables	can	

simultaneously	take.	
The	task	is	to	assign	a	value	(from	the	associated	domain)	to	each	variable	
satisfying	all	the	constraints
The	problem	in	NP	hard	in	the	worst	cases	but	general	heuristic	exist	and	
structure	can	be	exploited	for	efficiency.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 11

Map	coloring	problem

The	task	is	to	color	regions	on	
the	map	with	three	colors	in	
such	a	way	that	no	two	adjacent	
regions	get	the	same	color.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 12

The	N-queens	problem

The	problem	is	to	place	N queens	on	N
different	squares	on	a	N	x	N chess	
board,	satisfying	the	constraint	that	no	
two	queens	can	threaten	each	other.
Remind:	a	queen	can	threaten	any	
other	pieces	on	the	same	row,	column	
or	diagonal.	
The	figure	shows	a	solution	to	the	8-
queens	problem

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 13

Using	constraints to	solve	problems
1. Informal	problem	description
2. Formalization	of	a	constraint	

satisfaction	problem	by	defining	the	
set	of	variables,	their	domains	and	
all	the	relevant	constraints

3. Choose	a	model	and	an	algorithm	
for	solving	the	problem	(or	use	
constraint	solving	packages)

4. Implementation	and	actually	
solving	the	problem

There	are	many	different	ways	to	
formulate	the	same	problem;	efficiency	
may	vary

Different	models	and	approaches:	
systematic	search	or	repair/stochastic	
approach?

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 14

CSP:	a	formal	definition
A		Constraint	Satisfaction	Problem	consists	of	three	components,	X,	D,	and	C

CSP	=	⟨X,	D,	C〉
1. X is	a	set	of	variables,	{x1,	…,	xn}
2. D is	a	set	of	domains,	{D1,	…, Dn},	one	for	each	variable.	
The	domain of	a	variable	x is	a	set	of	all	possible	values	{v1,	.	.	.	,	vk}	that	can	be	assigned	
to	the	variable	x
Dom =	a	function	which	maps	every	variable	in	X to	a	set	of	objects	of	arbitrary	type	
Dom(x)	=	Dx is	the	domain	of	x,	the	set	of	possible	values	for	x
Domains	can	be	numerical	(integer	or	real	numbers),	boolean,	symbolic	...	
3. C is	a	set	of	constraints	that	specify	allowable	combinations	of	values

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 15

CSP:	assignment
A [partial]	assignment	of	values	to	a	set	of	variables	(also	called	compound	
label)	is	a	set	of	pairs:

A	=	{⟨xi,	νi 〉 ⟨xj,	νj 〉 … }	
where	values	are	taken	from	the	variable	domain:	νi ∈	Dxi
A complete	assignment	is	an	assignment	to	all	the	variables	of	the	problem
A	complete	assignment	can	be	projected	to	a	smaller	partial	assignment	by	
restricting	the	variables	to	a	subset.	We	will	use	this	notation	for	the	projection:

𝛑𝑥1, … , 𝑥𝑘	
𝐴

Where	𝛑 is	the	projection	operator	of	relational	algebra

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 16

CSP:	constraints	representation
A	constraint	on	a	set	of	variables is	a set	of	possible	assignments	for	those	
variables
Each	constraint	C	can	be	represented	as	a	pair	⟨scope,	rel 〉	
§ scope is	a	tuple	of	variables	that	participate	in	the	constraint	 (x1,	x2,	… xk)
§ rel is	a	relation	that	defines	the	allowable	combination	of	values	for	those	variables,	taken	

from	their	respective	domains

The	relation	can	be	represented	as:
§ an	explicit	list	of	all	tuples	of	values	that	satisfy	the	constraint,	explicit	relation.
§ an	implicit	relation,	an	object	that	supports	two	operations:	(1)	testing	if	a	tuple	is	a	member	

of	the	relation	and	(2)	enumerating	the	members	of	the	relation.	
We	will	also	use		Cx1,	x2,	… xk=	rel to	denote	a	constraint	on	the	scope	variables	x1,	x2,	…
xk:	i.e.	the	constraint	C	=	⟨(x1,	x2,	… xk),	rel 〉	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 17

Examples	of	constraint
Example	1
If	x1 and	x2 both	have	the	domain	{A,	B},	the	constraint	that	the	two	
variables	must	have	different	values	can	be	written	as
⟨(x1,	x2),	{(A,	B),	(B,	A)}〉 by	explicit	enumeration	Cx1,	x2	=	{(A,	B),	(B,	A)}
⟨(x1,	x2),	x1 ≠	x2 〉	 by	implicit	definition

Cx1,	x2	=	{(v1,	v2)	| v1	∈	Dx1,	v2	∈	Dx2 , v1 ≠	v2}
Example	2	(ternary	constraint)
X	=	{a,	b,	c	}			 Da =	Db =	Dc =	{1,	2,	3,	4,	5,	6}
Ca,b,c =	{(1, 2,	3),	(1,	4,	3),	(4,	5,	6)}	=

{⟨a,	1〉, ⟨b,	2〉, ⟨c,	3〉),	(⟨a,	1〉	⟨b,	4〉	⟨c,	3〉),	(⟨a,	4 〉	⟨b,	5〉	⟨c,	6〉)}

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 18

Constraint	satisfaction
Satisfies is	a	binary	relationship	between	an	assignment	and	a	constraint:
Satisfies({⟨x1,ν1〉 ⟨x2,ν2〉 … ⟨xk,νk〉},	Cx1, x2	…xk)	≡	

{⟨x1,ν1〉 ⟨x2,ν2〉 … ⟨xk,νk〉}	∈	Cx1, x2	…xk
Example:
Satisfies({⟨x1, A〉,	⟨x2, B〉},	⟨(x1,	x2),	{(A,	B),	(B,	A)}〉)
Satisfies({⟨x1, B〉,	⟨x2, A〉},	⟨(x1,	x2),	x1 ≠	x2〉)
NOT	Satisfies({⟨x1, B〉,	⟨x2, B〉},	⟨(x1,	x2),	{(A,	B),	(B,	A)}〉)

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 19

CSP:	solution
To	solve	a	CSP	problem	⟨X,	D,	C	〉,	we	need	to	define	a	state space	and	the	notion	
of	a	solution.	
A	state in	a	CSP	is	an	assignment	of	values	to	some	or	all	of	the	variables
Consistent	assignment:	one	that	satisfies	all	the	constraints
§ Satisfies({⟨x1,	ν1〉 ⟨x2,	ν2〉 … ⟨xk,	νk〉},	Cx1, x2	…xk)	for	any	constraint	in	C
Partial/complete	assignment:
§ A	partial	assignment is	one	that	assigns	values	to	only	some	of	the	variables.
§ A	complete assignment	is	one	in	which	every	variable	is	assigned
A	solution to	a	CSP	is	a	consistent,	complete	assignment.	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 20

Types	of	constraints
The	simplest	kind	of	CSP	involves	variables	that	have	discrete,	finite domains
§ Values	can	be	numbers,	strings,	Boolens (True,	False)
When	variables	are	numbers,	and	the	constraints	are	inequalities	will	can	deal	
with	variables	with	infinite	domains	or	continuous	domains	with	linear	or	integer	
programming	(techniques	used	in	Operations	research).
According	to	the	variables	involved	constraints	can	be:
§ unary (ex.	“x	even”)
§ binary (ex.	“x	> y”)
§ higher-order	constraints (ex.	x+y =	z)
Absolute/hard vs	soft/preference constraints
§ CSPs with	preferences can	be	solved by	optimization methods.	These are	called

Constraint Optimization problem,	or	COP.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 21

Problem	formalization:	examples
Map	coloring
The	N-queens	problem
Scheduling
Car	sequencing
Scene	labelling	in	vision
Temporal	reasoning	in	planning
Subgraph	matching	in	semantic	networks
… other

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 22

Map	coloring:	constraint	graph

Variables: WA, NT, SA, Q,
NSW, V, T

Domains: {red, green, blue}

Constraints: WA¹ NT, WA¹SA,
NT¹ Q, SA¹ Q, SA¹ NSW
SA¹ V NSW¹ V

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 23

The	8-queens	problem:	explicit	constraints
A	queen	for	each	column means	8	variables	instead	of	64	of	naïve	formulation.
X =	{Q1,	Q2,...,	Q8}
DQ1	=	DQ2 =	… =	DQ8	=	{1,	2,	3,	4,	5,	6,	7,	8}
C =	{⟨(Q1,	Q2),	 scope

{(1,	3),	(1,	4),	(1,	5),	(1,	6),	(1,	7),	(1,	8), rel
(2,	4),	(2,	5),	(2,	6),	(2,	7),	(2,	8),	(3,	2),	(3,	5),	(3,	6),	(3,	7),	(3,	8),
(4,	1),	(4,	2),	(4,	6),	(4,	7),	(4,	8),	(5,	1),	(5,	2),	(5,	3),	(5,	7),	(5,	8),
(6,	1),	(6,	2),	(6,	3),	(6,	4),	(6,	8),	(7,	1),	(7,	2),	(7,	3),	(7,	4),	(7,	5),
(8,	1),	(8,	2),	(8,	3),	(8,	4),	(8,	5),	(8,	6)}〉,
⟨(Q1,	Q3),	…〉,	⟨(Q1,	Q4),	…〉,	⟨(Q1,	Q5),	…〉	⟨(Q1,	Q6),	…〉}

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 24

The	8-queens	problem:	implicit	constraints
A	queen	for	each	column.
X =	{Q1,	Q2,...,	Q8}
DQ1	=	DQ2 =	… =	DQ8	=	{1,	2,	3,	4,	5,	6,	7,	8}
(1)	not	the	same	row
∀i,	j	.	Qi ≠	Qj

(2)	not	the	same	diagonal
∀i,	j	.	If	Qi	=	a ∧	Qj=	b,	
then	i −	j	≠	a	– b and	i −	j	≠	b – a [Tsang]

Easy	to	write	a	function	checking	for	constraint.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 25

i j
X

a O X

X

Job-Shop	scheduling	[AIMA]
Scheduling	the	assembling	of	a	car,	a	job	requiring	several	tasks;	for	example	installing	
axles,	installing	wheels,	tightening	nuts,	put	on	hubcap,	inspect.
§ X initial	times	of	the	tasks	to	be	performed
§ D finite	number	of	times	in	an	interval	(minutes)
§ C,	temporal	constraints	among	tasks

- Precedence	constraints:	imust	be	completed	before	j	begins
Xi +	di <	Xjwhere	di is	the	duration	of	task	i

- Disjunctive	constraints	between	i and	j, not	overlapping	in	time	(two	workers	and	one	tool)
Xi +	di <	Xj or Xj +	dj<	Xi
- Global	duration	of	the	planned	assembly	jobs.
Limitation	on	the	interval	of	time	considered.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 26

Job-shop	scheduling:	example
X	=	{AxleF,	AxleB,	WheelRF,	WheelLF,	WheelRB,	WheelLB,	NutsRF,	NutsLF ,	NutsRB,	
NutsLB,	CapRF,	CapLF,	CapRB,	CapLB,	Inspect}

Precedence	constraints:
AxleF + 10	≤	WheelRF WheelRF +	1	≤	NutsRF NutsRB +	2	≤	CapRB
AxleF + 10	≤WheelLF WheelLF +	1	≤	NutsLF NutsRF +	2	≤	CapRF
AxleB + 10 ≤	WheelRB WheelRB +	1	≤	NutsRB NutsLF +2	≤	CapLF
AxleB +10	≤WheelLB WheelLB +	1	≤	NutsLB NutsLB +	2	≤	CapLB

Disjunctive	constraint:
(AxleF +	10	≤	AxleB)	or (AxleB +	10	≤	AxleF)
X	+	dX ≤ Inspect	 Di =	{1,	2,	3,	.	.	.	,	27}	 Allowed time:	30	minutes

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 27

The	car	sequencing	problem	[Tsang]	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 28

The	car	sequencing	problem:	description
Cars	are	placed	on	conveyor	belts	which	move	through	different	work	areas.	
Work	areas	specialize	to	do	a	particular	job:	fitting	sunroofs,	car	radios	or	air-
conditioners,	depending	on	the	model.
When	a	car	enters	a	work	area,	a	team	of	engineers	travels	with	the	car	while	working	
on	it.	 They	must	have	enough	time	to	finish	the	job	while	the	car	is	in	their	work	area.	
E.g.	the	capacity	of	the	work	area	for	fitting	roofs	is	5	cars:	the	job	takes	20	min	and	the	
cars	enter	every	4	min.
Each	work	area	has	capacity	constraints,	for	example	if	the	number	of	teams	fitting	
sunroofs	is	3,	they	cannot	deal	with	more	than	3/5	cars.
A	car-sequencing	problem is	specified	by	the	production	and	option	requirements	and	
the	capacity	constraints.	The	output	is	a	proper	sequencing	of	the	cars	to	be	produced.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 29

Car	sequencing	formulation:	hint
The	car-sequencing	problem	can	be	formulated	as	a	CSP	in	the	following	way.	
n variables:	one	for	each	car	position	on	the	conveyor	belt
The	domain	of	each	variable	is	the	set	of	car	models:	{A,	B,	C,	D}	
The	task	is	to	assign	a	value	(a	car	model)	to	each	variable	(a	position	in	the	
conveyor	belt),	satisfying	both	the	production	requirements	and	capacity	
constraints.	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 30

Scene	labelling	[Tsang]

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 31

The	scene	labelling	problem	[Tsang]
To	recognize	the	objects	in	the	scene,	one	must	first	interpret	the	lines	in	the	
drawings.	One	can	categorize	the	lines	in	a	scene	into	the	following	types:
(1)	convex	edges	“+”
(2)	concave	edges	“−	”
(3)	occluding	edges	

An	occluding	edge	is	a	convex	edge	where	one	of	the	planes	is	not	seen	by	
the	viewer.	Occluding	edges	are	marked	with	arrows	according	to	whether	
moving	in	the	direction	of	the	arrow	the	visible	plane	is	to	right	“→”	or	the	
left	“←”.

Constraints	are	dictated	by	physical	constraints.	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 32

Legal	labels	for	junctions

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 33

Temporal	reasoning

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 34

Constraint	graphs

Constraint	graphs
A	binary	CSP,	is	a	CSP	with	unary	and	binary	constraints	only.
A	binary	CSP	may	be	represented	as	an	undirected	graph	(V,	E):

§ Nodes	correspond	to	variables	(V)
§ Edges	correspond	to	binary	constraints	among	variables	(E =	V × V)

Note:	arcs have	a	direction;	edges	are	undirected	arcs;	an	edge	can	be	seen	as	a	
pair	of	arcs.

Node	x is	adjacent to	node	y if	and	only	if	(x,	y)	is	in	E
A	graph	is	connected	if	there	is	a	path	among	any	two	nodes

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 36

Map	coloring:	constraint	graph

Variabili: WA, NT, SA, Q,
NSW, V, T

Domini: {red, green, blue}

Vincoli: WA¹ NT, WA¹SA, NT¹
Q, SA¹ Q, SA¹ NSW SA¹ V
NSW¹ V

Binary	constraint	graph

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 37

Transformation	into	binary	constraints
All	problems	can	be	transformed	into	
binary	constraint	problems	(not	always	
worthwhile).
Example.	
V	=	{x,	y,	z}	
Dx =	Dy =	Dz =	{1,	2}
C		=			{	(<x,1>,<y,1>,<z,2>)	

(<x,1>,<y,2>,<z,2>)		
(<x,1>,<y,2>,<z,1>)				
(<x,2>,<y,1>,<z,2>)				
(<x,2>,<y,1>,<z,1>)			
(<x,2>,<y,2>,<z,1>)}

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 38

Not	all	three	variables	have	the	same	values

Constraints	hypergraphs
In	general,	every	CSP	is	associated	with	a	constraint	hypergraph.	
Hypergraphs	are	a	generalization	of	graphs.	In	a	hypergraph,	each	hyperedge
may	connect	more	than	two	nodes.	
The	constraint	hypergraph	of	a	CSP	(X,	D,	C)	is	a	hypergraph	in	which	each	node	
represents	a	variable	in	X,	and	each	hyperedge represents	a	higher	order	
constraint	in	C.
Example:	Cryptoarithmetic
Each	letter	stands	for	a	distinct	digit;	
the	aim	is	to	find	a	substitution	of	digits	
for	letters	such	that	the	resulting	sum	is	arithmetically	correct

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 39
(a)

OWTF U R

(b)

+
F

T
T
O

W
W
U

O
O
R

C3 C1C2

C3			C2			C1

Hypergraph:	cryptoarithmetic example

(a)

OWTF U R

(b)

+
F

T
T
O

W
W
U

O
O
R

C3 C1C2

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 40

Square	nodes	are	hypernodes representing	n-ary constraints

The	constraint	hypergraph
for	the	cryptarithmetic problem,	
showing	the	Alldiff constraint	(square	
box	at	the	top)	as	well	as	the	column	
addition	constraints	(four	square	boxes	
in	the	middle).	The	variables	C1	,	C2	,	
and	C3 represent	the	carry	digits	for	
the	three	columns.

CSP	solving	techniques:	an	overview
Problem	reduction/Inference/Constraint	propagation
§ Techniques	for	transforming	a	CSP	into	an	equivalent	one	which	is	easier	to	solve	or	
recognizable	as	insoluble	(removing	values	from	domains	and	tightening	constraints).

Searching
§ Search	in	the	space	of	labels:	enumerate	combinations	of	labels	to	find	solutions.	
§ How	to	search	efficiently:	heuristics,	intelligent	backtracking	… local	search				

Exploiting	the	structure	of	the	problem
§ Independent	sub-problems,	tree-structured	constraints,	tree-decomposition,	exploiting	
symmetry

[Solution	synthesis
§ Construct	and	extend	partial	solutions	in	order	to	generate	the	set	of	all	solution	tuples]

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 41

Searching	for	solution	labels
simple	backtracking

Choice	points	in	searching:
1. Pick	a	variable	to	assign	next
2. Pick	value	for	that	variable
3. Pick	a	constraint	to	work	on	next

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 42

Combining	problem	reduction	and	search
Cost	of	problem	reduction	vs.	cost	of	
backtracking.
The	more	effort	one	spends	on	
problem	reduction,	the	less	effort	one	
needs	in	searching
[Tsang]

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 43

Solution	synthesis
Synthesis	techniques	constructively	generate	legal	compound	labels	rather	than	
eliminating	redundant	labels	or	redundant	compound	labels.	

One	can	see	solution	synthesis	as	a	special	case	of	problem	reduction	in	which	the	n-
constraint	for	a	problem	with	n variables	is	constructed,	and	all	the	n-assignments	
which	violate	some	constraints	are	removed.	

Alternatively,	solution	synthesis	can	be	seen	as	"searching"	multiple	partial	compound	
labels	in	parallel.	

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 44

Problem	characteristics
§ Number	of	solutions	required	(one	/	all)
§ Problem	size	(n.	of	variables	and	constraints)
§ Type	of	variables	and	constraints	(assume	symbolic	values,	binary	constraints)
§ Structure	of	the	constraints	graph	(connectivity,	tree	form	…)
§ Tightness	of	the	problem	(measured	by	the	number	of	solution	tuples	over	

the	number	of	all	distinct	compound	labels	for	all	variables)
§ Quality	of	solutions	(preference	among	solutions,	COP)
§ Partial	solutions	(if	no	solution	exist,	find	“best”	partial	solution)

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 45

Your	turn
Watch	the	video	by	Tsang:	
https://www.youtube.com/watch?v=wrs6Lvo5LZM&feature=youtu.be
Formalize	one	of	the	following	as	CSP:
§ Sudoku
§ Zebra	puzzle	or	Einstein's	Puzzle [https://en.wikipedia.org/wiki/Zebra_Puzzle]
§ Car	sequencing
§ Scene	labelling

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 46

Conclusions
§ We	introduces	CSP	and	the	language	to	formally	define	them.
§ Several	examples	representing	a	number	of	problems	that	can	be	formalized	

according	to	this	model.
§ Types	of	problems	and	characteristics	that	influence	the	solution.
Next,	the	techniques	for	solving	CSP:
1. Problem	reduction	techniques
2. Making	the	search	more	efficient
3. Exploiting	the	problem	structure

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 47

References
Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach (3rd
edition).	Pearson	Education	2010	[Cap	6	– CSP]
Edward	Tsang,	Foundations	of	Constraints	Satisfaction.
Handbook	of	Constraint	Programming,	Edited	by	F.	Rossi,	P.	van	Beek and	T.	
Walsh.	Elsevier	2006.

26/09/17 AI	FUNDAMENTALS	- M.	SIMI 48

