
AI	Fundamentals:	Constraints	Satisfaction	Problems
Maria	Simi

Constraints	satisfaction

LESSON	3	
– SEARCHING	FOR	SOLUTIONS

Searching	for	solutions
Most	problems	cannot	be	solved	by	constraint	propagation	alone.	In	this	case	we	must	
search	for	solutions	or	combine	constraint	propagation	with	search.
A	classical	formulation	of	CSP	as	search	problem	is	the	following:
1. States	are	partial	assignments
2. Initial	state:	the	empty	assignment
3. Goal	state:	a	complete	assignment	satisfying	all	constraints
4. Action:	assign	to	a	unassigned	variable	xi a	value	in	Di
Branching	factor	=	|D1|´|D2|´ …	´ |Dn|	?	
Assume	d	the	maximum	cardinality
Top	level n ´d,	then (n −1)´d,	… 1´d	 →	 n!	´ dn leaves
We can	do	better …

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 3

CSP	as	search	problems
We	can	exploit	commutativity.	A	problem	is	commutative	if	the	order	of	
application	of	any	given	set	of	actions	has	no	effect	on	the	outcome.	In	this	case	
the	order	of	variable	assignment	does	not	change	the	result.
1. We	can	consider	a	single	variable	for	assignment	at	each	step,	so	the	

branching	factor is	d and	the	number	of	leaves	is	dn
2. We	can	also	exploit	depth	limited	search:	backtracking	search	with	depth	

limit	n,	the	number	of	variables.
Search strategies:

Generate	and	Test.	We generate	a	full	solution and	then we test	it.	Not the	best.
Anticipated control.	After each assignment we check the	constraints;	if some	
constraints is violated,	we backtrack to	previous choices (undoing the	assignment).

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 4

Backtracking	search	for	map	coloring

WA=red WA=blueWA=green

WA=red
NT=blue

WA=red
NT=green

WA=red
NT=green
Q=red

WA=red
NT=green
Q=blue

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 5

Backtracking	search	algorithm

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 6

Heuristics	and	search	strategies	for	CSP
1. SELECT-UNASSIGNED-VARIABLE:	Which	variable	should	be	assigned	next?
2. ORDER-DOMAIN-VALUES:	in	which	order	should	the	values	be	tried?
3. INFERENCE:	what	inferences	should	be	performed	at	each	step	in	the	search?	

Techniques	for	constraint	propagation	(local	consistency	enforcement)	can	
be	used.

4. BACKTRACKING:	where	to	back	up	to? When	the	search	arrives	at	an	
assignment	that	violates	a	constraint,	can	the	search	avoid	repeating	this	
failure?	Forms	of	intelligent	backtracking.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 7

Choosing	the	next	variable	to	assign
Dynamic	ordering	is	better.
1. Minimum-Remaining-Values	(MRV)	heuristic:	Choosing	the	variable	with	the	

fewest	“legal”	remaining	values	in	its	domain.
Also	called	most	costrained variable	or	fail-first heuristics,	because	it	helps	in	
discovering	inconsistencies	earlier.

2. Degree	heuristic:	select		the	variable	that	is	involved	in	the	largest	number	of	
constraints	on	other	unassigned	variables.	To	be	used	when	the	size	of	the	
domains	is	the	same.	The	degree	heuristic	can	be	useful	as	a	tie-breaker	in	
connection	with	MRV.
Example:	which	variable	to	choose	at	the	beginning	in	the	map	coloring	
problem?

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 8

Choosing	a	value	to	assign
Once	a	variable	has	been	selected,	the	algorithm	must	decide	on	the	order	in	
which	to	assign	values	to	it.
1. Least-constraining-value:	prefers	the	value	that	rules	out	the	fewest	choices	

for	the	neighboring	variables	in	the	constraint	graph.	The	heuristic	is	trying	to	
leave	the	maximum	flexibility	for	subsequent	variable	assignments.

Note:	
In	the	choice	of	variable,	a	fail-first strategy	helps	in	reducing	the	amount	of	
search	by	pruning	larger	parts	of	the	tree	earlier.	In	the	choice	of	value,	a	fail-last
strategy	works	best	in	CSPs	where	the	goal	is	to	find	any	solution;	not	effective	if	
we	are	looking	for	all	solutions	or	no	solution	exists.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 9

Interleaving	search	and	inference	
• One	of	the	simplest	forms	of	inference/constraint	propagation	is	Forward	

Checking	(FC)
• Whenever	a	variable	X is	assigned,	the	forward-checking	process	establishes	

arc	consistency	of	X	 for	the	arcs	connecting	neighbor	nodes:	
for	each	unassigned	variable	Y that	is	connected	to	X by	a	constraint,	delete	from	Y ’s	
domain	any	value	that	is	inconsistent	with	the	value	assigned	to	X.

• Forward	checking	is	a	form	of	efficient	constraint	propagation	and	is	weaker	
than	other	forms	of	inference.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 10

WA

NT

SA

Q

NSW

V

T

FC applied	to	map	coloring
WA	=	r

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 11

Q

V

{r g b}

{r g b}

{r g b}

{r g b}

{r g b}

{r g b}

{g b}

{r}

{r g b}{g b}

WA

Q =	g
{g}

{b}

{r b}

{b}

V	=	b

{b}{ }

{r}

The	same	example	showing	the	progress

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 12

WA

NT

SA

Q

NSW

V

T

Maintaining	Arc	Consistency	(MAC)

WA	=	r

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 13

Q {r g b}

{r g b}

{r g b}

{r g b}

{r g b}

{r g b}

{g b}

{r}

{r g b}{g b}

WA

Q =	g

{g}

{ }

{r b}

{ }
The	inference	procedure	calls	AC-3,	
but	instead	of	a	queue	of	all	arcs	in	
the	CSP,	we	start	with	only	the	arcs	
(Xj,	Xi)	for	all	Xj that	are	unassigned	
variables	that	are	neighbors	of	Xi.

WA

NT

SA

Q

NSW

V

T

{r, b, g}

Q

NSW

V

T

Chronological backtracking
§ With	normal/chronological backtracking	

with	ordering	Q,	NSW,	V	,	T,	SA,	WA,	NT.
§ Suppose	we	have	assigned:	{Q=red,	

NSW=green,	V=blue,	T=red}	and	we	
consider	a	value	for	SA

§ We	fail	repeatedly,	in	fact	no	value	is	good	
in	this	situation

§ Chronological	backtracking		tries	all	the	
values	for	Tasmania,	the	last	variable,	but	
we	continue	to	fail.	Trashing	behavior.

§ Tasmania	has nothing to	do	with	SA,	nor the	
other variables.

WA

NT

SA

Q

NSW

V

T

Intelligent	backtracking:	looking	backward
The	trick	is	to	consider	alternative	values	
only	for	the	assigned	variables	which	are	
responsible	for	the	violation	of	constraints:	
the conflict	set.	In	this	case	{Q,	NSW,	V},	
The	backjumping method backtracks to	
the	most recent assignment in	the	conflict
set;	in	this case,	backjumping would jump
over	Tasmania	and	try a	new	value for	V.
This strategy is not useful if we do	FC	or	
MAC	as inconsistency is detected earlier.

Q

NSW

V

T

{r, b, g}

WA

NT

SA

Q

NSW

V

T

Conflict	directed	backjumping
Assume	ordering	WA,	NSW,	T,	NT,	Q,	V,	SA.
WA	=	red, NSW	=	red	and T	=	red.
NT,	Q,	V,	SA	together	do	not	have	solutions.	Where	
to	backjump if	we	discover	inconsistency	at	NT?	
NSW is	the	last	responsible.	The	conflict	set	of	NT,	
{WA},	does	not	help.
Rule	for	computing	a	more	informative	conflict	
set:
If	every	possible	value	for	Xj fails,	backjump to	the	
most	recent	variable	Xi in	conf (Xj),	and	update	its	
conflict	set:
conf (Xi)	←	conf (Xi)	∪	conf (Xj)	−	{Xi}

NSW

WA

T

Computing	conflict	sets
1. When	SA fails,	its	conflict	set	is	{WA,	NSW,	

NT,Q,	V}.	We	backjump to	V.	V’s	conflict	set	is	
extended	with	that	of	SA and	becomes:	{WA,	
NSW,	NT,	Q}.

2. When	V fails,	we	backjump to	Q.	Q’s	conflict	
set	is	extended	with	that	of	V and	becomes:	
{WA,	NSW,	NT}.

3. When	Q fails,	we	backjump to	NT and	
extend	its	conflict	set	{WA}	to	{WA,	NSW}.	

4. When	alsp NT fails	we	can	backjump to	
NSW and	update	its	conflict	set	to	{WA}

WA=red

NSW=red

T=red

NT

Q

V

SA

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 17

conf={}

conf={}

conf={}

conf={WA}

conf={NSW,	NT}

conf={NSW}

conf={WA,	NSW,	NT,	Q,	V}

conf =	{WA,	NSW,	NT,	Q}

conf =	{WA,	NSW,	NT}

conf =	{WA,	NSW}

conf =	{WA}

Constraint	learning
When	the	search	arrives	at	a	contradiction,	we	know	that	some	subset	of	the	
conflict	set	is	responsible	for	the	problem.	
Constraint	learning	is	the	idea	of	finding	a	minimum	set	of	variables	from	the	
conflict	set	that	causes	the	problem.	
This set	of	variables,	along	with	their	corresponding	values,	is	called	a	no-good.
We	record	the	no-good,	either	by	adding	a	new	constraint	to	the	CSP	or	by	
keeping	a	separate	cache	of	no-goods.	This	way	when	we	encounter	a	nogood
state	again	we	do	not	need	to	repeat	the	computation.
The	state	{WA	=	red	,	NT	=	green,	Q	=	blue}	is	a	no-good.	We	avoid	repeating	
that	assignment.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 18

Local	search	methods
§ They	require	a	complete	state	formulation	of	the	problem:	all	the	elements	of	

the	solution	in	the	current	state.	For	CSP	a	complete	assignment.
§ They	keep	in	memory	only	the	current	state	and	try	to	improve	it,	iteratively.
§ They	do	not	guarantee	that	a	solution	is	found	even	if	it	exists	(they	are	not	

complete).	They	cannot	be	used	to	prove	that	a	solution	doe	not	exist.
To	be	used	when:	
§ The	search	space	is	too	large	for	a	systematic	search	and	we	need	to	be	very	

efficient	in	time	and	space.
§ We	need	to	provide	a	solution	but	it	is	not	important	to	produce	the	set	of	

actions	leading	to	it	(the	solution	path).
§ We	know	in	advance	that	solutions	exist.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 19

Local	search	methods	for	CSP
Local	methods	use	a complete-state formulation:	we	start	with	a	complete	
random	assignment and	we	try	to	fix	it	until	all	the	constraints	are	satisfied.
Local	methods	prove	quite	effective	in	large	scale	real	problems	where	the	
solutions	are	densely	distributed	in	the	space	such	as,	for	example	the	n-Queens	
problem.	
N-Queens	as a	CSP:
Qi:	position	of	i-th queen	in	the	i-th column of	the	board
Di:	{1	…	n}
Costraints are	“non-attack”	constraints among pair of	queens.
Initial state:	a	random	configuration
Action:	change the	value of	one queen,	i.e.	move a	queen	within its column.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 20

A	basic	algorithm	for	local	search	[AIFCA]
1:	 function Local_search(V,	Dom,	C)	returns a	complete &	consistent assignment
2: Inputs:	
3: V:	a	set of variables	
4: Dom:	a	function such	that Dom()	is the domain of variable	X
5: C:	set of constraints to be satisfied
9: Local: A,	 an	array of values indexed by variables	in	V ,	the assignment
10: repeat until termination
11: for each variable	X in V do	 #	random initialization or random restart
12: A[X]	:=	a	random value in	Dom(X)
13: while not	stop_walk()	&	A is not	a	satisfying assignment do #	local search
14: Select	a	variable	Y and a	value w ∈	Dom(Y) #	consider successors
15: Set	A[Y]	:=	w
16: if A is a	satisfying assignment then stop_walk()	implements
17: return A some stopping criterion

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 21

Specializations of	the	algorithm
§ Extreme	cases:

ü Random	sampling:	no	walking	is	done	to	improve	solution	(stop_walk is	always	
true),	just	generating	random	assignments	and	testing	them	

ü Random	walk: no	restarting	is	done	(stop_walk is	always	false)
§ Family	of	algorithms:

ü Iterative	best	improvement: choose	the	successor	that	most	improves	the	current	
state	according	to	an	evaluation	function	f	(hill-climbing,	greedy	ascent/discent).	In	
In	CSP,		f	=	number	of	violated	constraints	or	conflicts.	We	stop	when	f=0	or	cycle.

ü Randomness	can	be	used	to	escape	local	minima:
- Random	restart	is	a	global	random	move
- Random	walk	is	local	random	move.

ü Stochastic	local	search	algorithms	combine	Iterative	best	improvement	with	
randomness

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 22

Variants	of	stochastic	local	search
Algorithms	differ	in	how	much	work	they	require	to	guarantee	the	best	
improvement	step.	Which	successor	to	select?
§ Most	improving	choice

selects	a	variable–value	pair	that	makes	the	best	improvement.	If	there	are	many	
such	pairs,	one	is	chosen	at	random.	Needs	to	evaluate	all	of	them.

§ Two	stage	choice
1. Select	the	variable	that	participates	in	most	conflicts
2. Select	the	value	that	minimizes	conflicts	or	a	random	value

§ Any	choice
1. Choose	a	conflicting	variable	at	random/choose	a	conflict	and	a	variable	within	it
2. Select	the	value	that	minimizes	conflicts	or	a	random	value

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 23

Min-conflict	heuristics
All	the	local	search	techniques	are	candidates	for	application	to	CSPs,	and	some	
have	proved	especially	effective.
Min-conflict	heuristics	is	widely	used	and	also	quite	simple:	
• Select	a	variable	at	random	among	conflicting	variables	
• Select	the	value	that	results	in	the	minimum	number	of	conflicts	with	other	

variables.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 24

Min-conflicts algorithm

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 25

Min-conflicts	in	action

The	run	time	of	min-conflicts	is	roughly	independent	of	problem	size.	
It	solves	even	the	million-queens	problem	in	an	average	of	50	steps.

Local	search:	improvements
The	landscape	of	a	CSP	under	the	min-conflicts	heuristic	usually	has	a	series	of	
plateaux.	Possible	improvements	are:
§ Tabu search:	local	search	has	no	memory;	the	idea	is	keeping	a	small	list	of	the	last	t	

steps	and	forbidding	the	algorithm	to	change	the	value	of	a	variable	whose	value	was	
changed	recently;	this	is	meant	to	prevent	cycling	among	variable	assignments.

§ Constraint	weighting:	
can	help	concentrate	the	search	on	the	important	constraints.	We	assign	a	numeric	
weight	to	each	constraint,	which	is	incremented	each	time	the	constraint	is	violated.	
The	goal	is	to	minimize	the	weights	of	the	violated	constraints.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 27

Local	search:	alternatives	(see	AIMA)
§ Simulated annealing

a	tecnique for	allowing downhill moves at the	beginning of	the	algorithm
and	slowly freezing this possibiity as the	algorithm progresses

§ Population based methods (inspired by	biological evolution):
ü Local	beam search:	proceed with	the	k-best	successors (k	=	the	beam

width)	according to	the	evaluation function.
ü Stochastic local beam search:	selects k of	the	individuals at random	with	a	

probability that depends on	the	evaluation function;		the	individuals with	
a	better evaluation are	more	likely to	be	chosen.	

ü Genetic algorithms …

Local	search	methods	and	online	search
Another	advantage	of	local	search	methods	is	that	they	can	be	used	in	an	online	
setting	when	the	problem	changes	dynamically.
Consider	complex	flights	schedules:	a	problem	due	to	bad	weather	at	one	
airport	can	render	the	schedule	infeasible	and	require	a	rescheduling.
A	local	search	methods	are	more	effective	as	they	try	to	repair	the	schedule	with	
minimum	variations,	instead	of	producing	from	scratch	a	new	schedule,	which	
might	be	very	different	from	the	previous.

Evaluating	Randomized	Algorithms
§ Randomized	algorithms	are	difficult	to	evaluate	since	they	give	a	different	

result	and	a	different	run	time	each	time	they	are	run.	They	must	be	run	
several	times.

§ Taking	the	average	run	time	or	median	run	time is	ill	defined.	When	the	
algorithm	runs	forever	what	do	we	do?	

§ One	way	to	evaluate	(or	compare)	algorithms	for	a	particular	problem	instance	
is	to	visualize	the	run-time	distribution,	which	shows	the	number	of	runs	
solved	by	the	algorithm	as	a	function	of	the	number	of	steps	(or	run	time)	
employed.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 30

Run	time	distribution	[AIFCA]

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 31

Increasing	the	probabilities	of	success
§ A	randomized	algorithm	that	succeeds	some	of	the	time	can	be	extended	to	an	

algorithm	that	succeeds	more	often	by	running	it	multiple	times,	using	a	random	
restart.	

§ An	algorithm	that	succeeds	with	probability	p,	that	is	run	n times	or	until	a	solution	is	
found,	will	find	a	solution	with	probability	

1−(1−p)n

Note: (1−p)n is	the	probability	of	failing	n	times.	Each	attempt	is	independent.
§ Examples:	

An	algorithm	with	p=0.5 of	success,	tried	5 times,	will	find	a	solution	around	96.9%
of	the	time;	tried	10 times	it	will	find	a	solution	99.9% of	the	time.	
An	algorithm	with	p=0.1,	running	it	10 times	will	succeed	65%	of	the	time,	and	
running	it	44 times	will	give	a	99% success	rate.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 32

Constraint	Satisfaction
LESSON	3:	THE	STRUCTURE	OF	PROBLEMS

Independent	sub-problems
The	structure	of	the	problem,	as	represented	by	the	constraint	graph,	can	be	
used	to	find	solutions	quickly.	We	will	examine	problems	with	a	specific	
structure	and	strategies	for	improving	the	process	of	finding	a	solution.
The	first	obvious	case	is	that	of	independent	subproblems.	
In	the	map	coloring	example,	Tasmania	is	not	connected	to	the	mainland;	
coloring	Tasmania	and	coloring	the	mainland	are	independent	sub-
problems—any	solution	the	mainland	combined	with	any	solution	for	
Tasmania	yields	a	solution	for	the	whole	map.
Each	connected	components	of	the	constraint	graph	corresponds	to	a	sub-
problem	CSPi.
If	assignment	Si is	a	solution	of	CSPi,	then	⋃ 𝑆𝑖�

j is	a	solution	of	⋃ 𝐶𝑆𝑃𝑖�
j

Independent	sub-problems:	complexity
The	saving	in	computational	time	is	relevant
§ n	 #	variables
§ c #	variables	for	sub-problems
§ d		 size	of	the	domain
§ n/c	independent	problems
§ O(dc)	complexity	of	solving	one
§ O(dc n/c)	linear on	the	number	of	variables	n	
rather	than	O(dn)	exponential!

Dividing	a	Boolean	CSP	with	80	variables	into	
four	sub-problems	reduces	the	worst-case	
solution	time	from	the	lifetime	of	the	universe	
down	to	less	than	a	second!!!

WA

NT

SA

Q

NSW

V

T

The	structure	of	problems:	trees

a) In	a	tree-structured	constraint	graph,	two	nodes	are	connected	by	only	one	
path;	we	can	choose	any	variable	a	the	root	of	a	tree.	A	in	fig	(b).

b) Chosen	a	variable	as	the	root,	the	tree	induces	a	topological	sort on	the	
variables.	Children	of	a	node	are	listed	after	their	parent.

Directed	Arc	Consistency	(DAC)
A	CSP	is	defined	to	be	directed	arc-consistent	under	an	ordering	of	variables	X1,	
X2,		…	Xn if	and	only	if	every	Xi is	arc-consistent	with	each	Xj for	j	> i.
We	can	make	a	tree-like	graph directed	arc-consistent	in	one	pass	over	the	n	
variables,;	each	step	must	compare	up	to	d	possible	domain	values	for	two	
variables,	for	a	total	time	of	O(nd 2).
Tree-CSP-solver:
1. Proceeding	from	Xn to	X2make	the	arcs	Xi® XjDAC	consistent	by	reducing	the	

domain	of	Xi,	if	necessary.	It	can	be	done	in	one	pass.
2. Proceeding	from	X1 to	Xn assign	values	to	variables;	no	need	for	backtracking	since	

each	value	for	a	father	has	at	least	one	legal	value	for	the	child.	

Tree-CSP-Solver	algorithm

If	we	could	delete	South	Australia,	the	graph	would	become	a	tree.
This can be done by fixing a value for SA (which one in this case does not matter)
and removing inconsistent values from the other variables.

Reducing	graphs	to	trees

WA

NT

SA

Q

NSW

V

T

WA

NT
Q

NSW

V

T

Cutset conditioning
In	general	we	must	apply	a	domain	splitting	strategy,	trying	with	different	
assignments:
1. Choose	a	subset	S of	the	CSP’s	variables	such	that	the	constraint	graph	

becomes	a	tree	after	removal	of	S.	S is	called	a	cycle	cutset.
2. For	each	possible	consistent	assignment	to	the	variables	in	S :

a. remove	from	the	domains	of	the	remaining	variables	any	values	that	are	
inconsistent	with	the	assignment	for	S

b. If	the	remaining	CSP	has	a	solution,	return	it	together	with	the	assignment	for	S.

Time	complexity:	O(dc (n −	c)d2)
where	c is	the	size	of	the	cycle	cutset and	d the	size	of	the	domain
We	have	to	try	each	of	the	dc	combinations	of	values	for	the	variables	in	S,	and	
for	each	combination	we	must	solve	a	tree	problem	of	size	(n	−	c).

Tree	decomposition
The	approach	consists	in	a	tree	
decomposition	of	the	constraint	graph	
into	a	set	of	connected	sub-problems.	
Each	sub-problem	is	solved	
independently,	and	the	resulting	
solutions	are	then	combined	in	a	clever	
way

Properties	of	a	tree	decomposition
A	tree	decomposition	must	satisfy	the	following	three	requirements:
1. Every	variable	in	the	original	problem	appears	in	at	least	one	of	the	sub-problems.
2. If	two	variables	are	connected	by	a	constraint	in	the	original	problem,	they	must	

appear	together	(along	with	the	constraint)	in	at	least	one	of	the	sub-problems.
3. If	a	variable	appears	in	two	sub-problems	in	the	tree,	it	must	appear	in	every	

subproblem along	the	path	connecting	those	sub-problems.
Conditions	1-2	ensure	that	all	the	variables	and	constraints	are	represented	in	the	
decomposition.	
Condition	3	reflects	the	constraint	that	any	given	variable	must	have	the	same	value	in	
every	sub-problem	in	which	it	appears;	the	links	joining	subproblems in	the	tree	enforce	
this	constraint.

Solving	a	decomposed	problem
§ We	solve	each	sub-problem	independently.	If	any	problem	has	no	solution,	the	
original	problem	has	no	solution.

§ Putting	solutions	together.	We	solve	a	meta-problem	defined	as	follows:
§ Each	sub-problem	is	“mega-variable”	whose	domain	is	the	set	of	all	solutions	for	the	
sub-problem
Ex.	Dom(X1)	={⟨WA=r,	SA=b,	NT=g〉 ...}	the	6	solutions to	1° subproblem

§ The	constraints	ensure	that	the	subproblem solutions	assign	the	same	values	to	the	
the	variables	they	share.

Ideally	we	should	find,	among	many	possible	one,	a	tree	decomposition	with	
minimal	tree	width	(the	size	of	the	largest	subproblem – 1).	This	is	NP-hard.
If	w is	the	minimum	tree	width	of	the	possible	tree	decompositions,	the	
complexity	is	O(ndw+1).	

Simmetry
Simmetry is	an	important	factor	for	reducing	the	complexity	of	CSP	problems.
Value	simmetry:	the	value	does	not	really	matters.
§ WA,	NT,	and	SAmust	all	have	different	colors,	but	there	are	3!	=	6	ways	to	satisfy	

that.	If	S is	a	solution	to	the	map	coloring	with	n variables,	there	are	n!	solutions	
formed	by	permuting	the	color	names.	

Symmetry-breaking	constraint:	
§ we	might	impose	an	arbitrary	ordering	constraint,	NT <	SA <	WA,	that	requires	the	

three	values	to	be	in	alphabetical	order;	we	get	only	one	solution	out	of	the	6.
§ In	practice,	breaking	value	symmetry	has	proved	to	be	important	and	

effective	on	a	wide	range	of	problems.
§ Symmetry	is	an	important	area	of	research	in	CSP.

Conclusions
ü We	have	seen	how	to	search	efficiently	for	solutions:
ü Algorithms	for	local	stochastic	search	in	large	state	spaces
ü How	we	can	exploit	the	structure	of	the	problem
ü CSP	is	a	large	field	of	study:	many	more	things	could	be	presented

Your	turn
ü Review	”population	based	methods”	for	CSP.
ü Apply	search	techniques	to	the	solution	of	some	problem.
ü Find	a	problem	that	can	be	solved	with	tree	search	and	solve	it	with	the	tree	

search	algorithm
ü …

References
[AIMA]	Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	

Approach (3rd edition).	Pearson	Education	2010.	(Cap.	6)
[AIFCA]	David	L.	Poole,	 Alan	K.	Mackworth.	Artificial	Intelligence:	foundations	of	

computational	agents	(2nd	edition),	Cambridge	University	Press,	2017–
Computers.	http://artint.info/2e/html/ArtInt2e.html (Cap	4)

[Tsang]	Edward	Tsang.	Foundations	of	Constraint	Satisfaction,	Computation	in	
Cognitive	Science.	Elsevier	Science.	Kindle	Edition,	2014.

02/10/17 AI	FUNDAMENTALS	- M.	SIMI 47

