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Constraints	Propagation

LESSON	2	
CONSTRAINT	PROPAGATION	– LOCAL	CONSISTENCY	– PROPERTIES.



Constraint	propagation	and	related	concepts
Contraint propagation
§ Constraints	are	used	to	reduce	the	number	of	legal	values	for	a	variable,	

which	in	turn	can	reduce	the	legal	values	for	another	variable,	and	so	on	…
Problem	reduction	techniques
§ Techniques	for	transforming	a	CSP	into	equivalent	problems	which	are	hopefully	

easier	to	solve	or	recognizable	as	insoluble.
Enforcing	local	consistency	
§ The	process	of	enforcing	local	consistency	properties	in	a	constraint	graph	causes	

inconsistent	values	to	be	eliminated	
§ Different	types	of	local	consistency	have	been	studied



Problem	reduction	
Reducing	a	problem	means	removing	from	the	constraints	(legal	assignments)	those	
assignments	which	appear	in	no	solution	tuples.	
Two	CSP	problems	are	equivalent	if	they	have	identical	sets	of	variables	and	
solutions.
A	CSP	problem	P1 is	reduced to	a	problem	P2 when
1. P1	is	equivalent	to	P2

2. Domains	of	variables	in	P2	are	subsets	wrt those	in	P1	

3. The	constraints	in	P2 are	at	least	as	restrictive	than	in	P1

These	conditions	guarantee	that	a	solution	to	P2 is	also	a	solution	to	P1	,	only	
redundant values	and	assignments are	removed	(no	solution	is	lost).
The	problem	is	easier	to	solve.

28/09/17 AI	FUNDAMENTALS	- M.	SIMI 4



Problem	reduction	strategies
Problem	reduction	involves	two	possible	tasks:	
1. removing	redundant	values	from	the	domains	of	the	variables
2. tightening	the	constraints	so	that	fewer	compound	labels	satisfy	them

Example:		if	x	<	y	is	a	constraint	and	Dx =	{3,	4,	5}	and	Dy =	{1,	2,	4}	domains	can	
be	safely	reduced	to	{3}	and	{4}.
Constraints	are	seen	as	sets,	then	this	means	removing	redundant	compound	
labels	from	the	constraints.	If	the	domain	of	any	variable	or	any	constraint	is	
reduced	to	an	empty	set,	then	one	can	conclude	that	the	problem	is	insoluble.	
Problem	reduction	is	also	called	consistency	maintenance since	it	relies	on							
[re-]establishing	local	consistency	properties.
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Local	consistency	properties
§Node	consistency
§Arc	consistency
§Directional	arc	consistency
§Generalized	arc	consistency
§ Path	consistency
§ K-consistency
§ Forward	Checking
All	these	operations	do	not	change	the	set	of	the	solutions,	do	not	necessarily	
solve	a	problem	but,	used	in	conjunction	with	search,	make	the	search	more	
efficient by	pruning	the	search	tree.
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Node	consistency
A	node	is	consistent	if	all	the	values	in	its	domain	satisfy	unary	constraints	on	the	
associated	variable.	In	formula, given	a	unary	constraint	

Ci	=	⟨(xi	),	Ri 〉 Di ⊆	Ri
A	constraint	network	is	node-consistent	if	all	its	nodes	are	consistent
Unary	constraints	can	be	easily	satisfied	by	reducing	the	domains	of	variables.

Di’ ←	Di	∩	Ri Di ←	Di’	
The	algorithm,	called	NC-1,	is	O(d.n)
Example:	in	the	map	coloring	problem	of	Australia
§ Suppose	South	Australia	dislikes	green:	(SA	≠	green)	is	a	unary	constraint.
§ SA	starts	with	domain	{red ,	green,	blue},	and	we	can	make	it	node-consistent by	

eliminating	green,	leaving	SA	with	the	reduced	domain	{red ,	blue}
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Arc	consistency	(for	binary	constraints)
A	variable	in	a	CSP	is	arc-consistent if	every	value	in	its	domain	satisfies	the	
binary	constraints	on	this	variable.
Xi is	arc-consistent with	respect	to	another	variable	Xj if	for	every	value	in	the	
current	domain	Di there	is	some	value	in	the	domain	Dj that	satisfies	the	binary	
constraint	on	the	arc	(Xi,	Xj).
Example:	X	=	{X,	Y}		 DX =	DY =	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9}
Constraint:	⟨(X,	Y),	{(0,	0),	(1,	1),	(2,	4),	(3,	9))}〉 i.e.	X =	Y	2 X →	Y	
To	make	X	arc-consistent	with	respect	to	Y,	we	reduce	X’s	domain	to	{0,	1,	2,	3}.	
If	we	also	make	Y arc-consistent	with	respect	to	X,	then	Y	’s	domain	becomes		{0,	
1,	4,	9}	and	the	whole	edge is	arc-consistent.
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A	relational	algebra	view
Consider	variable	xiwith	associated	domain	Di.	We	further	assume	a	constraint	
between	xi and	xj,	expressed	by	relation	Ri,j.
Arc	xi →	xj is	arc	consistent	iff Di		⊆	𝛑i (Ri,j⨝	Dj)
Where	⨝ and	𝛑 are	the	join	and	projection	operator	of	relational	algebra.	The	
operation	is	a	left	semijoin (⋉)
Arc	xi →	xj can	be	made	arc	consistent	by	computing:
Di’	←	Di	∩	𝛑i (Ri,j⨝	Dj)			 Di ←	Di’

Example:
𝛑x	(Rx,	y	⨝	Dx) =	𝛑x ({(0,	0),	(1,	1),	(2,	4),	(3,	9))}	⨝	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9})

=	𝛑x ({(0,	0),	(1,	1),	(2,	4),	(3,	9))})	=	{0,	1,	2,	3}

Dx’	←	Dx∩	{0,	1,	2,	3}	=	{0,	1,	2,	3}
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Arc	consistent	but	no	solutions
Arc	consistency	does	not	guarantee	a	
solution.

In	this	case	all	the	arcs	are	consistent	but	
there	is	no	solution

Impossible	to	color	three	fully	connected	
nodes	with	two	colors

{g b}

{g b}
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Algorithms	for	arc	consistency	(AC-3)
The	most	popular	algorithm	for	arc	consistency	is	called	AC-3	 [Mackworth,	1977]
AC-3(csp)	maintains	a	queue	of	arcs	to	consider;	initially	all	the	arcs	in	csp.	An	edge
produces	two	arcs.
AC-3	pops	off	an	arc(Xi, Xj)	from	the	queue	and	makes	Xi arc-consistent	with	respect	to	Xj

1. If	this	step	leaves	Di unchanged,	the	algorithm	just	moves	on	to	the	next	arc.	

2. If	Di	 is	made	smaller, then	we	add	to	the	queue	all	arcs	(Xk,	Xi)	where	Xk is	a	neighbor	of	
Xi.	

3. If	Di becomes	empty,	then	we	conclude	that	the	whole	CSP	has	no	consistent	solution.

When	there	are	no	more	arcs	to	consider,	we	are	left	with	a	CSP	that	is	equivalent	to	the	
original	CSP,	but	simpler.
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AC-3:	AIMA	pseudo-code



Arc	consistency:	an	example
§ Variables					A {1,	2,	3,	4}			B {1,	2,	3,	4}			C	{1,	2	,3	4}
§ Constraints	A <	B;	A >	C	

A B				 C
QUEUE ARC ARC	DOMAIN

{(A,	B),	(B,	A),	(A ,	C	),	(C	,	A)}			
{(B,	A),	(A ,	C	),	(C	,	A )}			 (A ,	B) A =	{1,	2,	3,	4}	
{(A,	C	),	(C	,	A)} (B,	A ) B =	{1,	2,	3,	4}
{(C,	A)} (A,	C	) A =	{1,	2,	3}
{(B,	A),	(C	,	A)} add (B,	A)	for	checking
{(C,	A)} (B,	A) B =	{2,	3,	4}
{	} (C, A) C =	{1,	2,	3,	4}	
At	the	end:	A ={2,	3}	 B	={3,	4}	 C	=	{1,	2}

<
>



Complexity	of	AC-3

Assume	a	CSP	with	n	variables,	each	with	domain	size	at	most	d,	and	
with	c binary	constraints	(arcs).
Each	arc	(Xk, Xi)	can	be	inserted	in	the	queue	only	d times	because	Xi
has	at	most	d values	to	delete.
Checking	consistency	of	an	arc	can	be	done	in	O(d	2)	time,	so	we	get	O(c
d	3)	total	worst-case	time
Complexity:	O(c d	3)		...	polynomial	time
The	algorithm	AC-4	is	an	improved	version	of	AC-3,	based	on	the	notion	of	
support,	that	doesn't	need	to		consider	all	the	incoming	arcs.	Some	more	
information	must	be	kept.	O(c d	2).



Directional	Arc	Consistency
Directional	Arc	Consistency	(DAC)	is	defined	under	total	ordering	of	the	
variables.	
A	CSP	is	directional	arc	consistent	(DAC)	under	an	ordering	of	the	variables	if	
and	only	if	for	every	label	⟨x,	a〉 which	satisfies	the	constraints	on	x,	there	exists	
a	compatible	label	⟨y,	b〉 for	every	variable	y,which	is	after	x according	to	the	
ordering.	
In	the	algorithm	for	establishing	DAC	(DAC-1),	each	arc	is	examined	exactly	once,	
by	proceedings	from	the	last	in	the	ordering,	so	the	complexity	is	O(c d	2).
We	will	see	later	an	use	of	this	property.
Warning:	AC	cannot	always	be	achieved	by	running	DAC-1	in	both	directions.	
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DAC	in	both	directions	weaker	than	AC
After	running	DAC	with	orderings	ACB	
and	BCA,	the	only	effect	is	to	delete	1	
from	the	C	domain.
However	the	resulting	graph	is	not	arc	
consistent.
Arc	BC	is	non	consistent:	the	value	1	
should	be	deleted	from	the	domain	of	
B	to	make	the	arc	BC	consistent.
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Generalized	arc	consistency
An	extension	of	the	notion	of	arc	consistency	to	handle	n-ary rather	than	just	
binary	constraints	(also	called	hyper-arc consistency).
A	variable	Xi is	generalized	arc	consistent	with	respect	to	a	n-ary constraint	if	for	
every	value	v in	the	domain	of	Xi there	exists	a	tuple	of	values	that	is	a	member	
of	the	constraint,	has	all	its	values	taken	from	the	domains	of	the	corresponding	
variables,	and	has	its	Xi component	equal	to	v.	
For	example,	if	all	variables	have	the	domain	{0,	1,	2,	3},	then	to	make	the	
variable	X consistent	with	the	ternary	constraint	X <	Y <	Z,	we	would	have	to	
eliminate	2	and	3	from	the	domain	of	X because	the	constraint	cannot	be	
satisfied	when	X is	2	or	3.
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Path	consistency	[Montanari]
Arc	consistency	tightens	down	the	domains	(unary	constraints)	using	the	arcs	
(binary	constraints).	
Path	consistency	is	a	stronger	notion:	it	tightens	the	binary	constraints	by	using	
implicit	constraints	that	are	inferred	by	looking	at	triples	of	variables.
A	path	of	length	2	between	variables	{Xi,	Xj}	is	path-consistent with	respect	to	a	
third	variable	Xm if,	for	every	constistent assignment	{Xi =	a,	Xj =	b},	there	is	an	
assignment	to	Xm that	satisfies	the	constraints	on	{Xi, Xm}	and	{Xm,	Xj}.	
In	relational	algebra:

Ri,j ⊆	𝛑i,j (Ri,m⨝	Dm⨝	Rm,j)
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Path	consistency	algorithm	and	properties
To	achieve	path	consistency:

Ri,j ’	← Ri,j ∩	𝛑i,j (Ri,m⨝	Dm⨝	Rm,j)

Ri,j← Ri,j ’	

The	algorithm	is	called	PC-2.

If	all	path	of	length	2	are	made	consistent,	then	all	path	of	any	length	are	
consistent	[Montanari 1974],	so	longer	path	need	not	be	considered.
This	is	called	path	consistency	because	one	can	think	of	it	as	looking	at	a	path	
from	Xi to	Xj with	Xm in	the	middle.
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Path	consistency:	example
Coloring	the	Australia	map	with	two	colors	is	impossible,	
but	arc-consistency	is	not	able	to	discover	it.
If	we	try	to	make	the	set	{WA,	SA}	path	consistent with	
respect	to	NT.
The	consistent	assignments	for	WA	and	SA	are	only	two:	
1. {WA	=	green,	SA	=	blue}	
2. {WA	=	blue,	SA	=	green}

Neither	of	them	is	compatible	with	NT=green nor	NT=blue,	
so	the	domain	of	WA	and	SA	become	empty	and	we	can	
conclude	that	there	are	no	solutions.
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k-consistency
Stronger	forms	of	propagation	can	be	defined	with	the	notion	of	k-consistency,	
a	generalization	of	the	other	properties.
A	CSP	is	k-consistent if,	for	any	set	of	k −	1	variables	and	for	any	consistent	
assignment	to	those	variables,	a	consistent	value	can	always	be	assigned	to	any	
kth variable.	
1-consistency says	that,	given	the	empty	set,	we	can	make	any	set	of	one	
variable	consistent:	this	is	what	we	called	node	consistency.	
2-consistency is	the	same	as	arc	consistency.	For	binary	constraint	networks
3-consistency is	the	same	as	path	consistency.
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Strong	k-consistency
A	CSP	is	strongly k-consistent if	it	is	k-consistent and	is	also	(k −	1)-consistent,	(k	−	2)-
consistent,	.	.	.	all	the	way	down	to	1-consistent.

Now	suppose	we	have	a	CSP	with	k nodes	and	make	it	strongly	k-consistent.	We	can	
then	solve	the	problem	as	follows:	First,	we	choose	a	consistent	value	for	x1.	We	are	
then	guaranteed	to	be	able	to	choose	a	value	for	x2 because	the	graph	is	2-consistent,	
for	x3 because	it	is	3-consistent,	and	so	on.	
For	each	variable	xi,	we	need	only	search	through	the	d	values	in	the	domain	to	find	a	
value	consistent	with	x1,	.	.	.	,	xi−1.	We	are	guaranteed	to	find	a	solution	in	time	O(n2d).

BUT:	Any	algorithm	for	establishing	k-consistency	must	take	time	exponential	in	k in	the	
worst	case.	Worse,	k-consistency	also	requires	space	that	is	exponential	in	k.
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Forward	checking	(FC)
A	very	weak,	local	and	quick	form	of	consistency	checking	which	is	triggered	
during	the	search	process.
When	you	assign	a	value	v to	a	variable	X in	the	process	of	searching	for	a	
consistent	assignment,	check	the	neighbors	variables	and	exclude	values	that	are	
not	compatible	with	v from	their	domains.
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Specialized	global	constraints	[AIMA]
A global	constraint	is	one	involving	an	arbitrary	number	of	variables	(but	not	
necessarily	all	variables).
The	Alldiff constraint	says	that	all	the	variables	involved	must	have	distinct	
values	and	is	very	common	(Crypto-arithmetic,	Sudoku).
Treating	Alldiff with	special	algorithms	can	be	much	more	efficient.
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Solutions	for	AllDiffs
Simple	form	of	inconsistency	detection	for	Alldiff:	

if	m variables	are	involved	in	the	constraint,	and	if	they	have	n possible	distinct	values	
altogether,	and	m >	n,	then	the	constraint	cannot	be	satisfied.
Remove	any	variable	in	the	constraint	that	has	a	singleton	domain.	Delete	that	
variable’s	value	from	the	domains	of	the	remaining	variables.	Repeat	as	long	as	there	
are	singleton	variables.	If	at	any	point	an	empty	domain	is	produced	or	there	are	
more	variables	than	domain	values	left,	then	an	inconsistency	has	been	detected.

Example:	in	the	map	coloring	problem,	the	assignment	{WA=red	,	NSW	=red}
and	AC-3	do	not	detect	the	inconsistency	on	the	variables	NT,	Q,	SA.	The	Alldiff
constraint	is	instead	effective.
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Resource	constraints
The	resource	constraint	is	often	called	Atmost constraint
Example:	Atmost(10,	P1,	P2,	P3,	P4),	meaning that 10	is the maximum of personnel units
to be assigned to 4	tasks.	This constraint may be checked by summing the minimum
requirement for	personnel for	each task.	
Domains can be represented by upper and lower bounds and managed by bounds
propagation.
Example:	air scheduling with two flights F1 and F2
D1 =	[0,	165]	and	D2 =	[0,	385]	with	additional	constraint	F1	+ F2 =	420
By	propagating	bounds	constraints,	we	reduce	the	domains	to
D1 =	[35,	165]	and	D2 =	[255,	385]
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Conclusions
ü We	have	looked	at	problem	reduction	techniques	which	work	by	enforcing	

local	consistency	properties	of	different	strength	and	complexity.
ü These	are	properties	that	make	the	problem	simpler:	the	more	effort	you	put,	

the	simpler	the	problem	becomes.
ü These	techniques	will	be	used	in	connection	with	search	algorithms	which	is	

the	topic	of	the	next	lecture.
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Your	turn
ü Look	at	the	Python	implementation	of	AC-3	and	use	it	to	reduce	a	CSP	

problem	
ü Study	and	present	AC-4
ü Compare	AC	with	Path	Consistency	(cost	vs	effect).
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