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1 Introduction

Consider the linear system
Ax = b

where A ∈ Rn×n is regular. A multisplitting of A (see [9]) is a collection of
matrices Ml, Nl, El ∈ Rn×n, l = 1, . . . , L, so that A = Ml −Nl, l = 1, . . . , L,
where each Ml is regular and each El is nonnegative diagonal with

∑L
l=1El =

I. The iterative method belonging to this multisplitting calculates xn+1 from
xn via the L systems

Ml y
n,l = Nl x

n + b, l = 1, . . . , L

by setting

xn+1 =
L
∑

l=1

El y
n,l =

L
∑

l=1

ElM
−1
l Nl x

n +
L
∑

l=1

ElM
−1
l b (1)

=: Hxn + c .

Multisplitting iterations are genuine parallel methods, since the yn,l, l =
1, . . . , L can be computed independently from each other. As was repeatedly
observed in literature, (see [2, 3, 8, 9], e.g.) components of yn,l are not directly
needed in (1) if the corresponding diagonal entry of El, the ‘weighting’, is
zero. Hence, if the splitting A = Ml − Nl allows so, these components need
not be computed at all. In this paper however, we will show that it can be
advantageous to compute certain components, although they will be weighted
by zero.

To give a specific example let L = 2 and let

A =

(

A11 A12

A21 A22

)

be a block decomposition of A with quadratic blocks A11, A22. Let D11, D22

denote their respective diagonal parts. Assume that A11, A22, D11, D22 are all
regular. Let I always denote the identity matrix of appropriate dimension.
Consider the multisplitting
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M1 =

(

A11 0
0 D22

)

, M2 =

(

D11 0
0 A22

)

,

E1 =

(

I 0
0 0

)

, E2 =

(

0 0
0 I

)

,

N1 = M1 − A , N2 = M2 − A.



























































(2)

Here the resulting multisplitting iteration (1) can also be rewritten in
terms of the single splitting

A = M −N with M =

(

A11 0
0 A22

)

as
Mxn+1 = Nxn + b ,

and D11, D22 are just dummy entries to make M1,M2 regular as formally
required in the definition of a multisplitting.

Multisplittings allow a simple description of methods relying on an over-
lapping block-decomposition of A. In the example above, expand ing A11

and A22 will produce overlapping quadratic blocks Ã11, Ã22 with

A =







Ã11 ∗

* Ã22





 .

The resulting multisplitting can now be written as

M̃1 =

(

Ã11 0
0 D̃22

)

, M̃2 =

(

D̃11 0
0 Ã22

)

,

Ẽ1 =







I
Ẽ11

0





 , Ẽ2 =







0
Ẽ22

I





 ,

Ñ1 = M̃1 − A , Ñ2 = M̃2 −A,



































































(3)
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where Ẽ11, Ẽ22 account for the overlapping par t with Ẽ11 + Ẽ22 = I. The
dummy blocks D̃11, D̃22 again represent parts of the diagonal of A, for ex-
ample. An obvious and often used choice for Ẽ1, Ẽ2 is setting all diagonal
elements of Ẽ11 and Ẽ22 to

1

2
. In the overlapping part the components of yn,1

and yn,2 are then combined with equal weight.
Another possible choice is to take Ẽ1, Ẽ2 just as E1, E2 from (2). In

this case we thus take a non-overlapping weighting, but the method is still
different from the non-overlapping method, since yn,1 and yn,2 result from
the expanded blocks.

Of course, the above example can immediately be generalized to L > 2
(and we will do so at the beginning of Section 2).

Several results in literature (see [1, 8]) give comparison results on the
speed of convergence of certain multisplittings and the standard Jacobi or
Gauss–Seidel iteration. However, up to now it has remained an open ques-
tion whether overlapping schemes do really pay out, i.e. whether the spectral
radius of the corresponding iteration matrix is less than that of the non-
overlapping iteration. In the present paper we will show that this is indeed
the case if A is an M-matrix and if the weighting is always done via the
non-overlapping El from (2). We will then apply this result to also obtain a
comparison theorem for certain waveform relaxation methods for solving or-
dinary differential equations. Finally, we include some numerical experiments
on the Intel iPSC/860 hypercube.

2 Results

Our first definition generalizes the example given in the introduction to more
than two blocks.

Definition 1 Let S1, . . . , SL be a partition of {1, . . . , n}, i.e. the Sl are pair-
wise disjoint nonempty subsets of {1, . . . , n}, so that

⋃L
l=1 Sl = {1, . . . , n}.

Moreover, l et Sl ⊆ Tl ⊆ {1, . . . , n} for l = 1, . . . , L.
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a) The multisplitting (Ml, Nl, El), l = 1, . . . , L of A ∈ Rn×n where

Ml = (Ml)ij with (Ml)ij =











aij if i ∈ Sl and j ∈ Sl

aii if i = j
0 else

,

Nl = Ml − A,

El = (El)ij with (El)ij =

{

1 if i = j ∈ Sl

0 else







































(4)

is termed a (non-overlapping) block Jacobi splitting of A. Here, the iteration
matrix H =

∑L
l=1ElM

−1
l Nl also satisfies H = M−1N with M,N from the

single splitting
A = M −N,

where

M = (M)ij with (M)ij =

{

aij if i, j ∈ Sl for some l ∈ {1, . . . , L}
0 else

(5)

b) Any multisplitting (M̃l, Ñl, Ẽl), l = 1, . . . , L of A ∈ Rn×n where

M̃l = (M̃l)ij with (M̃l)ij =











aij if i ∈ Tl and j ∈ Tl

aii if i = j
0 else

Ñl = M̃l − A,
Ẽl = (Ẽl)ij with (Ẽl)ii = 0 if i /∈ Tl































(6)

is termed an (overlapping) block Jacobi multisplitting of A (see [3]).

For A,B ∈ Rn×n we write A ≤ B if the corresponding inequality holds
componentwise. According to [13], a splitting A = M − N with A,M,N ∈
Rn×n will be called regular or weak regular if M−1 ≥ 0 and N ≥ 0 orM−1 ≥ 0
and M−1N ≥ 0, respectively.

We start with an important result on convergence of multisplitting iter-
ations (see [1, 2, 9]).

Theorem 1 Let (Ml, Nl, El), l = 1, . . . , L be a multisplitting of A and A−1 ≥
0. Assume that A = Ml − Nl is a weak regular splitting for l = 1, . . . , L.
Denote H =

∑L
l=1ElM

−1
l Nl. Then
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(i) ρ(H) < 1,

(ii)
∑L

l=1ElM
−1
l is non-singular and H = M̃−1Ñ where

M̃ =

(

L
∑

l=1

ElM
−1
l

)−1

, Ñ = M̃ − A, (7)

(iii) A = M̃ − Ñ is a weak regular splitting.

Proof: (i) was already shown in [9]. Since Nl = Ml − A we have

H = I −

(

L
∑

l=1

ElM
−1
l

)

A , (8)

and thus ρ(H) < 1 implies that
∑L

l=1ElM
−1
l is non-singula r. In addition, (8)

immediately shows H = M̃−1Ñ , thus proving (ii). Finally, since M−1
l ≥ 0

for l = 1, . . . , L we have M̃−1 =
∑L

l=1ElM
−1
l ≥ 0 and M̃−1Ñ = H =

∑L
l=1ElM

−1
l Nl ≥ 0. So A = M̃ − Ñ is a weak regular splitting. !

In order to compare different multisplitting iterations, it would be useful
to have comparison results for weak regular splittings. Our basis is the
following lemma due to Elsner [1].

Lemma 1 Let A ∈ Rn×n be nonsingular with A−1 ≥ 0 and assume that
A = M −N = M̃ − Ñ are two splitting s of A so that

M−1 ≥ 0, N ≥ 0, ( i.e. M −N is a regular splitting of A)
M̃−1 ≥ 0, M̃−1Ñ ≥ 0 ( i.e. M̃ − Ñ is a weak regular splitting of A)

and
M−1 ≤ M̃−1.

Then
ρ(M̃−1Ñ) ≤ ρ(M−1N).

This lemma shows that a well-known comparison result for regular split-
tings (see [13]) also holds if one of the splittings is only weak regular. How-
ever, as was shown in [1], too, it does no longer hold if both splittings are
only weak regular.

Together with Theorem 1 we obtain the following corollary of Lemma 1.
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Corollary 1 Let (Ml, Nl, El), l = 1, . . . , L and (M̃l, Ñl, El), l = 1, . . . , L be
two multisplittings of A using the same weighting matrices El. Assume that
each splitting Ml −Nl and M̃l − Ñl, l = 1, . . . , L is weak regular. Moreover,
suppose that the splitting A = M −N with M = (

∑L
l=1ElM

−1
l )−1 is regular.

Then the corresponding multisplitting iteration matrices H and H̃ satisfy

ρ(H̃) ≤ ρ(H),

provided
M−1

l ≤ M̃−1
l , l = 1, . . . , L. (9)

Proof : By Theorem 1, the matrix H̃ results from a weak regular splitting
A = M̃−Ñ with M̃−1 =

∑L
l=1ElM̃

−1
l . So the Corollary follows from Lemma

1 once we have shown M−1 ≤ M̃−1. But this a direct consequence of (9),
the weighting matrices El being equal in both multisplittings. !

We now want to apply this corollary to block Jacobi multisplittings of an
M-matrix. Recall that A = (aij) ∈ Rn×n is called an M-Matrix, if aij ≤ 0 for
i '= j and A is regular with A−1 ≥ 0.

We need the following well-known result for M-matrices [10].

Lemma 2 Let A = (aij) ∈ Rn×n be an M-matrix and denote its diagonal
part by D = diag(a11, . . . , ann). Then

(i) aii > 0 for i = 1, . . . , n. In particular, D is regular .
(ii) Any B ∈ Rn×n with A ≤ B ≤ D is an M-matrix .
(iii) If C ∈ Rn×n is another M-Matrix with A ≤ C then C−1 ≤ A−1.

We are now able to state our central theorem. As opposed to the results
presented so far, we now have to assume that the weighting is done through
non-overlapping matrices El.

Theorem 2 Let A = (aij) ∈ Rn×n be an M-matrix. Let S1, . . . , SL, T1, . . . , TL

⊆ {1, . . . , n} be th e same as in Definition 1 and let (Ml, Nl, El) denote the
corresponding non-overlapping block Jacobi splitting (4) and (M̃l, Ñl, El) the
overlapping block Jacobi multisplitting (6) using the same weighting matrices
El. Then we have

ρ(H̃) ≤ ρ(H), (10)

where H =
∑L

l=1ElM
−1
l Nl, H̃ =

∑L
l=1ElM̃

−1
l Ñl.
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Proof: For l = 1, . . . , L we have

A ≤ M̃l ≤ Ml ≤ D := diag(a11, . . . , ann).

Hence, by Lemma 2

0 ≤ M−1
l ≤ M̃−1

l , l = 1, . . . , L.

Moreover, since the off-diagonal entries of A are non-positive, we get

Nl ≥ 0, Ñl ≥ 0, l = 1, . . . , L.

So each of the splittings Ml−Nl, M̃l−Ñl is weak regular (and even regular).
In addition, M = (

∑L
l=1ElM

−1
l )−1 is given by (5). The same argument as

above shows that the splitting A = M − N is again regular. The assertion
of the theorem now follows directly from Corollary 1. !

Remark: Instead of block Jacobi multisplittings we can also consider block
‘Gauss–Seidel–type’ multisplittings. The matrices Ml, M̃l are then given by
the lower triangular parts of the original matrices Ml, M̃l in (4) and (6).

In this case, the overlapping scheme is again superior to the non-overlap-
ping scheme, i.e. (10) holds as well. This result follows exactly in the same
manner as Theorem 2.

3 Results for ODEs

In 1982, Lelarasmee (see [6]) introduced a splitting technique similar to the
block Jacobi splittings of Definition 1 for solving ordinary differential equa-
tions. In its original formulation this so-called waveform relaxation algo-
rithm is restricted to non-overlapping subsystems, whereas the more general
multisplitting waveform relaxation algorithm, introduced in [11] allows the
subsystems to overlap.

To describe the multisplitting waveform relaxation algorithm in detail,
consider a linear initial value problem of dimension n:

x′(t) + Ax(t) = f(t), x(0) = x0 (11)

where t ∈ [0, T ], x ∈ C1([0, T ];Rn), x0 ∈ Rn, f piecewise continuous , A ∈
Rn×n.
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In an analogous way to (1) the initial value problem (11) is now solved
iteratively via a multisplitting (Ml, Nl, El), l = 1, . . . , L of the matrix A.
One thus solves the L subsystems

y′l,n+1(t) +Mlyl,n+1(t) = Nlxn(t) + f(t),
yl,n+1(0) = x0.

}

(12)

After the L subsystems have been solved, one obtains a new approximation
to the solution by

xn+1(t) =
L
∑

l=1

Elyl,n+1(t). (13)

As in the linear systems case, the solution of the L subsystems can be comput
ed in parallel. The subsystems are solved not for just one timepoint, but for a
whole time interval [0, T ]. The iteration is performed until a certain stopping
criterion, e.g. ‖xn+1 − xn‖ < ε is satisfied for some appropriate norm ‖ · ‖ in
C1([0, T ];Rn).

The waveform relaxation algorithm has been studied in various papers.
A collection of results for nonlinear problems that arise in the simulation of
electrical circuits can be found in [14]. A much more detailed mathematical
analysis for linear initial value problems was done by Nevanlinna in [7]. The
convergence of the multisplitting waveform relaxation algorithm for linear
problems is studied in [5] and [11].

In practical computations the subsystems have to be solved numerically,
i.e. one calculates approximations to yl,n+1(t) at a finite number of time points
in [0, T ]. If one uses r equidistant timepoints with distance h, it can be
shown that the iteration of the resulting multisplitting waveform relaxation
algorithm is equivalent to a linear fixpoint iteration in Rrn [12]. As was also
shown in [12] the spectral radius of the iteration matrix is given by

ρ(H) = ρ(
L
∑

l=1

El(I + hMl)
−1hNl). (14)

if the implicit Euler–method is used for discretizing the subsystems. (Note
that H is n × n in (14)). Convergence of the implicit Euler multisplitting
waveform relaxation algorithm is thus ensured for arbitrary A and arbitrary
splittings if the stepsize h is sufficiently sma ll. Moreover, convergence is also
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guaranteed for arbitrary h if A is an M-Matrix and (Ml, Nl, El) is an ( over-
lapping ) Jacobi multisplitting or a (nonoverlapping) block Jacobi splitting
(see [12]).

Given the results of the previous section, we can now state an analogous
comparison result for multisplitting waveform relaxation algorithms. It shows
that with the implicit Euler-method, a multisplitting waveform relaxation
algorithm using an overlapping block Jacobi splitting will converge faster
than without overlapping, provided the weighting is done with the matrices
El from (4). More precisely, we have the following theorem.

Theorem 3 Let A = (aij) ∈ Rn×n be an M-matrix. Let S1, . . . , SL, T1, . . . , TL

⊆ {1, . . . , n} be th e same as in Definition 1 and let (Ml, Nl, El) denote the
corresponding non-overlapping block Jacobi splitting (4) and (M̃l, Ñl, El) the
overlapping block Jacobi multisplitting (6) using the same weighting matrices
El. Then we have

ρ(H̃) ≤ ρ(H), (15)

where H =
∑L

l=1El(I + hMl)−1hNl, H̃ =
∑L

l=1El(I + hM̃l)−1hÑl.

Proof: The proof is a simple application of Theorem 2, with A replaced
by I + hA, M̃l by I + hM̃l, Ml by I + hMl, D by I + hD, Nl by hNl and Ñl

by hÑl. !

Theorem 3 again remains true if we use ‘Gauss-Seidel-type’ multisplittings
instead of block Jacobi multisplittings.

Moreover, Theorem 3 is also valid for other discretization techniques. For
example, if the trapezoidal rule is used for discretizing the subsystems (12),
the iteration matrix has the form:

H =
L
∑

l=1

El(I +
h

2
Ml)

−1h

2
Nl.

So here the comparison result follows in exactly the same manner as Theo-
rem 3.

If an implicit linear multistep method of the form

k
∑

i=0

αiyl,n+1,m+i = h
k
∑

i=0

βi(−Mlyl,n+1,m+i +Nlxn,m+i + fm+i)
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is used, the iteration matrix is given by

H =
L
∑

l=1

El(αkI + hβkMl)
−1hβkNl.

Hence, the comparison result follows again easily if both, αk and βk, are
positive. So here we have to require A(α) stability of the linear multistep
method.

4 Numerical Results

In this section we will report on two experiments with multisplitting wave-
form relaxation algorithms performed on 16 processors of an Intel iPSC/860
hypercube. Our first example considers the semi discretized two–dimensional
heat equation

ut = uxx + uyy, u(0, x, y) ≡ 0

on the unit square, with boundary conditions uniformly set to 1. The space
discretization is done by using a five–point stencil using a stepsize k = 1

16

in both directions. This results in a n = 225 dimensional linear system
of ordinary differential equations of the form (11) with a block tridiagonal
matrix

A =



















B −I
−I B −I

. . . . . . . . .
−I

−I B



















with B =



















4 −1
−1 4 −1

. . . . . . . . .
−1

−1 4



















,

where B, I ∈ R15×15. It is well known that this matrix A is an M-matrix. The
function f(t) on the right hand side of (11) contains the boundary conditions.

We now define Sl = {15(l−1)+1, . . . , 15l}, l = 1, . . . , 15. So the resulting
(non-overlapping) block Jacobi splitting from Definition 1 a) is induced by
the single splitting A = M −N where M is block diagonal with 15 diagonal
blocks, each equal to B. Given a parameter overlap ∈ N we enlarge each
index set Sl by appending overlap additional elements, i.e.
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Tl = {15(l − 1) + 1, . . . , 15l, . . . , 15l + overlap},

l = 1, . . . , 14,

T15 = S15.

In this manner we define an overlapping block Jacobi multisplitting accord-
ing to Definition 1 b). The weighting matrices were always chosen to be
the non-overlapping El from (4). Table 1 reports the timings and the num-
ber of iterations for the corresponding multisplitting waveform relaxation
algorithm(12), (13). The integration was performed using the implicit Euler–
method over t ∈ [0, 1] with the starting function u0(t, x, y) = u0 = 0 and
equidistant step sizes h = 0.05. Our stopping criterion was to check whether
‖xn+1 − xn‖∞ < 10−2 for all discrete time points. We used 15 processors of
the iPSC/860, the 16th processor performing I/O and other auxiliary tasks.

In accordance with our theoretical results, Table 1 shows that the number
of iterations with overlap is less than without overlap. This is also true for the
respective execution times although increasing the overlap me ans increasing
the amount of work to be done on each individual system. Table 1 thus
shows that this additional work is more than compensated by the decreasing
number of iterations. With overlap = 30 the time taken is about a third of
the time taken for the case without overlap.

The results of Table 1 and of other numerical experiments suggest the
conjecture, that the spectral radius of the iteration matrix decreases as the
overlap increases. We were not able to show this theoretically, since we then
would have to compare two weak regular splittings, for which Lemma 1 is
no longer valid. The following example shows that the above conjecture is
very likely to be wrong, as soon as one deviates from the nonoverlapping
weighting scheme, i.e. if one chooses matrices El different from (4).

So, let again n = 225 and L = 15 and consider A ∈ Rn×n with

aij =



















2 if i = j
−(2|i−j|) if i '= j and |i− j| ≤ 5

− 1

64
if (i, j) ∈ {(1, n), (n, 1)}

0 else

.

A is strictly diagonally dominant and thus, given its sign pattern, an M-
matrix. The right hand side f(t) and the initial value in (11) were both
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overlap iterations time (ms) % time % iterations
0 232 31 004 100.00 100.00
1 231 30 846 99.49 99.57
2 230 30 767 99.24 99.14
3 226 30 457 98.24 97.41
4 221 29 856 96.30 95.26
5 214 29 196 96.49 92.24
6 206 28 282 91.22 88.79
7 196 27 147 87.56 84.48
8 184 25 694 82.87 79.31
9 172 24 290 78.34 74.14
10 159 22 639 73.02 68.53
11 147 21 194 68.36 63.36
12 137 19 925 64.27 59.05
13 130 19 136 61.72 56.03
14 126 18 656 60.17 54.31
15 125 18 633 60.10 53.88
16 123 18 363 59.23 53.02
17 121 18 133 58.49 52.16
18 118 17 668 56.99 50.86
19 114 17 291 55.77 49.14
20 109 16 594 53.52 46.98
21 105 16 175 52.17 45.26
22 100 15 465 49.88 43.10
23 95 14 912 48.10 40.95
24 88 14 007 45.18 37.93
25 82 13 202 42.58 35.34
26 76 12 482 40.26 32.76
27 71 11 827 38.15 28.88
28 67 11 317 36.50 28.88
29 66 11 266 36.34 28.45
30 66 11 267 36.34 28.45

Table 1: Results for the heat equation
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taken to be discretizations of the sine function, but these choices do not
significantly affect the results to be reported. The sets Sl and Tl were taken
identical to our previous example. Hence, if 1 ≤ overlap ≤ 15 we end up
with areas of overlap between two consecutive blocks only. Table 2 now
reports the number of iterations necessary to satisfy our stopping criterion
for two different choices of weighting matrices. ‘Non-overlapping’ refers to
the El defined in (4), whereas ‘equiweighting’ describes the scheme where
we take the arithmetic mean whenever there are two contributions for one
component. Formally, this means

(E1)ii =











0 if i '∈ T1

1 if i ≤ 15
1

2
if 15 < i ≤ 15 + overlap

,

(El)ii =



















0 if i '∈ Tl
1

2
if 15(l − 1) < i ≤ 15(l − 1) + overlap

1

2
if 15l < i ≤ 15l + overlap

1 if 15(l − 1) + overlap < i ≤ 15l

for 1 < l < L ,

(EL)ii =











0 if i '∈ TL
1

2
if 15(L− 1) < i ≤ 15(L− 1) + overlap

1 if 15(L− 1) + overlap < i
.

The integration was performed over t ∈ [0, 1] using stepsizes of h = 1

20

with the implicit Euler–method.

overlap 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
equiweighting 12 10 9 8 7 6 6 6 5 5 5 7 8 9 11 13
nonoverlapping 12 10 9 8 7 6 6 5 5 5 4 4 4 4 4 4

Table 2: Equiweighting and nonoverlapping weighting

The last row of Table 2 again confirms our theoretical results. The equi-
weighting case is never better than the nonoverlapping case, a fact that we
also noticed in other computations. Moreover, with equiweighting the num-
ber of iterations starts to increase with the overlap once overlap ≥ 11. For
overlap = 15 we even need one iteration more than without overlap. How-
ever, this last observation seems not significant enough to draw conclusions
on the spectral radii of the corresponding iteration matrices.
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