PART 1
Synchronous Algorithms

2

Algorithms for Systems of
Linear Equations and Matrix
Inversion

Let A be an n x n real matrix, let b be a vector in R, and consider the system of linear
equations

Az = b,

where z is an unknown vector to be determined. There is a variety of methods for
solving this system, usually classified as direct and iterative. Direct methods find the
exact solution with a finite number of operations, typically of the order of n3. Iterative
methods do not obtain an exact solution of Az = b in finite time, but they converge
to a solution asymptotically. Nevertheless, iterative methods often yield a solution,
within acceptable precision, after a relatively small number of iterations, in which case
they are preferred to direct methods. This is usually the case when n is very large,
for example, when the system Az = b arises from discretization of a linear partial
differential equation, and in many other applications. Iterative methods may also have
smaller storage requirements than direct methods, when the matrix A is sparse. A more
general problem is the computation of the inverse A~! of A, which can also be solved
by either direct or iterative methods.

In this chapter, we study parallel algorithms for solving the system Az = b and for
matrix inversion. Some of these algorithms are just parallel implementations of traditional
serial algorithms, whereas others are more recent, developed with the purpose of better
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exploiting parallelism. Furthermore, some of these algorithms are of purely theoretical
interest, whereas others are widely used in practice. We discuss concepts of complexity
and efficiency in the context of direct methods. These concepts are not quite applicable
to iterative methods, which do not terminate in finite time. A more appropriate measure
for such algorithms is their speed of convergence to the solution. Typical iterative
methods converge geometrically, or at the rate of a geometric progression. This means
that the sequence of vectors {z(t)} generated by an iterative algorithm has the property
lz(t) — z*|| < cpt, where z* is the solution of the system Az = b, c is a positive
constant, p is a positive constant smaller than 1, and || - || is a vector norm. The smaller
the value of p, the faster is the convergence of the algorithm.

Throughout this chapter, a synchronous model of computation is assumed. Fur-
thermore, we often assume an idealized model in which any two processors may com-
municate instantaneously via an interconnection network or a shared memory. In effect,
communication costs are excluded from such an analysis. However, at several points,
we pause to indicate how some of the more practical algorithms may be implemented
on specific architectures with small or negligible communication penalty.

In Section 2.1, we present parallel direct algorithms for the case where the matrix
A has a special structure; in particular, A is assumed to be triangular or tridiagonal.
In Section 2.2, we present some classical direct methods for solving the system Az =
b for the case of a general matrix A, and describe their parallel implementation. In
Section 2.3, we present a very fast direct parallel algorithm for inverting a square matrix.
This algorithm is of theoretical interest but is impractical due to excessive processor
requirements and poor numerical stability. In Section 2.4, we present a few classical
iterative methods for solving the system Az = b, and in Section 2.5, we comment on
their parallel implementation, including an example arising in the numerical solution of
partial differential equations and a brief discussion of multigrid algorithms. In Section
2.6, we develop the machinery for the convergence analysis of iterative methods. While
these results are classical and fairly old, some of the tools introduced here will be used
in the much harder convergence proofs of asynchronous iterative algorithms (Chapters
6 and 7). In Section 2.7, we present the conjugate gradient method and comment on its
parallelization. In Section 2.8, we study iterative algorithms for the computation of the
invariant distribution of a finite state Markov chain. Finally, in Section 2.9, we present
a very fast, Newton-like iterative algorithm for matrix inversion.

2.1 PARALLEL ALGORITHMS FOR LINEAR SYSTEMS WITH SPECIAL
STRUCTURE

2.1.1 Triangular Matrices and Back Substitution

Let A be a lower triangular square matrix of dimensions n X n, that is, a;; = O for
i < j. Our objective is to compute A~!, assuming that A is invertible; equivalently, we
assume that a;; # O for all ¢. We first consider the case where a;; = 1 for all 7, and we
subsequently generalize. We write A = I — L, where L is strictly lower triangular, that



Sec. 2.1 Parallel Algorithms for Linear Systems with Special Structure 111

is, its elements £;; satisfy £;; = O for ¢ < j. It is straightforward to verify that the 7jth
element of L* is zero if i — j < k, so L™ = 0.

Lemma 1.1. If A=1— L, where L is strictly lower triangular, then

A=+ L+ L+ + LY. (1.1)

Proof. Let B be the right-hand side of Eq. (1.1). An easy calculation yields
B(I - L)=1I-L" =1, because L™ = 0. This implies that B = A~!. Q.E.D.

Equation (1.1) leads to a straighforward algorithm for computing A~!: compute,
in parallel, L?,..., L™ !, and then add the results. According to the discussion in
Subsection 1.2.3, all of these operations can be performed in time O(log? n) using n*
processors, excluding communication costs. This algorithm, although very simple, uses
an excessive number of processors. A more efficient algorithm is obtained using the
following lemma.

Lemma 1.2. If A=1] - L, where L is strictly lower triangular, then

AT =+ YA+ T+ YA+ YT+ D). (12)

Proof. Expand the product in the right-hand side of Eq. (1.2). Since L™ = 0, we
are left with / + L+ L?+---+ L™}, which is equal to A~!, by Lemma 1.1. Q.E.D.

Lemma 1.2 leads to the following algorithm. We compute, by successive squaring,
L%, L4,..., 1™ ™" we add the identity to each one of these matrices, and, finally,
we carry out the multiplications in the right-hand side of Eq. (1.2). The addition of
the identity can be carried out in one time unit. The other steps consist of O(logn)
successive matrix multiplications and can be carried out, with n> processors, in time
O(log2 n), excluding communication costs (Subsection 1.2.3).

Suppose now that the assumption a;; = 1 fails. We define a diagonal matrix D,
such that d;; = a;; for each ¢, and notice that D! 4 is triangular and has unit diagonal
elements. Thus, we may first transform A to D' A (this takes a single time unit using
n? processors), invert D! 4 to obtain A~! D (using the preceding algorithm), and finally
right-multiply the result by D~! (this takes a single time unit using n? processors) to
recover A~!. Therefore, the time required by the algorithm remains O(log? n) using n?
processors.

We now present a different method, of the “divide—and—conquer” type, whose
performance is comparable to that of the preceding algorithm (the assumption a;; = 1 is
no longer needed). We partition the A matrix into blocks:

4 o0
a-[h 4]
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where A, is of size [n/2] x [n/2]. Notice that A; and Aj; are lower triangular. Moreover,
it is easily shown that

AT 0
AT = —AT A AT AT
(multiply the above expressions for A and A~! and verify that the product is the identity).
Based on the above decomposition, we obtain the following algorithm. Given an n X n
triangular matrix A:

1. If n = 1, then obtain A~! in the obvious way.

2. If n > 1, then partition A as indicated above and do the following:
(a) Invert (concurrently) A; and As. (Since A; and A3 are lower triangular, they
can be inverted by using the same algorithm.)
(b) Multiply A;" with A, to obtain A3 A,.
(¢) Right-multiply the result of (b) by A7 .

Notice that steps (b) and (c) take O(logn) time using n> processors. Thus, if T'(n)
denotes the time required by the algorithm for inverting a matrix of dimensions n x n, we
have T(n) = T([n/2]) + O(log n), which yields T(n) = O(log” n) using n> processors,
excluding communication costs.

The methods presented so far do not simplify when one is faced with the presum-
ably easier task of solving a system Az = b. Furthermore, if communication overhead
is properly taken into account, the time requirements can be much larger than O(log® n)
for certain processor architectures. For this reason, and in view of their large processor
requirements, these algorithms are theoretically interesting but impractical. We now de-
scribe a practical method for solving Az = b, called back substitution, which is obtained
by parallelizing the natural sequential algorithm for this problem.

Under the assumption that A is lower triangular, the ith equation of the system
Az =bis

a;1x1 + apTy + -+ a;;x; = b;. (1.3)

The following parallel version of the back substitution algorithm employs n processors.
Suppose that at the beginning of the :th stage, the values of the variables z,,...,z;_;
and of the expressions a;ix1 + - -+ + aj;_1T;—1 for each j > i, are available. Then the
tth processor evaluates x; by solving Eq. (1.3):

1
T = —(bi — @z — - — @i 1Tic1).
Qi
Finally, each processor j, with j > 7 + 1, evaluates the expression a; ) + - - - + a;;Z;
by adding aj;z; to the previously available expression a;;x; + --- + a;;—1T;—1. The
algorithm terminates at the end of the nth stage, when all variables z, ..., z, have been
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computed. Clearly, the parallel time required for each stage is constant. Therefore, the
total time required by this version of back substitution is O(n) using n processors and
excluding communication costs.

We now compare the efficiencies of the algorithms presented so far. We recall
that the efficiency of a parallel algorithm is defined (Subsection 1.2.2) to be equal to
T*(n)/(pTp(n)), where n is a measure of problem size, p is the number of processors,
Ty(n) is the time spent by a parallel algorithm that uses p processors, and T*(n) is
the time required by the fastest sequential algorithm (or by a benchmark sequential
algorithm). Notice that any sequential algorithm needs 2(n?) time units to solve the
problem Az = b: the reason is that the solution depends on Q(n?) numbers, the entries
of A. Furthermore, the back substitution algorithm, if serially implemented, takes O(n?)
time. We therefore have T*(n) = O(n?). We then see that the efficiency of the first
methods of this subsection is O(l /(n log? n)), as opposed to the efficiency of back
substitution, which is ©(1). Back substitution is slower, but the other methods need an
excessive number of processors, which is disproportionately large when compared with
the additional speedup that these excess processors are providing. In practice, parallel
back substitution is universally used, not only for its higher efficiency, but also because
of its modest communication requirements, which will be analyzed shortly.

Back substitution can also be used for computing the inverse of a triangular matrix
A as follows. Since AA™! = I, we see that the ith column z* of A~! satisfies Az’ = ¢,
where e’ is the ith unit vector. Thus, A~! is obtained by solving n systems of equations,
and parallel back substitution can be used for each one. These systems can be solved
simultaneously [O(n) time using n? processors], or one at a time [O(n?) time using n
processors].

We now turn to the implementation of back substitution on special architectures.
It is natural to consider a linear array of n processors, whereby the ith processor is given
the entries in the ith row of A and the ith component of the vector b. As shown in
Fig. 2.1.1, it is possible, by pipelining the communication and interleaving it with the
computation, to obtain O(n) execution time. Thus, the communication penalty can only
increase the execution time by a constant factor. If this constant factor is large, the impact
of the communication penalty can be reduced by using fewer processors and assigning to
each one several rows of the matrix A. (See Subsection 1.3.5 for the general effects of
reduced numbers of processors on the communication penalty.) Finally, if a hypercube
architecture is to be used instead, the communication penalty can only be smaller, since
a linear array can be imbedded in a hypercube (Subsection 1.3.4).

There is also an alternative implementation of back substitution in which the ith
processor is given the entries in the ith column of A. The issues are somewhat similar
as in the previous implementation and the time requirements are again O(n) using n
processors (see Fig. 2.1.2).

2.1.2 Tridiagonal Systems and Odd-Even Reduction

We consider a system of equations Az = b, where A is tridiagonal, that is, a;; = 0 if
|t — j| > 1. Such a system is of the form:
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Figure 2.1.1 Implementation of back substitution in a linear array of n processors. The ith
processor knows b; and the entries of the ith row of A. The value of each z; is transmitted to
the right as soon as it is available and communication of such values is pipelined. (a) Snapshot
of the algorithm as soon as z; is computed. At this point, processor 7 + 1 has already received

i—1 . .
&1,...,;—1 and has evaluated the sum . a;41 k. (b) Once =; is received by processor

i+ 1, it is forwarded to the right and the sum Z;___l ai+1,k%k is evaluated. Then, z;4; is
computed using Eq. (1.3). (c) The value of x;4; is transmitted to processor ¢ + 2. The time
between the evaluation of two successive components x; and ;4 is O(1), and the total time of
the algorithm is proportional to 7.
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Figure 2.1.2 Alternative implementation
of back substitution in a linear array of n
processors. The ith processor knows b; and
the entries of the zth column of A. In (a),
the value of x; has just been computed by
processor . As soon as processor ¢ + 1

. ¥ .
receives » , @i+1,kTk, it computes
z;+1. Then, processor ¢ + 1 receives
the valug of Z’=, a;4+2 k Tk, as in (b),
adds to it the value of a;42 ;+12;41, and

. it

transmits t!'le sum Zk=1 @i42,kTk 10
processor ¢ + 2, as in (c). A detailed
timing analysis shows that the total
execution time is proportional to n.

(1.4)

i=2,3,...,n—1, (1.5)

(1.6)
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Here, g; are the diagonal elements of A and f; (respectively, h;) are the entries of
A below (respectively, above) the diagonal. There are several methods for solving such
a system and most of them are easily parallelizable. We describe here a representative
one that is called odd—even reduction.

The basic idea is that if g; # 0, we can solve Eq. (1.5) for z; in terms of z;_;
and x;;. If we do this for every odd integer ¢ and then substitute the expression for z;
into the remaining equations, we are left with a system of equations involving only the
variables x;, with ¢ even. The resulting system of equations is again tridiagonal and has
about half as many variables. The same procedure is then applied recursively.

We now describe the algorithm in more detail. To simplify the equations, we use
the convention z¢g = z,4; = 0, which makes Eq. (1.5) valid for : = 1 and 7 = n. We
solve Eq. (1.5) for z; and obtain

1
T; = g— (bz - fixi—l — hi$i+l)~ 1.7
i

We use Eq. (1.7), with ¢ replaced by ¢ — 1 and ¢ + 1, to eliminate z;_; and xz;, from
Eq. (1.5). This yields

. hs
Ji (bic1 = fim1mica — hic@i) + gizi + —— (biv1 — fir1Ti — hip1Tiza) = by,
gi-1 Gi+1

which simplifies to

_ (fifi—l) Ti_a+ ( ; — M — M) x; — (hihH—l) Ti42

gi—1 fgi—l .(;:'+1 Ji+1 (1.8)
=b; — ——bji_1 — ——bi11.
gi—1 Gi+1

Consider Eq. (1.8) for each even index ¢, 1 < i < n. It is a system in the variables
Z2,...,T2n/2), and it is clearly a tridiagonal system. We then use the same procedure,
recursively, to obtain a smaller system, until we are left with a single equation in a single
variable, which we solve directly. We then proceed backwards to obtain the values of the
eliminated variables (see Fig. 2.1.3). Exercise 1.2 suggests a modification with which the
backward evaluation of eliminated variables is not needed and the time of the algorithm
is cut by a factor of two, approximately.

The algorithm breaks down if at some stage a division by zero is attempted [see
Eq. (1.8)]. This may occur even if the original matrix A is nonsingular and has nonzero
diagonal entries. In practice, this happens somewhat rarely and odd—even reduction is
often used, although there are no theoretical guarantees.

For a timing analysis of the algorithm, notice that at each stage, the number of
variables is reduced approximately by half. Thus, after ©(log n) stages, all but one of
the variables are eliminated. At each stage, we need to compute the coefficients of the
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Figure 2.1.3 Illustration of odd-even reduction for n = 8. At the first stage, the
variables z;, x3, 5, and z7 are eliminated using Eq. (1.7) to obtain a system of equations
of the form of Eq. (1.8) involving x, x4, &6, and xs. At the second stage, z and x4 are
eliminated. Then x4 is eliminated, which yields a single equation involving zg. Once
xg is evaluated, the remaining variables can be evaluated by following the reverse steps.
For example, once z3, x4, x¢, and zg are evaluated, the values of z, x3, x5, and x7 are
readily obtained from Eq. (1.7). The arcs in this diagram indicate data dependencies. For
example, the coefficients f;, g;, hj, and b of the equation fiz> + gjz4 + hyzs = b}
obtained after the first reduction depend on f;, g;, h;, and b; for i = 3,4,5 [cf. Eq.
(1.8)]. This fact is indicated by the thicker lines in the figure.

reduced system. It is immediate from Eq. (1.8) that this may be accomplished in four
time units using O(n) processors. A similar comment applies to the back substitution
phase, during which the previously eliminated variables are evaluated. It follows that the
overall algorithm can be implemented in O(logn) time using O(n) processors. It is not
hard to see that the total number of operations in this algorithm is only O(n), because
the computational requirements of each stage are about half of the requirements of the
preceding stage. This implies that there exists a sequential algorithm that runs in O(n)
time. Furthermore, this is optimal because any sequential algorithm needs Q(n) time just
to read the input. We thus have 7*(n) = ©(n) and we can conclude that the efficiency
of the above described parallel implementation of the odd—even reduction algorithm is
©(1/logn). A more efficient implementation is suggested in Exercise 1.3.

We now study the implementation of odd—even reduction on parallel architectures
with special interconnection topologies. Consider first a linear array of n processors and
assume that each processor knows the entries of the ith row of the matrix A and the ith
entry of b, and is responsible for eventually computing the value of x;. The first stage
of the computation [evaluation of the coefficients in Eq. (1.8)] is easily accomplished
with O(1) communication, because the ith processor (for 7 even) only needs to know
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the values of the coefficients possessed by neighboring processors. However, after &
reductions, we are left with a system in the variables x;, where i is an integer multiple of
2k, and this implies that processor 2* has to communicate with processor (i+1)2*. (This
is evident from Fig. 2.1.3.) In particular, at the last reduction step, the communication
overhead is §2(n). It follows that the parallel execution time is 2(n), which is at least
as bad as for the serial algorithm. In fact, this conclusion could be reached more easily
from the observation that the value of x; depends on data possessed by processors at
©(n) distance away, and therefore the parallel execution time has to be Q(n).

Consider next a linear array of p processors (p < n), each one in charge of n/p
successive variables (assuming that n/p is an integer). During the first N = |log(n/p)]
stages of the algorithm, most computations are local to each processor, the total number
of arithmetic operations executed by each processor during these N stages is O(n/p),
and only a small amount of communication between neighboring processors is needed.
After the Nth stage, we are left with a tridiagonal system in O(p) variables. This system
can be solved by transmitting its coefficients to a single processor, which solves it and
broadcasts the results back to the p processors. This can be done with O(p) time spent
for communication and O(p) time spent for computation. We conclude that the total
time is O(n/p) + O(p). By optimizing with respect to p, we obtain p = ©(n!/2) and an
O(n'/?) total execution time, which is better than the O(n) serial time but worse than
the O(log n) time obtained assuming all communication is instantaneous.

We finally consider a hypercube architecture with n processors. Let a linear array
of processors be imbedded in the hypercube, according to a reflected Gray code (Sub-
section 1.3.4). We use the terminology of Subsection 1.3.4: the logical distance of two
processors is their distance as elements of the linear array, and their physical distance
is their distance when all of the hypercube arcs are available. We found that a linear
array is inappropriate because processors i2* and (; + 1)2* need to communicate at the
kth stage. Let us now recall from Subsection 1.3.4 that, with a reflected Gray code
imbedding, processors at logical distance 2%, k > 0, have a physical distance equal to
2 and, furthermore, all pairs of processors of the form (i2%, (i + 1)2), i = 1,2,...,
can communicate to each other, simultaneously, in two time units. It follows that each
stage of the odd—even reduction algorithm can be accomplished with only O(1) time
spent for communication, thereby maintaining the total execution time at O(log n) using
n processors. In practice, the communication requirements per stage may be dominant
when compared to the computation requirements per stage, even though both are O(1).
It may then be appropriate to use a number of processors smaller than », which reduces
the associated communication penalty, as discussed in Subsection 1.3.5.

We close by pointing out that the odd—even reduction algorithm can also be applied
to the solution of block—tridiagonal systems of equations. Such systems have the structure
of Egs. (1.4) to (1.6), except that each z; is now a vector of dimension & and each f;, g,
and h; is a matrix of dimensions k£ X k. A key difference is that a term such as 1 /gi—1
[see Eq. (1.8)] has to be interpreted as a matrix inverse. For this reason, each processor in
a parallel implementation has to invert a £ X k matrix at each stage. The computational
requirements for each processor are now substantially larger [O(k®) per stage if the
matrices g; do not have any special structure], but the increase of the communication
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requirements is smaller [only O(k?) numbers need to be transmitted by each processor
at each stage]. We conclude that the communication penalty is reduced as k increases.

EXERCISES

1.1. Consider the execution of parallel back substitution in a linear array of p processors, where
p < n, and n/p is an integer. Suppose that each processor is given n/p consecutive rows of
the matrix A, as well as the corresponding entries of the vector b. Assume that each message
consists of a single real number and that all messages incur the same delay. Let T'(n,p)
be the time spent by the algorithm, under the assumption that computation is instantaneous.
Design the details of the algorithm so that T'(n, p) is made as small as possible and find an
expression for T'(n, p).

1.2. [HoJ81] Modify the odd—even reduction algorithm so that at the end of the last stage of
variable eliminations, the value of z; is obtained for all ¢, thus avoiding the need for a
backward substitution phase. Furthermore, this should be done with only n processors.
Hint: With the algorithm of Fig. 2.1.3, the value of z3 is obtained after the last elimination
stage. Construct, for each i, a similar algorithm that produces the value of z;, and run all
those algorithms simultaneously.

1.3. Provide a parallel implementation of odd—even reduction that uses O(n/logn) processors
and takes O(log n) time, neglecting communications costs.

2.2 PARALLEL DIRECT METHODS FOR GENERAL LINEAR EQUATIONS

Let A be a square matrix of size n X n. Most direct methods for solving a system of
linear equations of the form Az = b proceed by applying a set of simple transformations
on both sides of the equation until the matrix A becomes triangular, and then solve
the resulting system of equations by back substitution. These transformations consist of
successively left-multiplying the matrix A by a sequence of matrices MV, ..., MF,
The matrices M® are chosen with two objectives in mind: (a) multiplication of an
arbitrary matrix by M® should have low computational requirements, and (b) the product
MEBpE=D ... \fD 4 should be triangular. There are several ways of accomplishing
this; two such methods, together with their parallel implementations, are discussed in
this section.

Notice that the actual solution of the system Az = b is only a small step further
from what was described above: in particular, while computing M ... M® A, we may
also compute the product M) ... M(Dp, Then, as long as each M@ is invertible, the
original system Ax = b is equivalent to

MEB - MO Az = (MEB ... MOp). 2.1
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By construction, M) ... M 4 is triangular and the system (2.1) can be solved using
back substitution in O(n) time with n processors (Section 2.1).

If the inverse of A is desired, a similar procedure will do. While computing
ME ... MDA, we also compute the product M) ... M®D_ Then, as long as each
M® is invertible, A~! can be computed using the equation

Al = (M(K)---M(I)A)_l (ME) ... MO,

Since M) ... M A is triangular, it can be inverted using back substitution in O(n)
time using n? processors, or in O(n?) time using n processors. For these reasons, we
will limit our further discussion to the task of triangularizing the matrix A.

2.2.1 Gaussian Elimination

Gaussian elimination is the classical procedure for solving linear equations whereby each
variable, say the ith variable z;, is expressed as a function of the variables z;4,,...,z,
and is eliminated from the system. After n — 1 such steps, we are left with an equation
in the single variable z,, which is easily solved.

We now give a recursive definition of the algorithm. Let C© = A and C® =
M®...MMA, Suppose that C¢~D has been already computed for some 3, 1 < i <
n — 1, and has the property that all subdiagonal entries of the jth column are zero for
every j smaller than i. Equation (2.2) shows the structure of C*~1, where an asterisk
represents a generically nonzero entry:

* * ]
C(i—l) - E .'~ .'~ . 2.2
0 * cee o ox |2 ( )
L0 0 x *
%

(Notice that C@ satisfies the above requirement, vacuously.) We now show how to
determine a matrix M® so that C® = M®C%=1 also has the desired property.

Let us assume for now that C:™" #£ 0. We let M® = I — N®, where N is a
matrix with the following structure:
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K O |
0 .

N® = 0O 0 --- --- 0}l34
:oo%x 0 0

0 - 0 % 0 --- 0]

i

In particular, the nonzero entries of N are given by N{? = C{i™V/Ci™, j > .
We verify that C® = (I — N®)C¢=D has the desired property. Since the first 7 — 1
columns of N® are zero, it is seen that the first i — 1 columns of C® are the same as
the corresponding columns of C~V. Consider now a subdiagonal entry of C® in the
ith column, that is, an entry of the form C;’Z), with 7 > i. Then,
] ) dz 1)
C§~? = C§Z - C(z 1)02 V=

We have thus completed an inductive proof that, with M® chosen as above, the matrices
C® will be of the form of Eq. (2.2). In particular, C™~" is upper triangular, which was
our stated goal.

Let us also note for future reference that the first ¢ rows of C® and C“~D are
equal and that for 57 > i, k > i, we have

(i—1)

C:
(3) (1—1) (z) (i—1) _ ~(—1) @ AGE=1) _ ~GE=1) _ Tji (z l)
c =G Z (Ch D =0V = NPCTY = ¢ o ciY. (23)

The above method, called Gaussian elimination without pivoting, fails when C: ™"
is zero. Even if C’g'l) is nonzero but has a small magnitude, M® will have some very
large entries and numerical problems are expected to arise. For this reason, Gaussian
elimination without pivoting is used primarily when A is a symmetric matrix. In that
case, it is known that C(z Y is never zero, nor do numerical problems arise, provided
that A is invertible [G0V83].

For nonsymmetric problems, one may have to apply some kind of pivoting, that is,
interchange two rows or two columns of C*~1 so that the ith diagonal entry is nonzero
and has, preferably, a large magnitude. The most common method, called row pivoting,
works as follows: having computed C“~1, find some j* > i such that

€31 = max |57 24)

Then, interchange rows i and j* and proceed to compute C® as before.
g J p p
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The interchange of the ith and jth row of a matrix is equivalent to multiplication
of that matrix, from the left, by the permutation matrix P*. (The entries of P* that are
not shown are all zero.)

1 -
1
0 ; 1 v
PY =
1
1 0 J
1
L | | 14
t J

In the context of the solution of linear systems, the right-hand side of the equation should
be also multiplied by P¥; this corresponds to interchanging the ith and jth entries of
the vector in the right-hand side of the equation.

Gaussian elimination with row pivoting may suffer from poor numerical stability,
but has been found to work well in practice [GoV83]. In particular, the maximum in
Eq. (2.4) is always positive, except if the matrix A is singular, and therefore the method
never breaks down unnecessarily (Exercise 2.1).

Let us point out here that the odd—even reduction algorithm for tridiagonal systems,
presented in Subsection 2.1.2, can be viewed as a special case of Gaussian elimination,
because odd—even reduction successively eliminates certain variables by expressing them
as functions of the remaining variables. For general systems of equations, the variables
can be eliminated only one at a time. However, the special structure of tridiagonal
systems allows us to eliminate about half of the variables in a single step. Notice that in
odd—even reduction, the variables are not eliminated in the usual order. For this reason,
odd—even reduction is actually equivalent to Gaussian elimination performed on a matrix
PAP', where P is an appropriate permutation matrix. In particular, P is such that it
takes the odd—numbered rows and puts them on top; accordingly, the odd—numbered
variables are the first to be eliminated. Notice also that odd—even reduction eliminates
the variables according to a predetermined order. For this reason, it is equivalent to
Gaussian elimination without pivoting. The case where odd—even reduction fails, due to
an attempt to divide by zero, corresponds to the situation where pivoting is necessary.
However, pivoting is undesirable in the solution of tridiagonal systems because it destroys
the special structure of the system.

Parallel Implementations

We turn to the parallel implementation of the above methods. We first consider the case
of no pivoting and do a preliminary analysis that ignores the communication penalty.
By using the special structure of the matrix M®, it follows that each entry of C® can
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be computed with just one multiplication, one division, and one subtraction [see Eq.
(2.3)]. By using n? processors, this can be done for all entries of C® simultaneously,
in three time units. Thus, the total parallel time to compute C*~V is approximately
3n, using n? processors. With fewer processors, say n, the required time is O(n?2).
To determine the efficiency of parallel Gaussian elimination, we compare it against the
T*(n) = ©(n®) benchmark; although there exist sequential algorithms that need less
than O(n®) time units, every practical algorithm, including the serial implementation
of Gaussian elimination, needs ©(n®) time. We then see that the efficiency of parallel
Gaussian elimination is ©(1), for the cases where n? or n processors are used.

We now consider particular interconnection topologies and verify that the associated
communication penalty is not excessive. In particular, Gaussian elimination without
pivoting can be implemented on a square mesh of n? processors, with the total execution
time remaining of the order of n. We associate each processor with a particular entry of
the matrices being manipulated and the resulting movement of data is illustrated in Fig.
2.2.1. In order to keep the time requirements as small as O(n), it is essential that messages
communicated are appropriately pipelined, and that computations and communications
are interleaved, meaning that the computations of stage i + 1 start before all messages
sent during the ith stage are received; the details are left as an exercise (Exercise 2.2).
Without such interleaving, the time requirements of the algorithm are Q(n2) [Saa86].
With the above mentioned interleaving, the time spent for communications is of the
same order of magnitude as the time spent in arithmetic computations; in particular, if
the time required for a single communication is substantially larger than the time required
for a single computation, then the communication penalty can be significant and should
be alleviated by using a smaller number of processors.

Figure 2.2.1 The movement of data in the
execution of Gaussian elimination without
pivoting in a mesh—connected architecture
with n* processors. Suppose that the
entries of C*~1) have been computed.

The value of Cg'l) is propagated
downward. Upon reception of this value,
each processor (j,%), j > 4, computes the
ratio Cg.’l.'l) / Cﬁ:_') and transmits it to the
Cli="  processors to its right. In the meantime, the
value of Cf,;c"l), for k > i, is propagated
downward. Each processor (3, k), with

J > i and k > 1, eventually receives
C;li‘l) /C%Y and Cgc"“ and computes
C;’,: according to Eq. (2.3). It is seen that a

typical phase of the algorithm needs ©(n)
time for communication. Thus, if a new
phase starts only after the previous one is
completed, the algorithm needs On?)
time. On the other hand, by appropriately
interleaving different phases, the execution
time is reduced to O(n).
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On a hypercube architecture with @(n?) processors, Gaussian elimination can be
executed in O(n) time because a mesh can be imbedded in a hypercube. Finally, a
linear array of m processors can simulate an n x n mesh with a O(n) reduction in
speed; it follows that parallel Gaussian elimination can be executed in a linear array of
n processors in O(n?) time.

The computational requirements of Gaussian elimination with pivoting are similar,
except that at the beginning of a typical stage, we need to perform a comparison of
O(n) numbers and pick the largest [see Eq. (2.4)]. Let us neglect any communication
costs for the time being. Under reasonable models of parallel computation in which
a processor can compare two (but not more than two) numbers in unit time, we need
Q(log n) time to compare n numbers no matter how many processors are available. (See
e.g., Prop. 2.1 in Subsection 1.2.2.) For this reason, Gaussian elimination with pivoting
takes Q(n log ) time when n? processors are available; the corresponding efficiency is
O(1/logn), which decreases to zero as n increases. On the other hand, an O(nlogn)
parallelization is possible using only O(n?/logn) processors, leading to ©(1) efficiency.
(See Prop. 2.4 in Subsection 1.2.2 and Exercise 2.4.) If n processors are available, then
each stage takes O(n) time, leading to a total execution time of O(n?). The efficiency
is again ©(1), similarly with Gaussian elimination without pivoting.

Pivoting is particularly undesirable when implementation in particular architec-
tures is considered. For example, with an n?—processor mesh—connected architecture,
there is no implementation with O(nlogn) running time (Exercise 2.3). On the other
hand, O(n log n) time implementations are possible with a hypercube with O(n?) or even
O(n?/ log n) processors (Exercise 2.4). Finally, if a linear array of n processors is used,
with each processor associated with a particular column of the matrices being manip-
ulated, then a row interchange does not lead to any data movement across processors,
and the execution time remains O(n?), much as in Gaussian elimination without pivoting
[ISS86].

Recall that the solution of a linear system of equations Az = b has a last phase
during which a triangular system is solved, involving the upper triangular matrix produced
at the last stage of the Gaussian elimination algorithm. We assume that back substitution
will be used here. In a serial environment, back substitution needs O(n?) time which is
negligible compared to the O(n>) time needed by Gaussian elimination. However, in a
parallel environment, and if n? processors are used, the time devoted to back substitution
is O(n) (Subsection 2.1.1) and is comparable to the time needed for Gaussian elimination;
thus, efficiency of implementation of back substitution becomes important. A related
point concerns the case where a linear array of n processors is used and row pivoting
is employed. If we employ an implementation of Gaussian elimination where the ith
processor is associated to the ith column (as opposed to the ith row), we should also
employ an implementation of back substitution where each processor knows a column
of the triangular matrix produced by the Gaussian elimination algorithm. This is to
avoid excessive movement of data between the Gaussian elimination phase and the back
substitution phase.

The discussion in this subsection is summarized in Table 2.1.
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TABLE 2.1 Bounds on the timing of Gaussian elimination for several
architectures. The upper bounds are the same as those obtained for the
same number of processors, if communication is assumed instantaneous.

Number of Processors | Architecture | Without Pivoting | With Pivoting
n? Hypercube O(n) O(nlogn)
n? Mesh O(n) Q(n?/?)
n2/logn Hypercube O(nlogn) O(nlogn)
n Hypercube Oo(n?) O(n?)
n Linear Array o(n?) O(n?)

Chap. 2

2.2.2 Triangularization Using Givens Rotations

We describe here an alternative method for triangularizing a square matrix. An impor-
tant difference from Gaussian elimination is that the matrices M@ are chosen to be
orthogonal, that is, they have the property

”M(i).’l,'uz = ”16“2, Vr € R", 2.5)

where || - ||2 is the Euclidean norm. An equivalent definition of orthogonality is to
require that (M®)'M® = . Orthogonal transformations are desirable in numerical
analysis [GoV83] because they do not amplify the magnitude of past numerical errors.

Let C be a given matrix and suppose that its ith and jth rows have the property
that there exists some k& > 1 such that

Ciy = ng =0, Ve < k, 2.6)
Cjr #0, 27
that is, C has the structure
i -
* %
0 0 =x x| ¢
C =
0 0 =x x| J
| E S % _
k

where the entries that are not shown are generically nonzero. Consider now a matrix M
of the form



Sec. 2.2 Parallel Direct Methods for General Linear Equations 125

1 -

M= 2.8)

where all entries not shown are zero, and

e=— G 2.9)
(Ch +Ch) !

5= —CJ—-—W (2.10)
(G5 +03)"

Such a matrix M is called a Givens rotation. It is orthogonal (Exercise 2.5), and has the
following properties:

(a) All rows of MC, other than the ith and the jth row, are the same as the corre-
sponding rows of C.

(b) [MC1li¢ = [MC1j, = 0 for all £ such that £ < k.
(©) [MCJjx =0.

Properties (a) and (b) are straightforward consequences of the structure of C' and
M. For property (c), notice that

n
[MC]jk = ZMjngk = Z Mnggk = MjiCik =+ ijCjk =sCi, — CCjk =0.
£=1 £=ij

We can use such Givens rotations to set the subdiagonal entries of a given matrix A to
zero, one at a time, as follows. Suppose that, after a number of stages, we have obtained
a matrix C. We then find some i, j, and k£ such that & < j (that is, the jkth entry
is below the diagonal) and such that the properties of Eqgs. (2.6) and (2.7) are satisfied.
We then choose M as described above. It follows that the jkth entry of MC is equal
to zero; the rows, other than 7 and 7, are not disturbed and the zeros in the first k£ — 1
entries of rows ¢ and j are not destroyed. Since each such stage annihilates one more
entry, this process must eventually stop. This happens if there exist no ¢, 7, and k such
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that k < j and such that Eqgs. (2.6) and (2.7) hold. It is easily seen that this implies that
we have obtained an upper triangular matrix. '

We now discuss the parallel implementation of such an algorithm. Notice that a
Givens rotation M affects only two rows. If two successive Givens rotations were to
affect disjoint sets of rows, then these rotations could be applied simultaneously without
changing the result. In fact, when n rows are available, up to |n/2] rotations can be
applied simultaneously, as long as they operate on disjoint pairs of rows, and the result is
the same as if they were applied sequentially. Although it is not possible to apply exactly
|n/2] rotations at each time stage, one can come fairly close. We need here a systematic
way of deciding which entries to annihilate at each stage. This is accomplished by means
of a schedule that consists of two functions, T'(j, k) and S(j, k), defined for k < j. The
interpretation of these functions is the following: the jkth entry is annihilated at stage
T'(5, k) by a Givens rotation operating on rows j and S(j, k).

Any schedule has to satisfy two requirements:

(a) Concurrent rotations operate on different rows; mathematically, if T'(j, k) = TG, k")
and (4, k) # (j', k'), then the sets {j, S(j,k)} and {j’, S(’, k")} are disjoint.

(b) If T'(j,k) =t and S(j, k) = i, then T(j, £) < t and T(4,€) < t for all £ < k; this is
to guarantee that Eq. (2.6) is satisfied at the time that the jkth entry is annihilated.

One particular schedule, illustrated in Fig. 2.2.2, is given by

TG, k)=n—j+2k—1, @2.11)
SG,k)y=j—1. (2.12)

We verify that this schedule has the desired properties. Suppose that T'(j, k) = T(j’, k').
Equation (2.11) yields —j +2k = —5' +2k'. If j = j/, then k = k. If j # 7/,
then j — j’ is even and, in particular, |j — j'| > 2. Therefore, the sets {j,j — 1} and
{4’; 4" — 1} are disjoint, which implies that the sets {j, S(j,k)} and {j’, S(j’, k')} are
also disjoint, and property (a) is satisfied. For the second property, Eq. (2.11) shows that
T(SG,k),0) =TG- 1,0 =TG,H+1=n—3j+20<n—j+2k—1=T(,k) for
{ <k

We now estimate the number of stages required by the schedule of Egs. (2.11) and
(2.12). This is done by maximizing T'(j, k) over all j and & corresponding to subdiagonal
entries. A little thought shows that the maximum is attained for ; = n and ¥ = n—1 and
is equal to 2n — 3. Thus, a total of 2n — 3 parallel stages are sufficient. Concerning the
computational requirements of each stage, ignoring communication costs, each Givens
rotation can be performed using n processors in O(1) time. This is because only O(n)
entries (two rows) are affected by each rotation, and the new value of each entry can be
computed with a constant number of operations. Since we have up to n/2 simultaneous
rotations at each stage, it follows that the computations at each stage can be performed
in O(1) time using n? processors. The total count for the entire algorithm is O(rn) time
using n? processors. With n processors, the time requirement becomes O(n?). For either



Sec. 2.2 Parallel Direct Methods for General Linear Equations 127

7 *

6 8 *

5 7 9 *

4 6 8 10 *

3 5 7 9 11 *

2 4 6 8 10 12 * Figure 2.2.2 The schedule of Eq. (2.11)
for the case n = 8. The numbers indicate

1 3 5 7 9 11 13 * the stage at which the corresponding entry

L —J is annihilated.

case the efficiency is ©(1) when compared with the benchmark 7*(n) = ©(n?) for serial
algorithms.

We notice that the time requirements of the Givens rotation method are the same
as for Gaussian elimination without pivoting when n? processors are used and commu-
nication costs are ignored; they are also the same as for Gaussian elimination with row
pivoting when n processors are used. A more detailed analysis shows that Gaussian
elimination is faster, by a small constant factor, when the same number of processors is
used. This may be compensated by the better numerical properties of the Givens rotation
method [GoV83].

As far as parallel implementation in special architectures is concerned, the algorithm
can be implemented in a mesh of n? processors in time O(n) [BBK84] and this implies
that it can also be efficiently implemented in a hypercube of O(n?) processors [in O(n)
time] or a linear array of n processors [in O(n?) time]. The implementation in a mesh
involves pipelining, and interleaving of computation and communication, and results in
a very regular pattern for the movement of data. However, the details are somewhat
tedious and the reader is referred to [BBK84].

EXERCISES

2.1. Show that if Gaussian elimination with row pivoting is used but the maximum in Eq. (2.4)
is zero at some intermediate stage of the algorithm, then the matrix A is singular.

2.2. Show that Gaussian elimination without pivoting can be implemented in a mesh—connected
architecture of n? processors in O(n) time. Hint: See Fig. 2.2.1.

2.3. Consider a two—dimensional mesh—connected architecture. Assume that a processor cannot
compare more than two numbers in unit time and that communication between neighboring
processors takes unit time.

(a) Show that the problem of computing the maximum of n numbers requires Q')
time units regardless of the number of processors and even if each processor knows
the values of all numbers to be compared.

(b) Show that Gaussian elimination with row pivoting needs (n*/?) time.



128 Algorithms for Systems of Linear Equations and Matrix Inversion Chap. 2

2.4. [Cap87] Show that Gaussian elimination with pivoting can be executed in a hypercube with
om? / log n) processors in time O(n log n). Hint: Arrange the processors as a n x (n/ log n)
mesh. Assign to each processor @(log n) entries of the same column. Show that the entries
in each column can be compared in O(logn) time. Also, show that a row interchange, as
well as any other communication required in a typical stage of the algorithm, takes O(log n)
time.

2.5. Verify that the matrix M defined by Egs. (2.8) to (2.10) is orthogonal.

2.6. Find a schedule for the algorithm based on Givens rotations for the case of an 8 x 8 matrix
that needs fewer than 13 parallel stages. (Compare with Fig. 2.2.2.)

2.3 A FAST DIRECT MATRIX INVERSION ALGORITHM

All of the methods of Section 2.2 require time at least proportional to n for the solution of
a system of n linear equations, and this raises the question whether a substantially faster
algorithm is possible, assuming that an unlimited number of processors is available.
While it was believed for some time that this was not possible, the algorithm in this
section, due to Csanky [Csa76], produces the inverse of a square matrix in O(log2 n)
time. This algorithm is only of theoretical interest because it is prone to numerical
problems and because it uses an excessive number (n*) of processors. It is an open
question whether there exist parallel matrix inversion algorithms whose time requirements
are smaller than O(log? n). In fact, this problem is open even for the case of triangular
matrices.

Given an n x n nonsingular matrix A, we consider the characteristic polynomial
¢ of A, defined by

n

é(\) = det(\] — A) = H(A -\, (3.1

=1

where Apf,..., A, are the eigenvalues of A. Let cj,...,c, be the coefficients of the
characteristic polynomial, that is,

A = A"+ A" e A+ cp. (3.2)

By comparing Eqs. (3.1) and (3.2), we see that ¢, = (—1)* H?zl As; in particular, A
is invertible if and only if ¢, # 0, which we assume. The computation of A~! uses
the Cayley—Hamilton theorem (Prop. A.18 in Appendix A), which states that ¢(A4) =
A"+ A" 4o+ 1A+ ¢l = 0. Therefore, A~ is given by

1
AT = —— (A" 4 a A" 4 o) (3.3)
n
By using the discussion in Subsection 1.2.3, the matrices A2,..., A"~! can be all gen-

erated in time O(log® n) using n* processors. Therefore, it only remains to find a “fast”
method for computing the coefficients of the characteristic polynomial.
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We define the trace tr(A) of a matrix A as the sum of its diagonal entries. The
trace of a matrix is also equal to the sum of the eigenvalues (Prop. A.22 in Appendix A).
We define s, = Y 1, A¥, where Aj,..., )\, are the eigenvalues of A. Since AF,... Ak
are the eigenvalues of A* [Prop. A.17(d) in Appendix A], it follows that s = tr(A*). In
particular, the coefficients sy, ..., s, can be computed by summing the diagonal entries of
the matrices A*. We now use a classical method, known as Leverrier’s method [LeV40],
that allows us to compute the coefficients of the characteristic polynomial in terms of
Slye-ySn-

Proposition 3.1.  The coefficients ¢, ..., ¢, and the coefficients sy, ..., s, satisfy
the following system of equations:

| 0 - o s 07T -5
S1 2 0 :
=—1 1. (3.4)
Sk—1 *** 81 k0 :
0
Lsp—1 -+ Sg—1 --- s1 nd Lend [ Sp,
Proof. The derivative of the characteristic polynomial is given by
d¢ n—1 n—2
()\) =n\ +ci(n — DA + -+ cp_y- 3.5)

An alternative expression for d¢/d is obtained by differentiating both sides of Eq. (3.1).
This yields

iﬁ‘i(A) 4 [H(/\ A; )} EH(/\ /\)_ ¢’(A). (3.6)
1 i=1 j#i

We now use the series expansion

1 1 1 PYENIDY:
YN M =N A(1+A+Xf+ ) @7

which is valid for |A| > |A;|. We use Eq. (3.7) in Eq. (3.6) to obtain

2
L= ¢(/\)Z<l+ T o )
(3.8)

n n— n S S2
=(A"+al l+"'+c")<i+)\2+ﬁ+ )
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where the last equality followed by changing the order of the summation and using the
definition of sx. The right-hand side of Eq. (3.8) is equal to the right-hand side of Eq.
(3.5) for all values of A satisfying |A| > |A;| and for all z. It follows that the coefficients
of each power of A must be the same in both expressions. By comparing the coefficients
of A""k~1 for k = 1,...,n, we obtain Eq. (3.4). Q.E.D.

Notice that Eq. (3.4) is a lower triangular system of equations. Using the results
of Section 2.1, we can solve for ¢y, ...,c, in time O(log? n) using n® processors. We
can now summarize the algorithm:

1. Compute A* for k=2,...,n.
2. Compute s; for k=1,...,n.
3. Solve the system (3.4) for cy,...,cp.
4. Evaluate A~! using Eq. (3.3).

Each one of these four steps can be executed in O(log” n) time using n* processors,
and, therefore, this estimate is valid for the overall algorithm as well.

EXERCISES

3.1. (Cholesky factorization [Luo87]) Any symmetric positive definite matrix A can be ex-
pressed in the form A = L' DL, where L is a lower triangular matrix, and D is a diagonal
matrix with positive diagonal entries. Devise a parallel algorithm that computes L and D
in time O(log® n), where 7 is the size of the matrix A. Hint: Compute a square matrix X,
of approximately half the size of A, such that

[x 74l 71-10 5]

where B; and B; are some matrices, and proceed recursively.

2.4 CLASSICAL ITERATIVE METHODS FOR SYSTEMS OF LINEAR
EQUATIONS

We present here a few classical iterative methods for solving linear equations. Such
methods are widely used, especially for the solution of large problems such as those
arising from the discretization of linear partial differential equations. For this reason,
there is an extensive theory dealing with such methods, some of which is developed in
Section 2.6.

Let A be an n x n matrix, let b be a vector in R", and consider the system of
linear equations

Az = b, 4.1
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where z is an unknown vector to be determined. We assume that A is invertible, so that
Az = b has a unique solution. We write the ith equation of the system Az = b as

n
Z a;jT; = b,’, (4.2)
j=1

where a;; are the entries of A; also, x; and b; are the components of = and b, respectively.
We assume that a;; # 0 and solve for z; to obtain

1
;= —— Zaijzj - bz . (43)

a; |4
| G

If all components z;, j # ¢, of the solution of Az = b are known, the remaining
component x; can be determined from Eq. (4.3). If instead some approximate estimates
for the components z;, j # ¢, are available, then we can use Eq. (4.3) to obtain an
estimate of ;. This can be done for each component of  simultaneously, leading to the
following algorithm:

Jacobi algorithm. Starting with some initial vector z(0) € R, evaluate z(t),
t=1,2,..., using the iteration

1
z,t+1)= —— ai;Ti(t) — bl . “4.4)
i | i

The Jacobi algorithm produces an infinite sequence {z(t)} of elements of ®™. If
this sequence converges to a limit z, then by taking the limit of both sides of Eq. (4.4)
as t tends to infinity, we see that x satisfies Eq. (4.3) for each 7, which is equivalent
to z being a solution of Az = b. Of course, it is possible that the algorithm diverges
[x(t) does not converge]; see Fig. 2.4.1. Conditions for convergence will be explored in
Section 2.6.

In the above algorithm, each component of z(f + 1) was evaluated based on Eq.
(4.3) and the estimate x(t) of the solution. If this algorithm is executed on a serial
computer, by the time that z;(f 4+ 1) is evaluated, we already have available some new
estimates x;(t 4+ 1) for the components of z with index j smaller than 7. It may be
preferable to employ these new estimates of x;, 7 < ¢, when updating z;. This leads to
the following algorithm:

Gauss—Seidel algorithm. Starting with some initial vector z(0) € R", evaluate
z(t), t = 1,2,..., using the iteration
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First equation: 2x,—x,=0

2 x(0)

x(1)

——= Second equation: x, —2x,=0

X1

(a
Second equation: 2x, —x, =0

< N

First equation: x, —2x,=0

x(0) X

(b)

Figure 2.4.1 Tllustration of the Jacobi algorithm for solving a system of linear equations. At each
iteration, the ith equation is solved for the ith component with all other components fixed at their
values at the start of the iteration. In (a), the Jacobi algorithm is applied to the system

[ =[] =[]

and the iteration converges; in (b), the algorithm is applied to the equivalent system

-1 2 T | 0
2 -1 x| |0
in which the assignment of equations to components has been reversed, and the iteration diverges.

In Section 2.6, it will be seen that convergence is enhanced if equations are assigned to components
so that the diagonal elements a;; are large (in absolute value) relative to the other coefficients a;j,

i .
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zt+1) = __1'_‘ Zaijxj(t +1)+ Zaija:j(t) —b;| . 4.5)

a; — —
i<z Jj>1

Figure 2.4.2 illustrates convergence and divergence of the algorithm. As discussed
in Subsection 1.2.4, there are many different Gauss—Seidel algorithms for the same system
of equations, depending on the particular order with which the variables are updated. In
Eq. (4.5), we first update x,, then 2, etc. It is equally meaningful to start by updating
Zn, then z,_, and proceed backwards, with z; being updated last. Any other order of
updating is possible. Different orders of updating may produce substantially different
results for the same system of equations.

A variation of the Jacobi and Gauss—Seidel methods is obtained if we use a nonzero
scalar vy (called the relaxation parameter), and rewrite Eq. (4.3) in the equivalent form

2= (1 =z — = |3 aye;—bif “.6)
“ gt

thereby leading to the following algorithms:

Jacobi overrelaxation (JOR). Jacobi overrelaxation is similar to the Jacobi algo-
rithm except that Eq. (4.4) is replaced by

zit+1) = (1 =ei®) — L | ayz;) - b . @.7)
“o L

In particular, if 0 < v < 1, the new value of x; obtained from Eq. (4.7) is a convex
combination of the old value of z; and the new value of z; that would have been obtained
if the Jacobi iteration (4.4) was used. The next algorithm is a similar modification of the
Gauss—Seidel algorithm.

Successive overrelaxation (SOR). Successive overrelaxation is the same as the
Gauss—Seidel algorithm except that Eq. (4.5) is replaced by

it + D) =1 =Nzt — = | Yayz;t+ D+ Y a0 - bi| . @8

a; — —
1< 1>t

Notice that the Jacobi and Gauss—Seidel algorithms are equivalent to the JOR and SOR
algorithms, respectively, when v = 1. The JOR and SOR algorithms are widely used
because they often converge faster if + is suitably chosen.
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X First equation
2 . x(0)

Second equation

x(1)
x(2)

X4

(a)

Second equation
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X
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Figure 2.4.2 Illustration of convergence and divergence in the Gauss—Seidel algorithm
for the same systems of equations as in Fig. 2.4.1.

Richardson’s method. Our next iterative method, which is sometimes called

Richardson’s method [HaY81], is obtained by rewriting the equation Ax = b in the form
z = x — v(Azx — b). The method is described by

2+ 1) = z(t) — ~ [Ax(t) - b] , 4.9)
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where < is a scalar relaxation parameter. A variant of Richardson’s method is obtained
if the iteration z := x — v(Ax — b) is executed in Gauss—Seidel fashion. This algorithm
will be referred to as the RGS method and is described by the update equation

Tt + D) =2 =7 | D ayzt+ D+ Y aiz;) — b | - (4.10)
Jj<i Jj2i

A more general class of algorithms is obtained by using an invertible matrix B to
transform the equation Az = b to the equivalent equation

z=x— B(Az - b) 4.11)
and then applying the iteration
o(t+1)=z(t)— B [Ax(t) -4 @.12)

A Gauss—Seidel variant of this iteration is also possible.
The discussion following the presentation of the Jacobi algorithm applies to all of
the other methods, and shows that the following is true.

Proposition 4.1.  If the sequence {x(¢)}, generated by any of the above presented
algorithms converges, then it converges to a solution of Az = b.

2.5 PARALLEL IMPLEMENTATION OF CLASSICAL ITERATIVE
METHODS

In this section, we comment on the parallelization of the iterative methods introduced
in Section 2.4. Most of the computation in such methods consists of matrix—vector
multiplications and the relevant facts have already been covered in Subsection 1.3.6. We
concentrate on the case of message—passing architectures because the issues tend to be
somewhat simpler for the case of shared memory systems. We discuss the case where
the matrices involved are dense, as well as the sparse case, which is typical in problems
originating from partial differential equations (Subsection 2.5.1). Finally, in Subsection
2.5.2, we describe multigrid methods and comment on their parallelizability.

The Jacobi, JOR, and Richardson’s algorithms for the solution of the system Az =
b are straightforward to implement in parallel since each iteration involves a matrix—vector
multiplication. Suppose that there are n available processors, and that the ith processor
is responsible for computing z;(t) at each iteration ¢. (The case where the number of
processors is smaller than the number of variables is qualitatively similar and will be
discussed shortly.) Suppose that the ith processor knows the entries of the ith row of A.
(This is the row storage method of Subsection 1.3.6.) To compute z;(t + 1), processor
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i has to know the values of z;(t) computed at the previous iteration by processors j for
which a;; # 0. If most of the entries of A are nonzero, it is easier to transmit z; to all
processors ¢, even if a;; equals zero, because selective transmissions may introduce some
unwarranted overhead. We are thus dealing with a multinode broadcast. As discussed
in Subsection 1.3.4, the time to perform a multinode broadcast is O(n) in a linear array
or a mesh, and O(n/logn) in a hypercube. Given that each processor has to perform
©(n) arithmetic operations at each stage (assuming that the matrix A has no special
sparsity structure), the percentage of time spent on communications diminishes with n
for a hypercube and remains constant for a linear array. In practice, this constant factor
could be substantial and communication could dominate the execution time; in that case,
there should be fewer processors, with more components assigned to each one, and the
communication penalty can be made insignificant (Subsection 1.3.5).

In an alternative implementation, there are again n processors, with the sth proces-
sor in charge of the ith component x;. However, we assume that the ith processor has
access to the ith column of A, as opposed to the ith row of A. (This is the column storage
method of Subsection 1.3.6.) Assuming that A is a fully dense matrix, the computation
proceeds as follows. Each processor ¢ evaluates aj;z; for j = 1,...,n. Then for each
J» the quantities aj;z; for i = 1,...,n are propagated to processor j, with partial sums
formed along the way, which is a multinode accumulation. As discussed in Subsection
1.3.4, the time required for a multinode accumulation is equal to the time for a multinode
broadcast, and we conclude that the communication requirements of the row and column
storage methods are the same, for the dense case. Which of the two implementations is
preferable may depend on fine details of a particular parallel computer.

We now consider the case where the matrix A is sparse. The sparsity structure of
A determines a directed graph G = (NN, A), where N = {1,...,n} and the set of arcs
A is the set {(z,7) | ¢ # j and aj; # 0} of all processor pairs (4, j) such that i needs to
communicate to j. We recognize this as the dependency graph introduced in Subsection
1.2.4. Given a special architecture, efficient parallel implementations are obtained if the
above dependency graph can be imbedded into the graph describing the interconnection
topology. In that case, all communication takes place between neighboring processors
and the communication penalty is minimal. An example will be shown in the next
subsection. When such an imbedding cannot be found, the communication requirements
of the row and column storage methods can be substantially different (see the discussion
in Subsection 1.3.6), and this is an important difference from the dense case. There are
also some alternative storage methods which are discussed in [McV87] and [FJL88].

We now consider the Gauss—Seidel, SOR, and RGS algorithms. These are not well
suited for parallel implementation in general. To see this, consider the Gauss—Seidel
algorithm and suppose that the matrix A is fully dense, that is, a;; # O for all ¢ and j.
Then, for processor 7 to compute z;(t + 1), the value of z;(t + 1) is needed for every
j < i. Hence, the algorithm is inherently sequential, because no two components of
z can be updated simultaneously. This is quite unfortunate because SOR algorithms,
with a suitable choice of ~, are often much faster [HaY81]. However, as discussed in
Subsection 1.2.4, this difficulty may be often circumvented if the matrix A is sparse by
employing a coloring scheme. This is always the case when the matrix A is obtained
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from discretization of a partial differential equation, and an example will be discussed
in Subsection 2.5.1.

In practice, the number p of processors is often substantially smaller than the
number n of variables. In this case, several variables can be assigned to each Processor.
All of the preceding discussion applies with minor modifications, and the communication
penalty will typically be reduced under these circumstances, as discussed in Subsection
1.3.5.

A final point of interest concerns termination of iterative algorithms. Typical ter-
mination criteria used in practice evaluate an expression such as || Az(t) — b||, where || - |
is some norm, and terminate the algorithm if its value is small enough. Such testing for
termination does not introduce any significant overhead in the case where A is dense.
For example, suppose that || - || is the maximum norm || - ||. At each iteration, every
processor computes the value of max; |[[Az]; — b;|, where 7 ranges over the indices of
the variables assigned to that processor. These values can then be compared using a
spanning tree, with each processor propagating toward the root of the tree the largest
of its own value and the values it has received. Thus, termination detection requires a
single node accumulation and adds little to the communication penalty when compared
to the multinode broadcast or multinode accumulation involved in each iteration.

The considerations concerning termination detection are different when A is sparse
and the variables have been assigned to the processors so that each iteration only re-
quires nearest neighbor communication. Here the time spent on communications needed
for executing one iteration is proportional to the number of variables assigned to each
processor, whereas the communication time needed for termination testing is propor-
tional to the diameter of the interconnection network. Consequently, unless the diameter
is comparable or smaller than the number of variables assigned to each processor, it is
meaningful to test for termination only once in a while. Alternatively, testing for termi-
nation could take place while the main algorithm continues with subsequent iterations.
In the latter case, the value of Az — b used for the termination decision will be outdated
by the time that this decision is made, but this typically does not have any particularly
adverse consequences.

2.5.1 An Example: Poisson’s Equation

As a prototype of a linear partial differential equation, we consider Poisson’s equation
on the unit square:

B2 8 )

where g : [0,1]*> — R is a known function. The objective is to find a function f :
[0, 1] — R that satisfies Poisson’s equation and has prescribed values on the boundary
of the unit square. In order to solve this equation numerically, we consider the values
of f only on a finite grid of points in the unit square. Let N be an integer larger than 2
and let
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R — = < <
fz,] f(N’N)’ 0<4,5<N,

o (i L »
9i,5 g(N’N)’ O<Z,]<N'

Assuming that f is sufficiently smooth and that A is a small scalar, we can use a central
difference approximation for the second derivative of f (see Prop. A.33 in Appendix A)
to obtain

Pf 1

@~ [ f@+ Ay - 2@+ fe-Ay).

We use a similar approximation for 8% f/8y?, we let (z,y) be one of the grid points in
the interior of the unit square, and we let A = 1/N to obtain

1 1 .
fij= Z(fi+1,j X fim1j + fije1 + fi,j—l) ~ a2 dids 0<i,j<N. (52

This is a system of (N — 1) linear equations in (N — 1)*> unknowns, the unknowns
being the values of f at the interior grid points. (Recall that the values of f on the
boundary are given.) This system can be represented in the form Az = b, where A is
an (N — 1)®> x (N — 1)* matrix, z is a vector with the unknown values of f; ; at the
interior grid points, and where b is a vector depending on g; ; and the known boundary
values of f. Then, all of the methods of Section 2.4 become applicable. However, we
do not need to write an explicit matrix representation in order to apply these methods;
Eq. (5.2) already contains all the information needed. We notice that Eq. (5.2) expresses
one variable in terms of the others, and we have one such equation for each variable.
Thus, Eq. (5.2) has the same structure as Eq. (4.3) on which the iterative methods of the
preceding section were based. Therefore, the updating equation of the JOR algorithm is

Fig+ D = A= Dis® + T [fis150 + fic1s® + iz ®©+Fism1 0] = Tz

0<t,7<N.

(5.3)

If the right-hand side of Eq. (5.3) involves a boundary point, then the given boundary
value is used. That is, we are setting f; ;(t) = f; ; whenever ¢ or j is equal to 0 or V.
The parallel implementation of the JOR algorithm is straightforward. We assign a
different processor to each interior grid point and notice that the processor responsible
for updating f; ; can execute the iteration (5.3), provided that it knows the values of f
at neighboring grid points, as computed at the previous iteration. Thus, the most natural
parallel architecture is a mesh of (N — 1)* processors such that neighboring processors
correspond to neighboring grid points (see Fig. 2.5.1). At each stage of the algorithm,
each processor transmits its most recently computed value of f; ; to its neighbors and
then each processor uses the values received to update its own value according to Eqg.
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(5.3). In practice, the number of grid points is likely to exceed the number of processors,
in which case it is meaningful to assign a block of adjacent grid points to each processor.
Concurrency is reduced but the communication penalty is also reduced due to the area—
perimeter effect discussed in Subsection 1.3.5.

(5,5)
. . . ° . .
o - . ]
Figure 2.5.1 A 6 x 6 grid for the solution
o. . of Poisson’s equation. A processor is

assigned to each interior grid point and

processors are connected as indicated.

®. .. c..0 Furthermore, processors near the boundary
need to know the boundary conditions for
f at the points indicated by dashed lines. If

e - MR the arcs are viewed as bidirectional, the

. . . graph of processors is also the dependency

graph corresponding to the Jacobi and JOR

algorithms.

©00*®

We now turn to the parallel implementation of SOR. In the language of Subsection
1.2.4, this is the Gauss—Seidel algorithm based on the JOR iteration (5.3). The depen-
dency graph of iteration (5.3) is shown in Fig. 2.5.1; it is identical to the dependency
graph considered in Example 2.1 of Subsection 1.2.4, and the discussion in that subsec-
tion applies. In particular, this graph can be colored using two colors only. Furthermore,
if each processor is assigned to two adjacent grid points, then a sweep (that is, an update
of all components) takes the same time for either of the JOR and SOR algorithms. (In
practice, each processor is often assigned several grid points and the time requirements
of each iteration are again the same for JOR and SOR.) Generally, the SOR algorithm
is preferred because it has a better rate of convergence [Var62].

Parallel implementations of SOR are also possible for more complicated discretiza-
tions of partial differential equations. For example, a so—called nine—point discretization
gives rise to the dependency graph that was shown in Figure 1.2.12 of Subsection 1.2.4.
According to Exercise 2.7 in that subsection, this dependency graph can be colored using
four colors. It follows that if the number of grid points assigned to each processor is
equal to 4 (or an integer multiple of 4), then the time for the execution of one iteration
of SOR is the same as the time for one iteration of JOR.

We now recall from Subsection 1.3.4 that a mesh can be imbedded in a hypercube.
It follows that the JOR and SOR algorithms for Poisson’s equation can be implemented
in a hypercube with communication taking place only between nearest neighbors. Thus,
hypercubes are well suited for the numerical solution of partial differential equations.

2.5.2 Multigrid Methods

Multigrid methods are a special class of iterative algorithms for the numerical solution
of partial differential equations. In these methods, a partial differential equation like
Poisson’s equation, is discretized for several choices of the grid spacings, and iterations



140 Algorithms for Systems of Linear Equations and Matrix Inversion Chap. 2

take place on several such grids. The rationale behind such methods is that a fine
grid is required to obtain an accurate solution, but iterations on coarser grids typically
converge with fewer iterations. An appropriate combination of iterations on fine and
coarse grids leads to the fastest known algorithms for the solution of certain types of
partial differential equations. We will not be concerned here with the analytical aspects
of such methods; the reader is referred to [Hac85]. We shall concentrate instead on their
structure and on the data dependencies involved, and we shall explore the potential for
their parallelization. For simplicity, we restrict our discussion to two—dimensional grids
although the discussion generalizes to higher dimensions.

Let Go = {(4,j) | 1 < 4,7 < N}, where N is assumed to be a power of 2. We
view Gy as the finest grid. We also define coarser grids, Gy,...,Gp, where D is an
integer smaller than log /V, by letting

Gyg= {(i,j) € Gy | 7 and j are integer multiples of Zd}, d=1,2,...,D,

(see Fig. 2.5.2). With each grid G4 and each (¢, j) € G4, we associate a variable z;; 4.
A multigrid algorithm involves the following three types of computations:

(a) Relaxations on a given grid G4. The next value of x;; q is determined as a function
of the values of its neighbors on the grid G4;. We assume that such relaxations
take place only on a single grid at a time.

(b) Transfer to a finer grid (interpolation). The values of the finer grid variables z;; 4_1
are computed in terms of the values of the coarser grid variables x;; 4, according
to some local rule. For example, x;; 41 could be set equal to the average of the
values of x4, Where the average is taken over all (k,{) € Gy which are at a
minimal distance from (2, j) (see Fig. 2.5.2).

(c) Transfer to a coarser grid (projection). The values of the coarser grid variables
Z;jd+1 are computed in terms of the values of the variables x;; 4, according to
some local rule. The simplest rule is to let z;;5 411 1= ;5 4.

Suppose that we have N2 processors available, and that the ijth processor is
assigned the responsibility of computing the values of the variables x;; 4 for every d such
that (Z, j) € G4. In order to execute the relaxation iterations on the finest grid efficiently,
it is reasonable to use a two—dimensional mesh—connected array of processors. However,
we notice that when relaxation iterations are executed on some coarser grid G4, d # 0,
then neighboring grid points on G4 correspond to distant processors on our mesh of
processors and for this reason the mesh topology is unsuitable for multigrid methods.

Let us now consider a hypercube and suppose that a mesh of N2 processors has been
imbedded in a hypercube with N? nodes, using a reflected Gray code, as in Subsection
1.3.4. We recall certain key properties of this imbedding (see Fig. 2.5.3).

(@) For j = 1,..., N, the jth “column” of the grid, which is the linear array C; =
{(,7) € Go | 1 < i < N}, is mapped to a smaller hypercube, with N nodes, con-
tained in the original hypercube. The same is true for each “row” R; = {(¢,7) €
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h

Figure 2.5.3 A mesh is imbedded

i) into a hypercube so that each column

i C; and each row R; is imbedded in a
smaller hypercube. The distance between

A ( points (i, 7) and (i + 2¢, 7) [respectively,
1 \

(3,7 + 29)], when the arcs of the hypercube
C; (respectively, R;) are used, is at most
2. Thus, any two processors that need

to communicate during the relaxation
iterations on grid G4 can do so within two
time units. The hypercubes corresponding
to each R; and C; do not share any arcs;
also, concurrent communication within
each R; and each Cj is possible. It follows
(i+29)) that all required communication can take

i place simultaneously for all (z, j) € Gg.

(i,j +29)

Go | 1 < j < n}. Furthermore, the mapping of each such column or row corre-
sponds to a reflected Gray code. Finally, the subhypercubes to which each C; and
R; is mapped do not share any arcs.

(b) Suppose that a linear array is mapped into a hypercube according to a reflected
Gray code. Let the nodes be numbered according to their position in the linear
array. Then, the physical distance of nodes i and i +2¢ in the hypercube is equal to
1if d = 0, and is equal to 2 if d is a positive integer. Furthermore, communication
between nodes 7 and i +2¢ of the linear array can take place simultaneously for all
i, in two time units, using the “subrings of level d” (see Fig. 1.3.21 in Subsection
1.3.4).

It follows that the communication time per relaxation iteration is equal to at most 2,
for every grid G4. Similar reasoning shows that grid transfers can also be implemented in
a hypercube using local communication only. We conclude that multigrid algorithms can
be implemented on hypercubes so that the time devoted to communication is proportional
to the computation time. In practice, several points of the finest grid could be assigned
to each processor, and this reduces the communication penalty even further. As a most
extreme case, if the number of grid points in the coarsest grid is equal to the number
of processors, then most of the data dependencies involve variables residing inside the
same processor and the communication penalty is rather small. In fact, in this case, it
can be seen that there is no need for communication between distant processors even
when a mesh—connected architecture is used.

We have assumed so far that relaxations take place in only one grid at a time. In
an alternative method, called concurrent multigrid, relaxations are performed on several
grids simultaneously. Hypercubes are again suitable for such methods, but the mapping
problem is somewhat more involved [ChS86].
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2.6 CONVERGENCE ANALYSIS OF CLASSICAL ITERATIVE METHODS

We have so far defined and discussed the parallel implementation of iterative methods for
solving the system Az = b, where A is an n x n invertible matrix. All of these methods
have the property that if they converge, then they do so to the desired solution (Prop.
4.1). In this section, we derive conditions that guarantee convergence. The mathematical
tools that we introduce here will also be of use in the analysis of asynchronous iterative
algorithms in Chapters 6 and 7. Furthermore, the ideas of this section have natural
generalizations to the contexts of nonlinear optimization and solution of systems of
nonlinear equations (Chapter 3). We first develop a uniform representation of the different
algorithms.

Let D be a diagonal matrix whose diagonal entries are equal to the corresponding
diagonal entries of A, and let B = A—D, so that B is zero along the diagonal. Assuming
that the diagonal entries of A are nonzero, the Jacobi algorithm can be written in matrix
form as [cf. Eq. (4.4)]

z(t+1) = —D~'Bz(t)+ D 'b. (6.1)
Similarly, one iteration of the JOR algorithm is described by
2t +1)= [ = - YD~ B| 2 + 4D, 6.2)

where I is the n X n identity matrix. To derive a similar matrix representation of the
Gauss—Seidel and SOR algorithms, we decompose A as A = L + D + U, where L is
strictly lower triangular, D is diagonal, and U is strictly upper triangular. Then, the SOR
iteration (4.8) can be rewritten as

2t +1) = (1 = 1a(t) — yD~" [La:(t + 1)+ Uz(t) — b] ,

which is equivalent to

-1

zt+1) = (I4+9D7'L) ™" [A =9I =9D7'U]e@®++(T+yD~'L) " D™'b. (6.3)
Finally, Richardson’s method is described by

z(t+1)= U — yA)z(t) + b 6.4)

and a representation resembling Eq. (6.3) is possible for the RGS algorithm of Eq. (4.10).
Equations (6.1) to (6.4) can all be written in the form

z(t+ 1) = Mz(t) + Gb, 6.5)



144 Algorithms for Systems of Linear Equations and Matrix Inversion Chap. 2

where M and G are suitable matrices determined by A and the particular algorithm being
used. (We call M the iteration matrix of an iterative algorithm.) Therefore, we only
need to study the convergence of iteration (6.5). Let us assume that [ — M is invertiblef,
s0 that there exists a unique z* satisfying z* = Mxz* + Gb, and let y(t) = z(t) — z*.
Then, y(t+ 1) = My(t), which implies that y(t) = M*y(0) for every ¢. It is seen that the
sequence {z(t)} converges to z* for all choices of z(0) if and only if y(¢) converges to
zero for all choices of y(0). This happens if and only if M* converges to zero, which is
the case if and only if all of the eigenvalues of M have a magnitude smaller than 1, that
is, if the spectral radius p(M) is smaller than 1 (Def. A.9 and Prop. A.21 in Appendix
A). We have thus proved the following fundamental result:

Proposition 6.1. Assume that I — M is invertible, let z* satisfy * = Mz* + Gb
and let {z(¢)} be the sequence generated by the iteration x(t + 1) = Mxz(t) + Gb. Then,
lim;_, o, z(t) = =* for all choices of z(0) if and only if p(M) < 1.

Notice that the above condition for convergence refers only to the iteration matrix
M and not to the vector b. We conclude that the iteration z := Mz + Gb converges for
all choices of b if and only if it converges for a particular choice of b, say b = 0.

Let us recall that the rate at which M? converges to zero is basically governed by
p(M) (Prop. A.20 in Appendix A). For this reason, we will be comparing the rate of
convergence of alternative iterative methods on the basis of the corresponding spectral
radii.

Proposition 6.1 is the most general possible convergence result, but it is of limited
use because the eigenvalues of M are rarely known exactly. Thus, more refined tools are
called for. A very useful method for proving convergence of iterative methods consists
of introducing a suitable distance function, or norm, and showing that each iteration
reduces the distance of the current iterate from the desired point of convergence. For
linear equations, the most useful norms are quadratic norms, like the Euclidean norm,
and (weighted) maximum norms.

2.6.1 Background on Maximum Norms and Nonnegative Matrices

Let us recall some notation and a few facts from Appendix A. If w is a vector in R", the
notations w > 0 and w > 0 indicate that all components of w are positive or nonnegative,
respectively. Similarly, if A is a matrix, the notations A > 0 and A > O indicate that
all entries of A are positive or nonnegative, respectively. For any two vectors w and v,
the notation w > v stands for w — v > 0. The notations w < v, w > v, A > B, etc.
are to be interpreted accordingly. Given a vector w, we denote by |w| the vector whose
ith component equals |w;|. Similarly, for any matrix A, we denote by |A| the matrix
whose entries are the absolute values of the entries of A. Given a vector w > 0, we
define the weighted maximum norm || - ||, by ||z||, = max; |z;/w;|. In the special case

t In fact, for the algorithms introduced in Section 2.4, I — M is guaranteed to be invertible, as long as
A is invertible (Exercise 6.1).
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where w; = 1 for each i, we suppress the superscript w. Thus, ||z||oc = max; |z;|. The
unit ball with respect to the norm || - ||, that is, the set of all z such that ||z|%, < 1 is
actually a box rather than a sphere, as illustrated in Fig. 2.6.1.

X2
wa
-, Wl
X1
Figure 2.6.1 The unit ball
{z1lel <1} ={z |l Sw} in
the two—dimensional case.

The vector norm || - ||, induces a matrix norm, also denoted by || - ||, defined by

A w
4l = max 1471
78 Tl

where A is an n x n matrix. An alternative but equivalent definition of this norm is

1 n
14l = max — > laijlw;, (6.6)
¢

where a;; are the entries of A [Prop. A.13(a) in Appendix Al.
The following proposition lists a few useful facts. See Fig. 2.6.2 for an illustration
of parts (b) and (d).

Proposition 6.2. Let M and N be n x n matrices and let w € R™ be a positive
vector.

(a) The matrix M is nonnegative (M > 0) if and only if it maps nonnegative vectors
into nonnegative vectors.
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| of a matrix M > 0. The shaded region

l is the image, under the mapping M, of

I the unit ball with respect to || - |%,, that
N is, the set {Mz | ||z||% < 1}. The
scalar A is the smallest number such that
Mw < Aw. In view of Prop. 6.2(d), we
have A = | M||%,.

(b) If M > 0, then || M|[, = || Mw||%.

(c) We have |||M| H:; = |M||Z.
(d) Let M > 0. Then, for any scalar A > 0, we have ||M||% < X if and only if
Mw < dw.

(e) We have p(M) < || M.
() If M > N >0, then | M| > ||N||%.

Proof.

(@) If M > 0 and z > 0, then it is obvious that Mz > 0. For the converse, suppose
that the ¢jth entry of M is negative. Let = be the jth unit vector. Then the ith
entry of Mz is negative.

(b) Using Eq. (6.6), we have
M = max o Zlmijwj = max E[Mw]i = || Mw|%.
J=

(c) This is an immediate consequence of Eq. (6.6).

(d) Using part (b), we have |M||% < X if and only if ||[Mw|% < A, which is
equivalent to Mw < Aw.
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(e) This follows from the inequality p(M) < ||M||, which holds for every induced
norm | - || (Prop. A.20 in Appendix A).

(f) This is an immediate consequence of Eq. (6.6). Q.E.D.

Showing that || M| < 1 is a simple method for proving that p(M) < 1, as long as
the weighting vector w can be suitably chosen. However, this method is not universally
applicable. In particular, there exist matrices M such that p(M) < 1, but for which there
exists no w > 0 such that |[M ||, < 1 (Exercise 6.2). Still, for nonnegative matrices,
the property p(M) < 1 is equivalent to the existence of a positive vector w for which
|M||% < 1. This is a consequence of the Perron-Frobenius theorem, the most important
result in the theory of nonnegative matrices, which will be presented and proved after a
few definitions.

Given an n x n matrix M, with n > 2, we form a directed graph G = (NN, A),
with nodes N = {1,...,n} and arcs A = {(4,) | ¢ # j and m;; # O}, where m;; is the
ijth entry of M.

Definition 6.1. An n x n matrix M, with n > 2, is called irreducible if for
every i,j € N there exists a positive path in the above constructed graph G (i.e., a path
with all arcs oriented as in the graph G) from 7 to j. For the case n = 1, M is called
irreducible if its only element is nonzero.

An alternative and often useful characterization of irreducibility is the following:

Proposition 6.3. An n x n matrix M > 0, with n > 2, is irreducible if and only
if (I+M)"'>0.

Proof. By using the definition of matrix multiplication, it is easy to check that for
i # j, the ijth entry of (I + M)™! is equal to the sum of positive multiples of all
products of the form HkK=_11 Miyis.,» Where i) = i, ig = j, and K < n. Since M > 0,
this sum is positive if and only if one of the summands is positive, which is the case if
and only if there exists a positive path from 7 to j in the graph G associated with M.
When ¢ = j, the corresponding entry of (I + M)"~! is at least unity. Q.E.D.

Proposition 6.4. If an n xn matrix M > 0 is irreducible and if some nonnegative
vector x > 0 satisfies Mz = 0, then z = 0.

Proof. The case n = 1 is trivial and we assume that n > 2. If all the entries of the
Jjth column of M are equal to zero, then there is no path from any i # j to j in the graph
associated with M and therefore M is not irreducible. We conclude that every column
of M has a nonzero entry and there exists a positive number a such that 3 .-, m;; > a
for each j. Suppose that z > 0 and Mz = 0. Then,
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n

n n n n n
0= Z[M(L‘], = szi]’l‘j = Z:Ej Zmi]’ > aij.
i=1 j=1

i=1 j=1 j=1 i=1

Since a > 0, we conclude that Z;;l z; < 0, and since z > 0, we obtain z = 0.
Q.E.D.

We now state and prove a few variants of the Perron—Frobenius theorem. The
proof presented here uses the Brouwer Fixed Point Theorem [GuP74], whose proof is
beyond the scope of this book. A longer proof that proceeds from first principles is
outlined in Exercise 6.3.

Consider the unit simplex

z>0 andia:i = 1}.

i=1

S={x€§R”

Proposition 6.5. (Brouwer Fixed Point Theorem) If f : S — S is a continuous
function, then there exists some w € S such that f(w) = w.

Proposition 6.6. (Perron—Frobenius Theorem) Let M be an n x n nonnegative
matrix.

(a) If M is irreducible, then p(M) is an eigenvalue of M and there exists some w > 0
such that Mw = p(M)w. Furthermore, such a w is unique within a scalar multiple;
that is, if some v also satisfies Mv = p(M)v, then v = aw for some scalar a.
Finally, |M||%, = p(M).

(b) p(M) is an eigenvalue of M and there exists some w > 0, w # 0, such that
Mw = p(M)w.

(c) For every € > 0, there exists some w > 0 such that p(M) < |M]% < p(M) + e.

Proof. The case n = 1 is trivial and it will be assumed that n > 2.

(a) Let M > 0 be irreducible. We define a function f : S — S with components

[M<z];

filx) = -Z;;I[—Mx]j»

1=1,...,n.

Suppose that the denominator in the definition of f is equal to zero for some = € S.
Since M > 0 and z > 0, we conclude that Mz = 0. Then, Prop. 6.4 implies that
z = 0, which contradicts the assumption z € S. We conclude that the denominator
is always nonzero and, therefore, f is well-defined and continuous on S. By Prop.
6.5, there exists some w € S such that f(w) = w. Let A = Z?=1[M w];. We have
A > 0 because otherwise Mw = 0, which would imply that w = 0. The equality
f(w) = w can be rewritten as Mw = Aw. In particular, A is an eigenvalue of



Sec. 26 Convergence Analysis of Classical lterative Methods 149

(b)

(c)

M. We now have (I + M)w = (1 + Mw and (I + M)* 1w = (1 + )" lw.
By Prop. 6.3, (I + M)"~! > 0, and since w > 0, w # 0, it is easily seen that
(I + M)*~'w > 0. This implies that w > 0.

We now show that A = p(M). Since X is an eigenvalue of M, we obtain
A < p(M). On the other hand, using the obvious fact ||w||%, = 1 and Prop. 6.2(b),
we obtain

A= [duwll = [Mwllg = IM|% = p(M),

where the last inequality is Prop. 6.2(e). The equality A = p(M) follows.

We now prove uniqueness of w. Suppose that a vector v satisfies Mv =
o(M)v. If v =0, then v = aw, with a = 0, and we are done. We now assume
that v # 0 and we define z = v/||v||%. Notice that w > |z| and that w; = |2;| for
some ¢. By possibly replacing z by —z, we may and will assume that w; = z; for
some i. Either z = w, in which case v is a scalar multiple of w, or z # w, in which
case we will obtain a contradiction. We have M(w — z) = p(M)(w — z). Since
M is irreducible, (I + M)*~! > 0, and since w — z > w — |z| > 0 and w # 2,
we obtain (I + M)*~!(w — z) > 0. On the other hand, (I + M) l(w — 2) =
(1 + p(M ))n_l(w — z), whose ith component is equal to zero, by construction.
This is a contradiction and proves the desired result.

Let Ns be an n x n matrix with all entries equal to &, where § is a positive scalar.
Since M + Njs is positive, it is irreducible and part (a) of the proposition applies.
Thus, for each § > 0, there exists some ws > 0 such that

(M + Ns)ws = p(M + Ns)ws. 6.7)

Without any loss of generality, let us assume that each ws has been scaled so
that its largest component is equal to 1. Then the set {ws | § > 0} is bounded.
Since every bounded sequence in R™ has a convergent subsequence (Prop. A.5
in Appendix A), it follows that there exists some vector wg and a sequence {6y}
such that limy_, 6 = 0 and limy_, ws, = wo. Since wy is the limit of positive
vectors, it has to be nonnegative. By construction, ||ws, ||« = 1 for each k, and
since ws, converges to wy, it follows that ||wp||« = 1; in particular, wq # 0.

We now take the limit of both sides of Eq. (6.7), as § tends to zero along

the sequence {6x}. We see that Mws, converges to Muwyg; also || Ns, ws, [leo <
nék||ws, ||so = néi, which converges to zero. Thus, the left-hand side of Eq. (6.7)
converges to Mwy. We now use the fact that the spectral radius is a continuous
function (Prop. A.19 in Appendix A) to conclude that p(M + Njs,) converges to
p(M). Thus, the limit of the right-hand side of Eq. (6.7) is equal to p(M)wg. This
implies that Mwy = p(M)w and proves part (b).
The first inequality holds for every w > 0, by Prop. 6.2(e). Let § > 0 be small
enough so that p(M + Ns) < p(M)+ ¢, which is possible because of the continuity
of the spectral radius. Let ws > 0 be as in part (b). Then, using parts (f) and (b)
of Prop. 6.2,
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M52 < |[|M + Ne||o2 = [|(M + Ns)ws |52
= p(M + Ng)||ws||od = po(M + Ns) < p(M) + €.

Q.E.D.

Proposition 6.6(c) is illustrated by the following example. Let

00
M= [1 1] .
The graph associated with this matrix is shown in Fig. 2.6.3 and we see that M is not
irreducible. The characteristic polynomial of M is A(A — 1) from which it follows that
p(M) = 1. On the other hand, for any vector w > 0, we have | M||% = (w; +w2)/w, >
1. Thus, there does not exist any w > 0 such that || M| = p(M). However, by taking
w; arbitrarily small, || M ||, comes arbitrarily close to p(M), as predicted by Prop. 6.6(c).

Figure 2.6.3 The graph associated with
the matrix

O——~_~® m=[0 ]

1

which is not irreducible.
We now present a few useful consequences of the Perron-Frobenius theorem.

Corollary 6.1. If M is a square nonnegative matrix then the following are equiv-
alent:

(i) p(M) < 1.
(ii) There exists some w > 0 such that |M||% < 1.
(iii) There exist some A < 1 and w > O such that Mw < Aw.

Proof. Assume that (i) holds. Let ¢ > O be small enough so that p(M) + € < 1.
By using Prop. 6.6(c), there exists some w > 0 such that |[M||% < p(M) + € < 1,
which proves (ii). If (ii) holds, then, using the definition of || - ||, we obtain Mw < w,
which proves (iii). Finally, if (iii) holds, then ||M || < X < 1 and using Prop. 6.2(e),
we obtain p(M) < 1, which proves (i) and concludes the proof. Q.E.D.

Corollary 6.2. Given any square matrix M, there exists some w > O such that
IIM]|% < 1if and only if p(|M]) < 1.

Proof. By Prop. 6.2(c), we have || M||%, = || |M]||_.. The result follows from the
equivalence of parts (i) and (ii) of Cor. 6.1 applied to the matrix |M|. Q.E.D.
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Corollary 6.3. For any square matrix M, p(M) < p(|M|).
Proof. By Prop. 6.6(c), for any ¢ > 0, there exists some w > 0 such that

P < IMI% = ([ IMI |2, < p(IM]) + €.

Since ¢ was arbitary, we can take the limit as ¢ decreases to zero to obtain the desired
result. Q.E.D.

2.6.2 Convergence Analysis Using Maximum Norms

We now use the Perron—Frobenius theorem and its corollaries to obtain sufficient con-
ditions for convergence of iterative algorithms, and also to make a comparison between
the Jacobi and the Gauss—Seidel methods.

Definition 6.2. A square matrix A with entries a;; is (row) diagonally dominant
if

> laiil < laal, Vi

J#i

Let A be a square row diagonally dominant matrix, and consider the iteration
matrix M associated with the Jacobi algorithm for solving the equation Az = b. Then,
|mij| = |aij|/|ais| for j # i, and |m;;| = O [cf. Eq. (6.1)]. The assumption of diagonal
dominance translates to the condition Z;;l |m;| < 1 forall i. Equivalently, |M||s < 1
from which we conclude that p(M) < 1. We have thus proved the following.

Proposition 6.7. If A is row diagonally dominant, then the Jacobi method for
solving Az = b converges.

We continue with a general comparison of methods of the Jacobi and of the Gauss—
Seidel type. Let us fix an n x n matrix M associated to an iteration z := Mz + b, where
b is some fixed vector. Let N/ be the corresponding Gauss—Seidel iteration matrix, that
is, the iteration matrix obtained if the components in the original iteration are updated
one at a time. In particular, the matrix M satisfies

[]\21:]z = Zmij[Mx]j + Zmijzj, (6.8)
J<i Jj2i
for every z € R"™.
Proposition 6.8.  Suppose that p(|M|) < 1. Then, p(A) < p(|M)). (In particular,

if M > 0 and the Jacobi-type iteration = := Mz + b converges, then the corresponding
Gauss—Seidel iteration also converges.)
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Proof. Let us assume that p(|M|) < 1 and let us fix some € > O such that A =
p(|M]) + € < 1. Proposition 6.6(c) shows that there exists some w > 0 such that

| 1Mw |2, = [[1M] |2, < p(IM]) +e= X

Therefore, |M|w < Aw. Equivalently, for all 4,

n
Z |mij|w]- S )\wi.
=1

Consider now some z such that ||z||% = 1 and let y = Mx. We will prove, by induction
on %, that |y;| < Aw;. Indeed, assuming that |y;| < Aw; for j < i, we obtain, from Eq.
(6.8),

il <Y Imasl - lysl + Y mislws <D Imaslw; + D Imajhwy < Aws.

i<i §>i j<i §>i

We conclude that |Mz| < Mw for every z satisfying ||z||, = 1. This implies that
[|M]|% < A. Therefore, p(M) < X = p(|M]) + €. Since this is true for every € > 0, the
result follows. Q.E.D.

We now focus on the solution of a system of equations Az = b, where the entries
of the A matrix satisfy a;; < 0 for all ¢ # j, and a;; > O for all . The iteration matrix
M associated with the Jacobi algorithm for solving such a system [cf. Eq. (4.4)] is
given by [M;];; = 0 and [M;];; = —ayj/ay for j # 4, and it follows that M; > 0.
Let Mgs be the iteration matrix for the Gauss—Seidel algorithm of Eq. (4.5). It is easily
seen that Mgs > 0.

Proposition 6.9. (Stein—Rosenberg Theorem) Under the above assumption on A,
the following are true:

(@) If p(M;) < 1, then p(Mgs) < p(M}).
(b) If p(My) > 1, then p(Mgs) > p(My).

Proof. Part (a) is simply a restatement of Prop. 6.8, because we have |M;| = M.
For part (b), start with some w # 0 such that w > 0 and M ;w = p(M j)w, which exists
because of Prop. 6.6(b). Let y = Mgsw. Proceeding as in the proof of Prop. 6.8, with
the inequalities reversed, we obtain y; > p(M j)w; for each . Therefore, Mgsw =y >
p(Mpw. Let N = Mgs/p(My). Then, Nw > w and Ntw > w, for all ¢. Since
w # 0, it follows that Nt does not converge to zero, as ¢ tends to infinity, and using
Prop. A.21 in Appendix A, we have p(IN) > 1. Thus, p(Mgs) = p(M;)p(N) > p(My),
which concludes the proof. Q.E.D.

Propositions 6.8 and 6.9 are useful because the iteration matrix M correspond-
ing to the Jacobi method may be simpler to analyze when compared to the iteration
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matrix Mgs of the Gauss—Seidel method. Proposition 6.8 shows that, for the special
case of nonnegative iteration matrices, if a Jacobi—type algorithm converges, then the
corresponding Gauss—Seidel algorithm also converges, and its convergence rate is no
worse than that of the Jacobi algorithm. This provides a justification for algorithms of
the Gauss—Seidel type, that is, algorithms in which more recent data are used whenever
available. Furthermore, notice that the proofs of Props. 6.8 and 6.9 remain valid when
different updating orders of the components are considered. The implication is that iter-
ative algorithms involving positive iteration matrices possess some intrinsic robustness
with respect to the order of updates. This turns out to be a key element in the context
of asynchronous algorithms, as will be seen in Chapter 6.

2.6.3 Convergence Analysis Using a Quadratic Cost Function

Quadratic cost functions are particularly useful in dealing with systems of equations
Az = b, where A is a symmetric positive definite matrix, which we are going to assume
in this subsection (see Appendix A for a definition and properties of positive definite
and symmetric matrices). Let us also recall that positive definite matrices are always
invertible, so that the equation Az = b is guaranteed to have a unique solution. We
will measure the progress of an algorithm by introducing the cost function F(zx) =
3@’ Az — z'b. Since A is positive definite, F is a strictly convex function [Prop. A.40(d)
in Appendix A], and a vector z* minimizes F' if and only if VF(z*) = 0. We notice
that VF(z) = Ax — b, which shows that z* is the solution of Az = b if and only if z=*
minimizes F. (In particular, F’ has a unique minimum.)

We now interpret the Gauss—Seidel method in terms of the cost function F'. Suppose
that at some stage of the algorithm, we have a current vector x, and it is the turn of
the ith component of x to be updated. Let Z be the vector obtained after the update.
Using the definition of the Gauss—Seidel method, we see that Z is chosen so that the ith
equation in the system Az = b is satisfied. Since the equations Az = b and VF(z) =0
are equivalent, it follows that Z is chosen so that V;F(Z) = 0. Thus, the vector Z is
defined by the properties that all components except for the ith one are fixed and the :th
component is chosen so as to satisfy V; F'(Z) = 0. But this is equivalent to choosing  so
as to minimize F(y) over all y differing from z only along the ¢th coordinate. There are
two distinct cases to be considered: either at the current point x we have V,;F(z) # 0,
in which case the update has nonzero size and F(Z) < F(x); or V;F(z) = 0, z is not
changed, and the value of F' remains the same. In the latter case, one of two things will
happen. Either a component j will be eventually found such that V; F'(z) # 0 and a cost
decrease will result; or V;F(z) = 0 for all j, in which case we are at a point at which
VF(z) = 0, that is, at a solution of Az = b. To summarize, the Gauss—Seidel method
proceeds by minimizing F'(z) successively along each coordinate, as illustrated in Fig.
2.6.4. By using this fact, it is not hard to show that F'(z) converges to the minimum of
F (see Fig. 2.6.5). Accordingly, the vector = converges to the solution of Az = b.

Let us now turn to the SOR method. As long as + is positive, the direction of each
update is the same as for the update that would be made by the Gauss—Seidel algorithm
(starting from the same point), and the magnitude of the update is scaled by a factor of
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Figure 2.6.4 For a positive definite
x(1) matrix A, the Gauss—Seidel method
[ can be viewed as a coordinate descent
method for minimizing the function
F(z) = %z’Az — z'b. The curves in this
figure correspond to the level sets of F, that
x(0) is, sets of points on which F is constant.

v. It is then natural to look for the range of values of  for which the cost does not
increase. Since F'(z) is a quadratic function of z;, the other coordinates being fixed, and
since quadratic functions are symmetric around their minimizing point, it follows that
(whenever the vector z is changed) we have a cost decrease if and only if 0 < v < 2.
This discussion motivates the following result.

Proposition 6.10. Let A be symmetric and positive definite, and let z* be the
solution of Az = b.

(a) If v € (0,2), then the sequence {xz(t)} generated by the SOR algorithm converges
to x*.

(b) If v € (0, 2), then for every choice of z(0) different than z*, the sequence generated
by the SOR algorithm does not converge to z*.

The proof of Prop. 6.10 consists of filling the gaps in the argument we provided
above and is left as an exercise. Actually, part (a) of the proposition is a special case of
Prop. 2.2 of Section 3.2, which covers the case of a general (not necessarily quadratic)
cost function F.

Recall that the JOR method is the same as SOR except that all components are
updated simultaneously. Since each component is updated by SOR in a direction that does
not increase the cost, the same should be true for JOR, as long as v > 0 is sufficiently
small. Finally, Richardson’s method is the same as JOR except that each component’s
update is not scaled by the factor 1/a;;. Thus, again each component is updated in a
direction that does not increase the cost. This discussion motivates the following result.
Its proof is omitted because it is a special case of the more general Prop. 2.1 of Section
3.2. However, the interested reader should have no difficulty in providing a proof.

Proposition 6.11. If A is symmetric and positive definite and if v > 0 is suf-
ficiently small, then the JOR and Richardson’s algorithms converge to the solution of
Az =b.
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Gly) = Fix+7s)
oo TEGYs
0 s'V2F(x)s
Fix) ° Y
1 (VFx)'s)?
2 $'V2F(x)s
Slope =V F(x)'s

Curvature = s’ V2F (x)s

Figure 2.6.5 Illustration of cost reduction along a descent direction. Let A be a symmet-
ric positive definite square matrix and consider a function F, given by F(z) = %z’ Az,
along a direction s starting from the vector z. The function G(y) = F(z + vs) =
1(z + vs) A(@ + 7s) of the stepsize is quadratic and is minimized at

«_ VF@)s _ z'As
7 s'V2F(z)s s'As’
The corresponding reduction is

F(@) — min F@ +79) = = (vFers)’
B S = ViR @)s

By using this figure, it can be shown that if s',...,s™ is a set of linearly independent
directions and F is minimized at each iteration along one of these directions, and each
of these directions is used infinitely often, then convergence to the unique minimizing
vector of F is guaranteed. (The sequence {x(t)} belongs to the bounded set {z|F(z) <

F(a:(O))} and therefore has at least one limit point. The sequence of cost reductions

must tend to zero, implying that the sequence of stepsizes tends to zero. Thus, every

limit point z* of the sequence {z(t)} satisfies VF(z*)'s* = 0 fori = 1,...,n. Since

s!,...,s™ are linearly independent, we have VF(z*) = 0 and, therefore, z* = 0.) If

the direction vectors s!, ..., s™, are the unit vectors in ™, we recover the Gauss—Seidel
algorithm.

2.6.4 The Poisson Equation Revisited

We consider the system of equations

1 1 .
fij = Z(fi+l,j + fic1j+ fij+1 t fi,j—l) — a2 i 0<i,7<N. (69

obtained from the discretization of the Poisson equation on a square [cf. Eq. (5.2)]. We
have one such equation for each variable f; ; corresponding to an interior grid point.
These equations can be represented in the matrix form Az = b as follows. With every
integer k such that 1 < k < (IV — 1)?, we associate a different interior grid point (ix, jk)-
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We arrange the unknowns f; ; in order of increasing k to form a vector f of unknowns.
Then, the kth equation of the system Az = b is given by Eq. (6.9), with (4, j) replaced
by (ix, j)- It follows that the matrix A has the following structure: (i) axr = 1 for each
k, and (ii) if k # ¢, then ay, is equal to eithe; —% or it is equal to zero; in particular, it
is equal to —% if and only if |ix — i¢| + |jk — je| = 1, that is, if and only if (ix, jz) and
(2¢, je) are neighboring interior grid points. It is clear that axy = agy for every k, £, and
the matrix A is symmetric.

The eigenvalues of the iteration matrix corresponding to the Jacobi algorithm can
be calculated explicitly; however, we prefer to show convergence using a quadratic cost
function.

Proposition 6.12. The matrix A constructed above is symmetric positive definite.

Proof. Symmetry has been already established. Using the discussion preceding
the statement of the proposition, f'Af is given by the following expression:

E[fi,j (fi,j - % ka,e)], (6.10)
Y.

,J
where the first summation is over all interior grid points and the second summation is over
all (k, £) that correspond to interior grid points neighboring with (i, j). By rearranging
the terms in the expression (6.10), we can rewrite it as

3 3 (Bt e 2hiafed) 41 B 6.11)

(2,5),(k,€) (2,3)

where the summation is over all pairs ((i, 1), (k, 2)) of neighboring interior grid points,
and x; ; is the number of boundary points neighboring with (4, 7). Using the fact a® +
b —2ab = (a — b)? > 0, it follows that f'Af > 0 and therefore A is nonnegative
definite. To prove positive definiteness, we assume that f’Af = 0, or, equivalently, that
the expression (6.11) is equal to zero, and we will show that f = 0. If the expression
(6.11) is equal to zero, it follows that f; ; = O for all points (4, j) neighboring with the
boundary, and f; ; = fi for all pairs ((z, ), (k, £)) of neighboring points. This implies
that f; ; = O for every (¢,5). Q.E.D.

Since A is positive definite, the Gauss—Seidel algorithm converges by virtue of
Prop. 6.10. We now notice that the diagonal elements of A are positive and the off—
diagonal elements are less than or equal to zero. Consequently, Prop. 6.9 applies and
shows that the Jacobi algorithm also converges. We have thus proved the following.

Proposition 6.13.  The Jacobi and Gauss—Seidel algorithms for solving the system
(6.9) converge and the Gauss—Seidel algorithm converges faster, in the sense of Prop.
6.9.
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Proposition 6.13 is one of the reasons for our interest in the parallel implementation
of the Gauss—Seidel algorithm. In fact, in the present context, the equally efficiently par-
allelizable SOR algorithm is known to converge substantially faster than the Gauss—Seidel
algorithm, when the relaxation parameter is suitably chosen ([Var62] and [HaY81]). The
above discussion also extends to the numerical solution of more general classes of elliptic
partial differential equations.

EXERCISES

6.1. Assuming that a square matrix A is invertible and has a nonzero diagonal, show that I — M
is invertible, where M is the iteration matrix defined by Eq. (6.5), corresponding to any one
of the algorithms introduced in Section 2.4.

6.2. Find an example of a symmetric matrix M with no zero entries and such that p(M) < 1,
but || M]3 > 1 for every positive vector w. Hint: The smallest possible example is of size
3 x3.

6.3. This exercise leads to a proof of the Perron—Frobenius theorem (Prop. 6.6) that does not
involve the Brouwer Fixed Point Theorem. Let M be an n X n irreducible nonnegative
matrix. Our objective is to show that M has a positive eigenvector w.

Let X = {z € R" |z >0, = # 0}. For every z € X, let r(z) = sup{p | Mz >
pz}. Let S={z e X | Y " =z =1}. Let \ = sup{r(z) | z € X}.

(a) Show that A\ > 0. Hint: Let e be the vector in R" with all coordinates equal to 1;
use the irreducibility of M to show that Me > 0 and conclude that (e) > 0.

(b) Show that A\ = sup{r(z) | z € S}. Hint: Any vector in X can be scaled so that it
belongs to S.

(c) Let Q = {(I + M)~z |lzesS } Show that all elements of Q are positive vectors.

(d) Show that A = sup{r(z) | € Q}. Hint: By definition, sup{r(z) | = € Q} < \.
For the reverse inequality, show that r((I + M )""x) > r(z) for x € S, and use
the result of (b).

(e) Show that r(-) is a continuous function on Q. Hint: Show that

n
. 1
r(z) = ,gni‘é’n{z Zlmzm}, z€Q.
g

(f) Show that there exists some w € @ such that r(w) = \.
(g) Let z = Mw—Aw. Show that z = 0, which proves that M has a positive eigenvector
w. Hint: Use the definition of w to show that z > 0. If z # 0, then J+M)"~'z > 0,
which shows that M(I + M)™~'w > A + M)™ 'w. Show that this contradicts the
definition of A.
6.4. Prove Prop. 6.10. Hint: For part (b) show that F(x(t)) > F(x(0)) for all t.
6.5. Prove Prop. 6.11.
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2.7 THE CONJUGATE GRADIENT METHOD

We consider a system Az = b of linear equations. It will be assumed throughout this
section that A is an n x n symmetric and positive definite matrix. (If A is invertible but
not symmetric, one may apply the methodology of this section to the system A’Az =
A’b.) Conjugate direction methods are motivated by a desire to accelerate the speed of
convergence of the classical iterative methods for this particular class of problems. While
they are guaranteed to find the solution after at most n iterations, they are best viewed as
iterative methods, since usually fewer than n iterations are executed, particularly for large
problems. These methods are in fact applicable to nonquadratic optimization problems
as well. For such problems, they do not, in general, terminate after a finite number of
iterations but still, when properly implemented, have attractive convergence and rate of
convergence behavior.

For convenience, it will be assumed that b = 0. The modifications for the general
case will be indicated later. The method is motivated in terms of the cost function

1
F(z) = =z’ Az.
2
This function is strictly convex, because of the positive definiteness of A [Prop. A.40(d)
in Appendix A], and is minimized at z = 0, which is also the unique solution of the
system Az = 0.
An iteration of the method has the general form
z(t + 1) = z(t) + y(t)s(t), t=0,1,..., a.1)

where s(t) € R™ is a direction of update, and ~y(¢) is a scalar stepsize defined by the line
minimization

F(z(t) + v(®)s@®) = min F(xz(t) + vs(2)). (72)

The distinguishing feature of this method is the choice of the direction vectors s(¢); they
are chosen so that they are mutually A—conjugate, that is, they have the property

s(t) As(r) = 0, if t£7
In what follows, we shall employ the notation
9(t) = Az(t) = VF(z()).
Some important consequences of conjugacy are the following.

Proposition 7.1.  Suppose that s(0), s(1),..., s(t) are nonzero and mutually A-—
conjugate. Then:
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(a) The vectors s(0), s(1),..., s(t) are linearly independent.
(b) We have

gk + 1)'s(3) =0, if 0<i<k<t. (7.3)
(¢c) For k=0,1,...,t + 1, the vector (k) minimizes F' over the linear manifold

My = {x(O) +as0) + - + ap_1s(k — 1) ‘ 00yn ey Oy € 3%}.

(d) The vectors z(k) satisfy F(z(k + 1)) < F(z(k)) for all k < ¢.

Proof.
(a) Suppose the contrary. Then, there exists some r < ¢t and some scalars ag, ..., Qr—1
such that
r—1
s(r) = Z a;s(2).
=0
This implies that
r—1
s(r) As(r) = Zais(r)'As(i) =0
i=0

which is impossible because s(r) # 0 and A is positive definite.
(b) By Eq. (7.2) and the chain rule, we have

0=2Few+ ys(h)|

o (k)= gk + 1) s(k).

Y=Y
Thus, it only remains to prove Eq. (7.3) for ¢ < k. We have fori =0,1,...,k—1,

k /
gk + 1's(@) = 2k + 1 As) = (26 + D+ I 1(G)s()) As(i)

j=itl
=z(i + 1) As(3) = gt + 1)'s(i) = 0.
(c) It suffices to show that the partial derivatives

oF
8011'

(2(0) + aps(0) + - - - + a1 5(k — 1)),
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evaluated at g = ¥(0), ..., ax—; = v(k — 1), are equal to zero for each i < k — 1.
This is equivalent to g(k)'s(z) =0 for i = 0,...,k — 1, which is true by part (b).
(d) Since M C Mjy, the result follows from part (c). Q.E.D.

2.7.1 Description of the Algorithm

We now describe the most important way of generating the conjugate directions s(t). We
start at some z(0) and select s(0) = —g(0) = —Az(0). More generally, given the current
vector (), we evaluate the gradient g(t) = Ax(t). If g(t) = 0, then z(t) = 0 and the
algorithm terminates. Otherwise, a reasonable direction of update could be s(t) = —g(t),
which is a steepest descent direction [compare with Eq. (4.9) in Section 2.4; see also
Section 3.2]. However, in general, this choice does not guarantee conjugacy. This
suggests that we generate s(t) according to the formula

t—1

s(t) = —g(t) + Y _ cis(i), (7.4)

=0

where the coefficients ¢; are chosen so that s(f) is conjugate to 5(0), ey, 8t —1). As-
suming that s(0),..., s(t — 1) are already mutually conjugate, we need

t—1

0 = s(t) As(j) = —g(t) As(j) + Z cis(i) As(j) = — g(t)' As(j) + c;s(5) As(j),

i=0
7j=0,...,t—1,
which gives
9@ 4s()
T SGYAsG) 7
Notice that
9G + D = g(i) = A(zG + 1) — 2()) = v()As(),
and Eq. (7.5) becomes
_ 9@ (9G + 1) - g() 7.6

TS G+ D -9G)

(This step is legitimate provided that y(j) # 0, and will be justified later.) Equation
(7.4) shows that g(j) is a linear combination of s(0),..., s(j), and, using Prop. 7.1(b),
we obtain g(¢)'g(j) = 0 for j = 0,...,t — 1. We conclude that ¢; = 0 if j < ¢ — 1,
and, from Eq. (7.4), the conjugate direction s(¢) is given as a linear combination of the
gradient g(t) and the previous conjugate direction s(¢t — 1), that is,
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s(t) = —g(®) + B®)st — 1), 1.7

where

t) g(t
Bt = 99 . (7.8)
st — 1) (gt) — gt — 1))
An alternative expression for 3(t) is obtained by rewriting the denominator in Eq. (7.8)
as

s(t-1Y (9)—g(t—1)) = (—gt—D+Bt—Dst-2)  (9t)—gt—1)) = gt—1Y gt —1).

[In the last step, we have used Prop. 7.1(b), together with the fact that g(t — 1) is a linear
combination of s(0),...,s(t — 1).] This leads to

g(t)' g(t)

LA A A 7.
o= Vgt =1 79)

Bt) =

The next vector z(t + 1) is determined by z(t + 1) = z(t) + y(t)s(t), where y(t)
is defined by line minimization as in Eq. (7.2). A formula for ~(¢) is found by setting
to zero the derivative (with respect to ) of the function minimized in Eq. (7.2). Using
the chain rule, we obtain

s@t) A(z(t) + v()s(®)) =0,

which leads to

s(@)'g(t)

0 ==

(7.10)

The conjugate direction method based on Egs. (7.7), (7.9), and (7.10) is called the
conjugate gradient algorithm. We will assume that the algorithm is terminated at the
first time ¢ such that g(¢) = 0. We now show that the algorithm is well-defined, and, for
this, we need to show that, until termination occurs, no division by zero is attempted in
Egs. (7.9) and (7.10). This is clearly true for Eq. (7.9). Concerning Eq. (7.10), since the
matrix A is positive definite, the denominator will be equal to zero only if s(t) = 0. We
therefore need to show that before termination [that is, if ¢g(0),..., g(t) are nonzero], we
have s(t) # 0. We proceed by induction. If g(0) # 0, then s(0) # 0. If g(0),..., g(t) are
nonzero, we use the induction hypothesis that s(t — 1) # 0 and we show that s(t) # 0.
Indeed, if s(t) were equal to zero, then g(t) would be collinear with s(¢ — 1), because
of Eq. (7.7). On the other hand, ¢(¢) is orthogonal to s(t — 1) [Prop. 7.1(b)] and, since
s(t — 1) # 0, we must have g(t) = 0, which is a contradiction.

We prove next that y(¢) is nonzero unless the algorithm has terminated, which is
needed to justify the step that led us from Eq. (7.5) to Eq. (7.6). In particular, we
demonstrate that if z(t) # 0, then v(¢) # 0. For ¢ = 0, we have s(0) = —g(0). If
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z(0) # 0 then g(0) # 0 and Eq. (7.10) shows that v(0) # 0. Suppose now that t > 1,
z(t) # 0, and ~(t) = 0. Equation (7.10) yields s(¢)'g(t) = 0. We form the inner product
of both sides of Eq. (7.7) with g(t) to obtain

0= s(t)g(t) = —g(&) g(t) + BB s(t — 1) = —g(t)' g(t),

where the last equality followed from Prop. 7.1(b). Thus, g(t) = 0, which contradicts
our assumption that x(t) # 0.

We close this subsection by pointing out that Egs. (7.7), (7.9), and (7.10) also
define the conjugate gradient method for the case of a linear system Axr = b when
b # 0. The only difference is that g(t) should be defined to be equal to Az(t) — b. This
can be demonstrated by repeating the previous arguments in terms of the cost function
F(z) = (1/2)(x — z*)' A(z — z*), where z* = A~ !b.

2.7.2 Speed of Convergence

We now show that the conjugate gradient method terminates after at most n iterations,
with z(n) = 0. Furthermore, the second part of the result to follow will lead us to
interesting bounds on the speed of convergence when the number of iterations is smaller
than n. For this purpose, it is convenient to introduce the linear manifold

H, = {z(O) + a1 Az(0) + - - - + ar AFz(0) | ayy...,ar € 9?}

Proposition 7.2.  For the conjugate gradient method, the following hold:

(a) The algorithm terminates after at most n steps; that is, there exists some t < n
such that g(t) = 0 and z(¢t) = 0.
(b) If 5(0),...,s(t — 1) are all nonzero, then M; = H,, where M, is as in Prop. 7.1.

Proof.

(a) If the algorithm does not terminate after at most n steps, then g(0),..., g(n) are
all nonzero, and, as shown earlier, the vectors 5(0),..., s(n) are also nonzero and,
therefore, linearly independent [Prop. 7.1(a)]. This is impossible since they belong
to the n—dimensional vector space R™. At termination we have g(t) = 0 and the
equality z(¢) = 0 follows because g(t) = Az(t) and A is nonsingular.

(b) Let M, (respectively, H;) be the subspace of R" spanned by the collection of
vectors {s(0),...,s(t — 1)} [respectively, {Az(0),..., Atz(0)}]. It is sufficient to
show that H; = M;, and we proceed by induction. The result is true for ¢ = 1
because s(0) = —Az(0). Suppose that M,_; = H,_;. Using Eq. (7.1), we see that
x(t — 1) — z(0) is a linear combination of s(0), ..., s(t —2) and therefore belongs to
M,_;. Using the induction hypothesis, we obtain z(t — 1) — z(0) € H,_,. We then
use the definition of H, to see that Az(t — 1) — Az(0) € H,. Since Az(0) € H,,
we conclude that g(t — 1) = —Axz(t — 1) € H,. Furthermore, by the induction
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hypothesis, s(t —2) € M;_, = H,_, C H;. Equation (7.7) then implies that
s(t — 1) € H,. We conclude that M, C H,. It remains to show that A, cannot
be a proper subset of H;. This follows because the vectors s(0),...,s(t — 1) are
linearly independent and the dimension of M; is t, whereas the dimension of H;
cannot be more than ¢, since it is spanned by ¢ vectors. Q.E.D.

An important consequence of Props. 7.2(b) and 7.1(c) is that z(¢) minimizes F'(x)
over the set H;. By definition, H; is the set of all vectors of the form P(A)z(0), where
P is a t—degree polynomial whose zero-th order term is equal to 1. Let P be the class
of all such polynomials. We have

F(z(t)) < z(0) P(A) AP(A)z(0), VP eP.

N[ =

Let A'/2 be a square root of A, as defined in Prop. A.27 in Appendix A. Since A!/?
commutes with A, we obtain for every P € P,

F(e) < % (P(A)Al/Zz(O))l (PA%2(0) = %”P(A)A”%(O)”i

1
< SIPAIE - 42O = 5| PA]; - (2(0) 42(0) = [[P(A)IEF (2(0)).-

N —

Let Ay,..., A, be the eigenvalues of A. Then, the eigenvalues of P(A) are equal to
P(Ay),..., P(\,) [this is proved similarly with Prop. A.17(d) in Appendix A]. Since A
is symmetric, P(A) is also symmetric and ||P(A)||» is equal to the largest magnitude of
the eigenvalues of P(A) [Prop. A.24(a) in Appendix A]. We therefore conclude that

F(z@®) <

max (PO)’F(x(©),  VPeP. (7.11)

i<n

Inequality (7.11) provides an infinite class of bounds for F(a:(t)), parametrized by
the polynomial P(-). If some prior knowledge on the location of the eigenvalues of A is
available, interesting bounds are obtained by choosing the polynomial P(-) appropriately.
As an example, assume that there exist some a and b, with 0 < a < b, such that A has
no eigenvalues smaller than a, and those eigenvalues that are larger than b take k distinct
values. It can be shown (Exercise 7.1) that for every z(0), the vector z(k + 1) satisfies

b—a\’
Flztk+1) <|{—— ) F(z(0)). 7.12
(z(k + ))_<b+a> (z(0)) (7.12)
This shows that the method converges fast if most of the eigenvalues of A are clustered
in a small interval and the remaining eigenvalues lie to the right of the interval. Another
consequence is that if the eigenvalues of A take at most k distinct values, then the
conjugate gradient method will find the minimum of F after at most k iterations. To
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see this, take the interval [a,b] to be an arbitrarily small interval around the smallest
eigenvalue of A.

2.7.3 Preconditioned Conjugate Gradient Method

This method is really the conjugate gradient method carried out in a new coordinate
system. Let T be a symmetric invertible matrix and consider the system of equations
T ATy =Tb. If y solves the latter system, the vector z = T'y vector solves the original
system Az = b. We will assume again that b = 0 and apply the conjugate gradient
method to the system T ATy = 0. [The same equations are valid even if b # 0, provided
that g(t) is defined to be equal to Az(t) —b.] The method is described by [compare with
Egs. (7.1), (7.7), (7.9) and (7.10)]

Yyt +1) = y@) + ()3, (7.13)
where 3(t) is generated by
5(0) = =T ATy(0), (7.14)
3() = —TATy(t) + B)3(t — 1), t=1,2,..., (7.15)
and where
Bt = (TATy(t))/ (TATy(t)) ’ (7.16)
(TATy(t — 1)) (TATy(t - 1))
_ 3(TATy®)
y(@) = T 3O TATG) 7.17)

Setting z(t) = Ty(t), g(t) = Az(t), s(t) = T3(t) and, H = T?, we obtain from Egs.
(7.13) to (7.17) the equivalent method

z(t +1) = z@) + y(t)s(?),
s(0) = —Hg(0), s@) =—-Hg@®)+ B®)st - 1), t=1,2,...,

where

s(t)'g(t)
s(t)Y As(t)

’
oty = —STHIO__ A1) = —
gt —1)Hg(t — 1)
Notice that the algorithm can be carried out without having to compute the matrix
product T AT Our earlier results guarantee that the algorithm converges in n iterations.
Concerning the rate of convergence, inequality (7.11) is again applicable, except that
the eigenvalues of TAT = H'/2AH'/? are involved, replacing the eigenvalues of A.
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For this reason, preconditioning may substantially enhance the speed of convergence,
although finding a good choice of the scaling matrix H remains mostly an art.

2.7.4 Parallel Implementation

For simplicity, we only discuss the case of no preconditioning. Assuming that at the
beginning of the tth iteration, z(¢), s(t — 1), and g(t — 1)'g(t — 1) have already been
computed, we need to evaluate the vectors g(t) = Ax(t), the inner product g(t)'g(t),
determine ((t) and s(t) using Egs. (7.9) and (7.7), then evaluate As(t), and finally
compute the inner products s(t)’ (As(t)), s(t) g(t), from which ~(¢) is determined [cf.
Eq. (7.10)]. Neglecting vector additions and scalar—vector multiplications, the main
computational requirements are two matrix—vector multiplications and three inner product
computations. Furthermore, in all matrix—vector multiplications, the same matrix A is
involved.

We only discuss the case of message—passing architectures. If n processors are
available, it is natural to let the ith processor be in control of the ith component of
the vectors of interest, that is, (t), s(t), and g(¢). Inner products of such vectors are
computed by letting the ith processor compute the product of the ith components and then
accumulating partial sums along a tree of processors. This is a single node accumulation
and takes time proportional to the diameter of the interconnection network. Then, the
computed values of the inner products are broadcast to all processors. We now assume
that each processor is given the entries in a different row of A. Then, a matrix—vector
product like Ax(t) may be computed by broadcasting the vector x(t) (this is a multinode
broadcast) and having the ith processor compute the inner product of x with the ith
row of A. Alternatively, the ith processor could compute [A];;z; for each j, and these
quantities could be propagated to each processor j, with partial sums formed along the
way, as discussed in Subsection 1.3.6." If fewer than n processors are available, the
issues involved are the same except that there are more components, and more rows of
the matrix A, assigned to each processor.

In the case where A is a sparse matrix, the multiplication of any vector by A
may be performed more efficiently by using a special interconnection topology that
exploits the sparsity structure of A. For example, if A arises from the discretization
of a partial differential equation, a mesh—connected processor array is suitable, and the
required matrix—vector multiplications can be executed in O(1) time. Unfortunately, the
speed of inner product computations is limited by the diameter of the interconnection
network. For example, in an n!/2 x n!/? mesh—connected array, Q(n!/2) time units are
required to evaluate an inner product z'y when each component of z and y lies at a
different processor. This creates a bottleneck that can be alleviated if there are some
special hardware facilities (e.g., additional connections) allowing quick evaluation of
inner products. Another option for reducing the communication penalty and increasing
efficiency is to use fewer processors and to assign enough components to each processor

t Notice that there is no significant difference between row and column storage schemes for matrix—vector
multiplication because the matrix A is symmetric.



166 Algorithms for Systems of Linear Equations and Matrix Inversion Chap. 2

so that the number of computations of each processor, per stage, is comparable to the
diameter of the interconnection network. This constrains the number of processors that
can be efficiently employed and limits the attainable speedup (Exercise 7.3). ‘

EXERCISES

7.1. [Lue84] Prove inequality (7.12). Hint: Use the polynomial

2 a+b
— - — N —
PO = arom ( 2 ’\)()“ D Qe = A,
where A1, ..., \r are the values of the eigenvalues of A that are larger than b.

7.2. [Ber74] Let A be of the form

k
A=M+ Zm;,
=1

where M is positive definite and symmetric and vy, ..., vx are some vectors in R™. Show
that the preconditioned conjugate gradient method with H = M ~! terminates in at most
k + 1 steps.

7.3. Consider the discretized Poisson equation (Subsection 2.5.1) for a square domain with N
grid points. Suppose that a two—dimensional mesh of p processors is used to execute
the conjugate gradient algorithm, with each processor assigned IN/p grid points in a square
subdomain. Find the order of magnitude dependence of p on IV that optimizes the execution
time of each iteration. Assume that the time for one computation and the communication
delay across any link are comparable.

7.4. Suppose that the conjugate gradient has not terminated at the kth iteration, that is, z(k) # 0.
Show that F(z(k + 1)) < F(z(k)). [This strengthens Prop. 7.1(d).]

2.8 COMPUTATION OF THE INVARIANT DISTRIBUTION OF A MARKOV
CHAIN '

Markov chains are widely used as probabilistic models of stochastic systems, in queue-
ing theory, for example. In applications, one often deals with Markov chains with very
large state spaces, involving tens of thousands of states. It is often desired to compute
the steady-state (invariant) probability distribution for such chains, and this is a com-
putational task that calls for parallel computation. We present two variants of an easily
parallelizable iterative algorithm.

Let P be the one-step transition probability matrix of a discrete-time homogeneous
n-state Markov chain. The reader may wish to consult Appendix D for the relevant
definitions. For the purposes of this section, we only need the following two properties
of P: ’
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P >0, (8.1)

n

> pii=1 38.2)

=1

Any matrix with these two properties is called a stochastic matrix.

A nonnegative row vector 7* whose components sum to 1, and that has the property
m* = 7* P is called an invariant distribution of the Markov chain associated with P; the
computation of such a vector 7* is the subject of this section.

Consider the following algorithm. We start with a row vector 7(0) > 0 whose
components add to 1, and we employ the iteration

w(t+ 1) =7(t)P. 8.3)
Equivalently,
() = )P, t>0.

We present below some conditions under which this iteration converges to an invariant
distribution 7*. We first recall some definitions from Appendix D.

Given an n X n stochastic matrix P, we form a directed graph G = (N, A), where
N is the set of states, and A = {(z,) | pi;; > 0, ¢ # j}, the set of arcs, is the set of
all transitions that have positive probability. We say that P is irreducible if for every
i,j € N there exists a positive path in the above graph from i to j, or if n = 1. Notice
that this is the same definition as the one given in Section 2.6.

The stochastic matrix P is called periodic if there exists some k& > 1 and some
disjoint nonempty subsets N, ..., Nx_; of the state space N such that if i € N, and
pij > 0, then j € Nyi1moa k). We say that P is aperiodic if it is not periodic. Finally,
P is called primitive if there exists a positive integer ¢ such that P* > 0. Some examples
are provided in Fig. 2.8.1.

Proposition 8.1. A stochastic matrix P is primitive if and only if it is irreducible
and aperiodic.

Proposition 8.1 is a well-known result in the theory of Markov chains [Var62].
We omit its proof because it will not be used. Instead, it will be assumed that we are
dealing with a primitive matrix.

Proposition 8.2. Let P be a stochastic matrix.

(a) The spectral radius p(P) of P is equal to 1.
(b) If 7 is a row vector whose entries sum to 1, then the row vector 7P has the same
property.
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1/2 1
1/2 Yon\ 1/2
@B @B NG o o®
1 1

1
1/2

(a) (b)

Figure 2.8.1 Some examples of Markov chains. For the Markov chain in (a), we have
0 1 0
P=11/2 0 1/2
0o 1 0
and it is easily seen that Pt = P if t > 0 is odd, and
1/2 0 172
Pt = { 0o 1 0 ]
1/2 0 1/2

if ¢ > 0 is even. In particular, Pt does not converge. The matrix P is irreducible but neither
primitive nor aperiodic. For the Markov chain in (b), we have

0 1/2 172
Pt=P=[O 1 o], vt > 1.
0 0 1

Notice that P is not irreducible but is aperiodic. The sequence {P*} converges, since it is constant,
but the limits of different rows are different.

Proof.

(a) Let e be the column vector with all components equal to 1. From Eq. (8.2), we
obtain Pe = e. Thus, 1 is an eigenvalue of P and p(P) > 1. On the other hand,
p(P) < [|Pllec = 1.

(b) We have

n

n n n n n
> [Pl = SO mpri =) b= m =1
k=1 k=1

i=1 i=1 k=1 i=1

Q.E.D.

Convergence of the iteration m(t+ 1) = 7(¢)P is obtained from the following result.
The examples in Fig. 2.8.1 illustrate the ways in which Prop. 8.3 fails to hold if P is
not primitive.
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(a)
(b)

(c)

(a)

(b)

Proposition 8.3. Let P be a primitive stochastic matrix. Then:

There exists a unique row vector 7* such that 7* = 7*P and > ., 7} = 1.
Furthermore, 7* > 0.

The limit of P?, as ¢ tends to infinity, exists and is the matrix with all rows equal
to 7*.

If Z;;l m;(0) = 1, then the iteration 7(¢ + 1) = =(¢)P converges to 7*.
Proof.
Since P is primitive, it is irreducible. (This follows from the unproved Prop. 8.1,

but is also a straightforward consequence of Prop. 6.3.) It then follows that P’ is
also irreducible. Since the eigenvalues of P’ coincide with the eigenvalues of P
[Prop. A.17(f) in Appendix A], we use Prop. 8.2(a) to obtain p(P’) = 1. We then
apply the Perron—Frobenius theorem (Prop. 6.6) to P’ to assert the existence of a
positive vector w such that P'w = w; equivalently, w'P = w’. The existence of
©* follows by normalizing w’ so that its components sum to 1. Uniqueness follows
from the uniqueness result in Prop. 6.6.

Fix some z € R™. Let M;(z) = max;[P'z]; and m;(z) = min;[P’z];. The fact
Z;;l pi; = 1 and an easy induction show that M;(z) is nonincreasing and m;(x)
is nondecreasing. They must therefore converge to some limits denoted by M(z),
m(x).

Let T be such that P7 > 0, and let o be the smallest of the entries of P7.
Since the sum of the entries in each row of P is equal to 1 (Prop. D.3 in Appendix
D), it is easily seen that

Miir(@) < (1 — a)My(z) + amy(),

and

mepr(x) > (1 — )my(z) + aMy(z).

Subtracting these two inequalities, we obtain
Miyr(@) — mipr(z) < (1 — 20)(Mt(17) - mt(l'))-

Taking the limit, as ¢ tends to infinity, and using the positivity of «, we obtain
M(z) = m(z). It follows that P’z converges to m(z)e, where e is the vector

with all components equal to 1. Let e!,...,e" be the unit vectors in R™. Letting
z =e',...,e", we conclude that P* = P'] = P![e! ¢ ... e"] converges to
[m(eMe ... m(e™)e), which is a matrix with all rows equal to the row vector

y = [m(e!)...m(e")]. We now need to show that y = 7*. Since Pe = e, we
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have P'e = e for all t, and limy_o P*( >, €') = lim;_,oc P’e = e. Therefore,
> v = 1. Finally, since lim;_, ., P* = (lim;_.o P*)P, it follows that y = yP.
Using the uniqueness result of part (a), we obtain y = 7*.

(c) By the result of part (b), all of the entries in the ith column of the limit of Pt are
equal to w}. It follows that the sth entry of 7(0)P* converges to z;;l m;(O)my =
wr. Q.E.D.

The iteration 7 := n P admits a straightforward parallel implementation in which
the ith processor is assigned the task of updating the :th component of the vector = and
at each stage communicates its newly computed value to every other processor j such
that p;; # 0. This assumes that each processor j knows the entries in the jth column of
P. A different implementation is obtained if each processor j knows the entries of the
jth row of P; see the discussion in Subsection 1.3.6. An asynchronous version of this
algorithm will be studied in Section 7.3.

We now consider a variant of the iteration 7 := 7w P. The new algorithm is almost
the same except that one of the components of , say the first one, is not iterated upon.
Thus, the algorithm is described by

mt+ 1) = m(@), (8.4)
mt+1) =Y m®ps,  i=2...,n 8.5)
j=1

The initialization of the algorithm is arbitrary, provided that 7;(0) # 0. In order to
represent the algorithm in matrix form, we partition the matrix P as shown:

_ (P a
P=n 3l

Here, a (respectively, b) is a row (respectively, column) vector of dimension n — 1 and
P is the matrix of dimensions (n — 1) x (n — 1) obtained by deleting the first row and
the first column of P. Let 7(t) be the row vector (7r2(t), ceey 7rn(t)). Then, Eq. (8.5) can
be rewritten as

(it + 1) = 7#@t)P + m(0)a. (8.6)

This iteration converges provided that o(P) < 1 (Prop. 6.1). The following result pro-
vides conditions for this to be the case and characterizes the limit of 7 (t).

Proposition 8.4. Consider the directed graph associated with P, and assume that
there exists a positive path from every state to state 1. Let {X(¢) | t = 0,1,...} be
a Markov chain whose one-step transition probabilities are given by P. Let T be a
positive integer and let
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ér = min Pr(there exists some 7 < T such that X(7) =1 l X(0) = z) 8.7

1=2,..,n

(a) If T is chosen large enough, then 67 > 0.
(b) If 67 > 0, then

YT (1= 6p)VT < 1.

p(P) < (IIPT o)
(c) The sequence {m(t)} generated by Egs. (8.4) and (8.5) converges to a vector 7*
satisfying 7* = 7* P. If m;(0) is positive and 7(0) > 0, then 7* is nonzero and all

of its entries are nonnegative.

Proof.

(a) The positivity of ér is a straightforward consequence of the fact that for each
i # 1, there exists a sequence of positive probability transitions leading from 7 to
1. We simply need to take 7" large enough so that for each ¢ # 1, there exists at
least one such path that uses no more than T arcs.

(b) Let
1 0

which is easily seen to be a stochastic matrix, and let {Y'(¢) | t =0,1,...} be an
associated Markov chain. We notice that Y'(¢) has the same transition probabilities
with X (¢) except that state 1 is an absorbing state: once Y () becomes 1, it never
changes. It follows that

br < Pr(there exists some 7 < 7T such that Y (7) = 1|Y(0) = z) = [QT]“,
i=2,...,n. (8.8)

We now notice that Q7 is of the form

r_[1 O
Q —[c pT], 8.9)

where c is an (n — 1)—dimensional column vector with all entries bounded below
by 7. Since Q is a stochastic matrix, so is Q7 and each row sums to 1. It follows
from Egq. (8.9) that the sum of the entries in any row of P7 is bounded above
by 1 — é7. Therefore, p(PT) < ||PT||c < 1 — 6r. The result follows because

p(P) = (pPT))"'".
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(c) Since p(P) < 1, the system 7 = #P + 7(0)a has a unique solution 7 and the
sequence {7(t)} converges to it. It follows that m(¢f) converges to the vector
Tt = (71-1(0), 7‘%) and 7 satisfies ¥ = #P + m1(0)a [cf. Eq. (8.6)]. This shows that
m; = [7*P]; for ¢ # 1, and it remains to show that this equality also holds for
¢ = 1. We have 77 = S mipy; for j # 1. Summing this equality for every
j # 1, we obtain

n n n

n
m=Y Y wpy =y m(-pa)
=1

which after cancellations yields 7} = 22;1 mpy = [7*P];, as desired.

Suppose now that 71(0) > 0. Then 77 = m(0) > 0. Also, if #(0) is a
nonnegative vector, it follows from Eq. (8.5) that 7(¢) is nonnegative for every ¢,
and the same conclusion obtains for 7*, since it is the limit of nonnegative vectors,
which concludes the proof. Q.E.D. :

Notice that Prop. 8.4(b) provides us with an estimate of the convergence rate of the
algorithm of Egs. (8.4) and (8.5). Furthermore, the conditions for convergence are less
stringent than those imposed in Prop. 8.3. For example, the Markov chain in Fig 2.8.1(a)
satisfies the conditions of Prop. 8.4 but not those of Prop. 8.3. It should be pointed out
that the components of the limit vector 7* do not, in general, add to 1. However, this
may be remedied by multiplying the vector 7* obtained at termination of the algorithm,
by a suitable scalar. The issues concerning the parallelization of the algorithm of Egs.
(8.4) and (8.5) are the same as for the algorithm of Eq. (8.3). Actually, this algorithm is
also guaranteed to converge even if it is executed in a Gauss—Seidel fashion, without any
deterioration of the convergence rate and with a potential improvement. This is because
the iteration matrix P is nonnegative, its spectral radius is less than 1, and Prop. 6.8
applies. This Gauss—Seidel algorithm is not always parallelizable, but in typical large
scale Markov chains, the matrix P is very sparse and a coloring scheme can be applied
(cf. Subsection 1.2.4). It will be seen in Section 6.3 that the algorithm of Egs. (8.4) and
(8.5) also converges when executed asynchronously.

EXERCISES

8.1. (Power Method for the Eigenvalue Problem.) The iteration 7 := 7P is a special case of
a more general algorithm for finding an eigenvalue with largest magnitude of a given matrix
A, together with an associated eigenvector. The algorithm is initialized with some z(0) # 0
and consists of the iteration

Ax(t)

D T

(8.10)
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where || - || is an arbitrary norm. Suppose that A has distinct eigenvalues A, ..., A, and
corresponding nonzero eigenvectors z',...,z™. Suppose that |A;| < |);| for each i # 1 and
that the iteration is initialized with some z(0) that does not belong to the span of xz, oz

(a) Show that the sequence {z(¢)} has a limit z satisfying Az = \jz. Hint: Use the
Jordan form of the matrix A.

(b) Show that iteration (8.3), with 7(0) > 0 and Zn m(0) = 1, is of the form of Eq.
(8.10), for a suitable choice of the norm || - Il

This exercise and the next extend Prop. 8.3 to cover all cases where there is only one
ergodic class (Appendix D) associated with the matrix P. Let P be an irreducible, but not
necessarily primitive, stochastic matrix. Let a be some constant satisfying 0 < o < 1 and
consider the matrix @ defined by Q = (1 — a)I + oP.

(a) Show that @ is a primitive stochastic matrix. Hint: Use Prop. 6.3.

(b) Show that there exists a row vector 7* > 0 satisfying 7* P = «*, and, furthermore,
such a vector is unique up to multiplication by a scalar. Suggest an algorithm for
computing 7*.

8.3. Suppose that a stochastic matrix P has the structure

A B
P=[5 ¢l

8.2

.

where A, B, and C, are matrices of dimensions n; X ni, n; X (n—n;), and (n—n;) X (n—n,),
respectively. In particular, C is a stochastic matrix and we assume that it is also irreducible.
We also assume that starting at any one of the first n; states, there is a positive probability
that the state of the associated Markov chain becomes equal to one of the last n — n,
states. Show that there exists a unique row vector 7* > 0 such that 7*P = 7* and whose
components sum to 1. Hint: To prove uniqueness, use the techique in the proof of Prop.
8.4 to show that p(A) < 1, conclude that the first n; components of 7* are equal to zero,
and finally use the irreducibility of C. v

8.4. Let P be an irreducible stochastic matrix and suppose that there exists some ¢ such that
pii > 0. Show that P is primitive.

2.9 FAST ITERATIVE MATRIX INVERSION

We consider here a method based on the classical Newton algorithm for iterative im-
provement of an approximate inverse of a square matrix A, assumed throughout to
be invertible. This method is motivated by the desire for very small execution time
[O(log n)] without the drawbacks of the direct inversion algorithm of Section 2.3 (ex-
cessive number of processors and lack of numerical robustness). Small execution time
rests on a distinctive property of Newton methods quadratic convergence, that is, con-
vergence at the same speed as the sequence {p? } where p is a positive constant smaller
than 1. This is much faster than the geometric convergence rate ( {p }) exhibited by the
classical iterative methods analyzed in Section 2.6.

Given a square matrix B of the same dimensions as A, we define a residual matrix
R(B) = I — BA. Thus, R(B) measures, in some sense, how far B is from being the
inverse of A. Consider the following algorithm:
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1. Start with some By such that ||I — ByAl|» < 1.
2. Tteratively improve By by letting Biy1 = (I + R(Bx))Bir = 2By — By ABx.

This iteration can be interpreted as Newton’s method for solving the equation X ! — A4 =
0 (see Exercise 9.1).
Some algebraic manipulation gives

R(Bi+1) =1 — By1A=1— (I + R(Bi))BpA
= (I - ByA) — R(By)BpA = R(By)(I - By A) = (R(By)™.

k
We therefore obtain R(B;) = (R(Bo))2 . Using Prop. A.12(c) in Appendix A, we have

|RBY|, = “(R(Bo))zkﬂ2 < |RBYIZ". ©.1)

Since we have assumed that || R(By)|| < 1, the previous inequality shows that the norm
of R(B}) converges very rapidly to zero; equivalently, By converges very rapidly to
A~1. So, the algorithm will be succesful provided that By has been suitably chosen.
The following choice of By turns out to be convenient:

Al

Bo= (A’ A)’

9.2)

where tr(A’ A), the trace of A’'A, is defined as the sum of the diagonal entries of A’A.
Other choices of By, some of them suitable in special cases, are given in Exercises 9.2
to 9.4.

For any nonsingular square matrix A4, we let k(A) = ||A||2- ||A~"||2. This quantity
is called the condition number of A and plays a prominent role in numerical analysis,
as a measure of the difficulty of computing A~ in the face of roundoff errors [GoV83].
Let \; < Ay < .-+ < A, be the eigenvalues of A’A. These eigenvalues are real and
nonnegative because the matrix A’A is symmetric nonnegative definite (Prop. A.26 in
Appendix A). Furthermore, they are nonzero because A is assumed nonsingular. Another
definition of the condition number is given by x(A4) = (A,/ A2, To see that the two
definitions are equivalent, notice that \,, = p(4’A) = ||A’Al|, = || Al [Props. A.24(a)
and A.25(d) in Appendix A], and that 1/A; = [|(A’A)7!||» = ||[A~ 1A | = |A7Y13
[Props. A.25(f) and A.25(d) in Appendix A].

Proposition 9.1. If By = A'/tr(A’A), then ||[I — BoA|, <1-1/ (nnz(A)).

Proof. We have tr(A’A) = A\ +- - -+ A, [Prop. A.22(a) in Appendix Al]. It follows
that the ith eigenvalue p; of ] —BoA = I— A’ A/tr(A’ A) is equal to 1—X; /(A 1+ -+ Ay).
Since \; < A\| + --- + A, for each i, we see that p; > 0 for each . Furthermore, since
A+ -+ A < n),, we obtain
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pl- M !

ni, e neX(A)

for each ¢. It follows that p(I — BoA) = max; |p;| < 1—1/(nk*(A)). The desired result
follows because I — ByA is symmetric and ||I — ByAll, = p(I — BoA) [Prop. A.24(a)
in Appendix A]. Q.E.D.

The above proposition shows that if By is chosen according to Eq. (9.2), then
|II — BoAl|2 < 1. Furthermore, as long as the matrix A is not extremely ill-conditioned,
[T — BoA||> is sufficiently smaller than 1 to lead to a practical algorithm. In particular,
we have the following corollary of Prop. 9.1.

Corollary 9.1. Suppose that x(4) < n¢ for some constant d, and let ¢ be any
positive integer. If By = A’/tr(A’A), then the matrix By, produced after k > (c + 2d +
1)logn iterations of the algorithm satisfies

|I — BrAll» <27, 9.3)
c H:(A)

By — A7 Yy <27 =2,
” | TAlL

0.4

Furthermore, such a By, can be computed in parallel in time O((c + d) log® n) using n>
processors.

Proof. The time and processor bounds are obvious, since each iteration involves
two matrix multiplications, which can be performed in time O(log n), using n> processors
(see Subsection 1.2.3). [The computation of tr(4’ A) is of no concern: it can be performed
in time O(log n) using n> processors.]

Using Prop. 9.1 and Eq. (9.1),

nc+2d+l

1 (KX (A))n®
<{1- —— <2~
= ( nnz(A)) = ’

1
— < -
1= Bedll < (1- )
which proves Eq. (9.3). [The last inequality uses the bound (1 — 1/a)* < 1 /2, for
a > 2.] Finally,

k(A)

1B = Ao = [(Bed = DA™ < I = Bedll - 147 o = I - Bealpr,

which completes the proof. Q.E.D.

Corollary 9.1 shows that, for all practical purposes, the computation time is a
small multiple of log?n. This is the same as for the direct algorithm of Section 2.3,
except that only n® processors are used here as opposed to n* processors in Section 2.3.
Furthermore, unlike the algorithm of Section 2.3, the present algorithm is robust with
respect to numerical errors.
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If fewer, say n, processors are available, a very accurate approximation of the in-
verse is obtained in O(n? log n) time steps. This is because the algorithm needs O(log n)
stages and each stage can be executed in O(n?) time using n processors. This is some-
what slower than Gaussian elimination or the Givens rotation method (Section 2.2),
which require O(n?) time with n processors.

The algorithm of this section can also be used for solving systems of linear equa-
tions: the solution of Az = b is found by first computing A~! and then letting z = A~'b.
However, such a method may have certain drawbacks, especially if storage requirements
are taken into account. In classical iterative methods (Section 2.4), we need to store the
entries of the A matrix, together with the vector = on which we iterate, which is O(n?)
storage. With the algorithm of this section, we need to store the A matrix and, at each
stage, the current estimate of the inverse, which is again O(n?) storage. Suppose now
that the A matrix is sparse. In a classical iterative method, only the nonzero entries of A
need to be stored and storage requirements are drastically reduced. On the other hand,
even if A is sparse, its inverse will not be sparse in general. Therefore, the approximate
inverses By will not be sparse either. Consequently, with the algorithm of this section,
sparsity does not reduce the storage requirements.

EXERCISES

9.1. (Newton Interpretation of the Iteration By, = 2By, — BxABx.) Let f : R" — R™ be
a continuously differentiable function. For every x € R™ and d € R™, we have

fx+d) = f(z) + V() d + h(z,d),

where h is some function with the property limg_.o h(z, d)/||d|| = O for every z € R, and
|| - || is an arbitrary vector norm (see Appendix A). We wish to solve the equation f(z) = 0.
Starting from a current value of z, we ignore the term h(z, d), approximate the function
f@ + d) by f(z) + Vf(x)'d, choose some d that sets the latter expression to zero, and
let z := z + d. The equation f(z) + Vf(z)'d = 0 yields d = —(V f(ac)’)“1 f(z) and the
iteration becomes

z=z- (V@) f@),

which is known as Newton’s method. Let us now fix an n x n matrix A. For any invertible
n x n matrix X, let f(X) = A — X~'. Inverting A is equivalent to solving the equation
fX)=0.

(a) Show that f(X + D) = A— X'+ X~ 'DX ™! + h(X, D), where the function h
has the property limp—o h(X, D)/||D|| = O for every invertible matrix X, and || - ||
is an arbitrary matrix norm.

Hint: Use the formula (I — C)™' = I + C 4+ C? + - - -, which is valid for any matrix
C of small enough norm.
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(b) Choose a value of D that sets f(X + D) to zero, while ignoring the term h(X, D)
of part (a).

(c) With D chosen as in (b), show that the iteration X := X + D coincides with the
iteration X :=2X — XAX.

9.2. [PaR85] Suppose that By is chosen according to the formula

Al

By = —i———,
llAlleo - 1| Al

as opposed to Eq. (9.2). Show that Prop. 9.1 remains valid. Hint: Use the inequalities
I1Al3 < |4l - || All < n||AJ)? (see Appendix A), and proceed as in Prop. 9.1.

9.3. [PaR85] Suppose that A is symmetric positive definite, and let

I
By = ——.
llAlleo
Show that ||I — BoAll» < 1—1/(n'/?k(4)).
9.4. [PaR85] Suppose that the matrix A has the property

1 .
(1 - F)lau! > Z laiz, Vi,

J#

and let By be a diagonal matrix whose ith diagonal entry is equal to 1/a;;. Show that
[T = BoAlloo <1 —1/n°.

NOTES AND SOURCES

Serial algorithms for matrix computations are the subject of [FaF63], [Hou64],
[FoM67], [Ste73], and [GoV83]. For general surveys and discussion of parallel algo-
rithms, see [Sam77], [Hel78], [Sam81], and [GHN87]. The survey paper [OrV85] fo-
cuses on parallel solution of partial differential equations but also provides an extensive
discussion and list of references on parallel methods for linear equations.

2.1. The O(log® n) time algorithm for triangular matrix inversion based on Eq.
(1.2) is from [Orc74] and [Hel74], and the “divide—and—conquer” algorithm is from
[BoM75]. For other fast algorithms of this type, see [Hel78]. For a detailed discussion
of the communication overhead of implementations of back substitution in a ring of
processors, see [ISS86], which includes a comparison of the row and column storage
schemes.

Odd-even reduction is due to [Hoc65] and its parallelization is discussed in [HoJ81].
See also [Hel76] for the block—tridiagonal case. Several parallel algorithms and discus-
sions of communication issues can be found in [Sto75], [Hel78], [SaK77], [SaK78],
[HoJ811, [GaV84], [Joh85a], and [Joh87b].

Other special structures that have been studied include banded systems ([Joh85b]
and [SaS87]) and Toeplitz systems ([GrS81], [Bin84], and [GKKS87]).
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2.2. See [GoV83] and [Hou64] for a detailed description and analysis of direct
methods for general linear equations. The communication penalty of parallel matrix
multiplication and inversion has been first considered in [Gen78], where an Q(n) lower
bound on the execution time for mesh—connected architectures is established.

A detailed timing analysis of parallel Gaussian elimination with O(n) processors
can be found in [LKK83] and processor scheduling for the case of sparse matrices is
studied in [WiH80], in the absence of communication delays. The communication penalty
is considered in [ISS86] for the case of a ring architecture, and a variety of lower bounds
on the communication penalty is provided in [Saa86]. Other pivoting rules, different
than the one given by Eq. (2.4), have also been considered ([Sam85a]) and some of them
lead to efficient [©(n) time] implementations in mesh—connected architectures (see, e.g.,
[Sam81] and [GeK81]).

Parallel triangularization using Givens rotations, and the schedule of Egs. (2.11)
and (2.12), have been suggested in [SaK78]; see also [LKK83] for a detailed timing
analysis for the case of O(n) processors in the absence of communication delays. The
reference [CoR86] contains a result showing that the schedule of Egs. (2.11) and (2.12)
is very close to being optimal, even though it can be somewhat improved (compare with
Exercise 2.6). An implementation of the Givens method in a mesh of n? processors is
given in [BBK84]. Implementations on systolic arrays are discussed in [Kun88].

Givens rotations are also used in a variety of other algorithms in which the objective
is to set the entries of a matrix to zero, and most such algorithms admit efficient parallel
implementations in mesh—connected, as well as in special purpose VLSI architectures
[Kun88]. One important application area is in eigenvalue and singular value problems.
Recent work on these problems includes [BrL85], [IpS85], [DoS87], and [LPS87].

2.3. The algorithm of this section is from [Csa76]. Its processor requirements
have been reduced in [PrS78]. An O(log2 n) algorithm for Cholesky factorization (faster
than the one in Exercise 3.1) is given in [Dat85].

2.4. For further reading on iterative methods, see [Var62], [You71], and [HaY81].

2.5. Parallel algorithms for linear PDEs are surveyed in [OrV85]. Algorithms and
timing estimates for a particular parallel computer are considered in [Gal85]. See also
[RAP87] for the effects of different partitionings of the problem domain and of different
discretization methods.

For a precise description and convergence analyses of multigrid algorithms, see
[Hac85). Parallel implementations of multigrid algorithms have been discussed in [Bra81],
[ChS85], [ChS86], and [McV87]. The implementation on a hypercube presented here is
from [ChS86].

2.6. There are several textbooks with comprehensive analyses of linear iterative
methods and their convergence rate, such as [Var62] and [You71]. The Brouwer Fixed
Point Theorem and the core of the proof the Perron—-Frobenius theorem can be found
in [GuP74]. The proof outlined in Exercise 6.3 is taken from [Var62], which provides
several references on alternative proofs of this result; see also [Sen81].
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2.7. The conjugate gradient method is due to [HeS52]. For its properties when
applied to nonlinear problems, see [Pol71]. For further readings for the linear case, see
[FaF63] and [Lue84]. '

2.8. For further readings on Markov chains and their steady state behavior, see
[Ash] and [Ros83a]. The algorithm of Egs. (8.4) and (8.5), and its Gauss—Seidel variant,
appear to be new.

2.9. The Newton method for matrix inversion is a classical algorithm, see [IsK66]
and [Hou64]. The choice of By in Prop. 9.1 is from [IsK66]. The use of this algorithm
for parallel matrix inversion has been suggested in [Boj84a] and [PaR85]. Our complexity
analysis is taken from [PaR85] which emphasizes the issue of appropriately choosing the
initial matrix By.



