Solving large sparselinear systemsin a grid environment: the GREMLINS code
versusthe PETSc library

Fabienne JEZEQUEL
UPMC Univ Paris 06, UMR 7606,
Laboratoire d’Informatique de Paris 6,
4 place Jussieu, 75252 Paris CEDEX 05, France

Raphaél COUTURIER
Laboratoire d’'Informatique de I'Université de Francher@é,
BP 527,
90016 Belfort CEDEX, France

Christophe DENIS
EDF Research and Development,
SINETICS Department,
1 avenue du Général de Gaulle,
92141 Clamart CEDEX, France

Abstract

Solving large sparse linear systems is essential in nunsescientific domains. Several algorithms, based on direct or
iterative methods, have been developed for parallel agctitres. On distributed grids consisting of processorsted in
distant geographical sites, their performance may be usfattory because they suffer from too many synchronizatmd
communications. The GREMLINS code has been developedi¥argstarge sparse linear systems on distributed grids. It
implements the multisplitting method that consists intspdj the original linear system into several subsystenas ¢an be
solved independently. In this paper, the performance o&R&EMLINS code obtained with several libraries for solving t
linear subsystems is analysed. Its performance is also agdpwith that of the widely used PETSc library, that enables
one to develop portable parallel applications. Numericgberiments have been carried out both on local clusters and o
distributed grids.
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1 Introduction

Numerous scientific applications must solve large spargati systems. Because of considerable requirements is term
of memory allocation and execution time, it may happen thist tomputation cannot be carried out on a single-processor
computer. Several multi-processor environments existh s parallel machines or clusters of computers. A grid neay b
defined as a set of interconnected local clusters. The largear of processors it offers may be a relatively inexpensiv
answer to growing computational needs. Because of thetyasfemachines and interconnection networks it is usually
composed of, a grid is a heterogeneous environment. Sirkcpdtiormance of numerical algorithms, designed to run on
parallel homogeneous computers, may be unsatisfactoryudm & grid, new coarse-grained and asynchronous efficient
parallel algorithms must be proposed.

The GREMLINS code has been developed to solve efficiently large sparsarlgystems on a grid [13]. It implements
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the multisplitting method [26, 29] which is based on a decosifjion of the matrix into rectangular submatrices. Each
processor belonging to the grid solves linear subsysteing agdirect or an iterative method. Successive approxanatio

the global solution are computed. These iterations can Herpged in a synchronous or in an asynchronous mode. With
the first version of the GREMLINS code, the linear subsystemsd be solved using direct methods from the MUMPS
library [1] or the SuperLU8 library [15] or using iterative methods from the Sparséllibrary [16]. The PETStlibrary [6]

is a popular suite of data structures and routines for séienbmputing. Applications developed with PETSc are plolda

a common code can be run on a sequential machine or on vamoakgb architectures. PETSc employs the M&andard

for all message-passing communication. By paying padicattention to memory allocation, PETSc takes full advgeta
parallel machines. For solving linear systems with PET&cpus iterative methods and also direct methods from eater
libraries can be used.

The originality of this paper lies in the two different typeswork it describes. First, the GREMLINS code has been
improved to allow each processor in a grid to use PETSc faireplits linear subsystems. Second, the performance of the
PETSc library for solving large linear systems has been esetpwith that of the GREMLINS code, both on a local cluster
and on a grid consisting of processors from several geogralgites.

In [13], the initial version of this work is described. In paular, the complete multisplitting algorithm with many
implementation details is presented. The CRAC environmémth enabled the implementation of asynchronous itezativ
algorithms is described. However, as this work was lessrazbd the systems solved in [13] could not be as large as now.
In the present paper, important features of this previoukweoe reminded, so that it can be self-contained. The fogus i
put on experiments showing the relevancy of this presenkwior particular, the GMRES method implemented in PETSc
is compared, as an inner solver, to other solvers (Spars®lllMPS and SuperLU). Furthermore the GREMLINS code is
compared with PETSc, the standard sparse matrix solves. cdmparison highlights that with geographically distaress
this standard solver is not so efficient.

This paper is organized as follows. In Section 2 some relatatts are presented and discussed. The principles of the
multisplitting method and the architecture of the GREMLIB&le are presented in Section 3. Numerical experiments are
described in Section 4. First, the performance of the GRBEW&_tode has been analysed, several possible libraries being
used to solve serially the linear subsystems generatedebyntlitisplitting method. Then the performance of the PETSc
library and that of the GREMLINS code have been comparedh Bamerical experiments have been carried out in a local
and in a distant context. Section 5 presents concludingnienzand planed perspectives.

2 Redated works

Many scientists are interested in solving large sparsatisgstems. Solvers can be classified into direct or iterativ
methods. Concerning direct methods, the most efficient anedased on the LU decomposition [22, 18]. Because of
the complexity of the elimination process in direct methatisative methods are usually preferred for very largeesys.

A wide range of iterative methods is available [28]: for exden Jacobi, Gauss-Seidel and Krylov subspace methodk (suc
as conjugate gradient, GMRES, BICGSTAB) can be cited. Tilm@gence of iterative methods can be improved by precon-
ditioners such as the Successive Over Relaxation (SORypdé&mner [23] and sparse approximate inverse precanttis
that are based on factorized sparse approximate inversgstbe minimization of some convenient norm [12, 21]. Relgent
explicit approximate inverse preconditioners have be#émduced for solving sparse linear systems [17, 19, 20].7ln [
interested readers will find issues for implementing iigeatnethods in a sequential manner. Most solvers have a0 be
designed in parallel to leverage computation power of ehsstNevertheless few methods have been adapted in thextonte
of grid computing with geographically distant clusters.

One concern in the parallelization of solvers is the idergtifon of synchronization points. In Krylov methods, whaae
based on projections into Krylov subspaces, the computafia vector (by a matrix-vector product) is usually follahky its
orthogonalization against a set of vectors. Inner prodadtse orthogonalization act as synchronization pointssigeed to
obtain more parallelism and data locality, the s-step wasifl 0, 11] consist in generating a basis for the Krylov palog first,
and to orthogonalize this set afterwards. They showedfaetisy performance on homogeneous multiprocessor mashin
However in a heterogeneous environment, algorithms mulsbtieasynchronous and coarse-grained.
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A hybrid version of GMRES is presented in [30]. This methothtines a parallel GMRES method with the least square
method that requires some eigenvalues obtained from alglafaholdi algorithm. In the paper, only small matrices are
considered: the largest one has only 3600 unknowns.

The implementation of a parallel 3D solver based on Navieké&s system is described in [24]. The solver is built with
Globus. Experiments are also quite small since the numheankaiowns is less than 20000.

In [13] large sparse linear systems are solved in a grid caimgpeontext using GREMLINS. In this work, only direct
solvers are experimented inside the multisplitting method

A parallel hybrid solver based on both direct methods amdtitee methods is presented in [25]. It allows one to solve
large matrices but it is only dedicated to homogeneousesishot to grid environments.

Except previous works described in [13], all the solversctin this section are based on synchronous iterative mgthod
One of the originality of the GREMLINS solver is to be able tmreither in synchronous or asynchronous iteration mode.

3 Themultisplitting method
3.1 Principles of the multisplitting method

For solving a linear system, the multisplitting method geliees the block Jacobi method. Moreover the multisplti
method supports the asynchronous iteration model, it canskd with direct and/or iterative inner solvers (even simul
taneously) and it allows processors to compute common caerge by mixing freely overlapped components between
processors. Its main principles are described here.

Let us consider the x n non-symmetric sparse linear system

AX =B 1)

and let us assume it has a unique solution. The multisgittiethod consists in splitting the matrix into horizontaiteengle
matrices. For the sake of simplicity, let us consider theodguosition generates as many rectangle matrices as poosess
Thus each processor is in charge of managing one submagmoted byASwub. The part of the rectangle matrix before
the submatrix represents the left dependencies, called.e ft, and the part after the submatrix represents the right depen
dencies, calledepRight. Let us denote byX Sub the part of the solution vector arglSub the part of the right-hand-side
vector involved in the computation. Figure 1 describes #mdhposition ofd, X andB into several partslfepLe ft, ASub,
DepRight, Xleft, X Sub, X Right, BSub) required locally by a processor.
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Figure 1. Decomposition of the matrix A, the solution vector X and the right-hand-side vector B into
several parts required locally by a processor

At each step, each assigned processor compltesh by solving the following subsystem
ASubx XSub= BSub— DepLeft+ X Left — DepRight « X Right. (2

Then the solutionX Sub must be sent to each processor depending on it.



Solving a linear system using the multisplitting methoduiees several steps described below.

1. Initialization
The matrix can be loaded from a data file or generated at rum tibach processor manages the load of the rectangle
matrix DepLeft + ASub + DepRight. Then until convergence, each processor iterates on:

2. Computation
At each iteration, each processor computdsoc = BSub — DepLeft x X Left — DepRight * X Right. Then, it
solves the linear systetdSub x X Sub = BLoc.

3. Data exchange
Each processor sendsSub, the part of the solution vector it has computed, to the gihecessors. When a processor
receives a part of the solution vector from another proagegstould update the appropriate partol.e ft or X Right
according to the rank of the sending processor.

4. Convergence detection
Convergence can be detected using a centralized algorifstrided in [2] or a decentralized one, that is a more
general version, as described in [3].

In the multisplitting method, the model of asynchronoussit®ns may reduce the run time. In this case, receptions are
non blocking, computations are dissociated from commuioica using threads and an appropriate convergence dlgoist
used. Additional references on theoretical aspects ofdmpnous iterative algorithms can be found in [8].

The serial solver used for the linear subsystems can be et dine or an iterative one. With a direct solver, the most
consuming part is the factorization of the submatrix, tsgpérformed at the first iteration only. Then other iteraiane
faster, because only the right-hand-side changes. Witteeative solver, all the iterations require approximdtithe same
time.

The number of iterations required to solve the system igeélto the spectral radius of the iteration matrix: the alose
the spectral radius is tb, the more iterations are required, as for all iterative mdth The convergence condition in the
asynchronous version is more restrictive than in the syorabus one. In the synchronous version, the spectral raflihe o
iteration matrix associated with each submatrix must betlstiess than 1; in the asynchronous version, the spectdilis
of the absolute value of each iteration matrix must be $griess than 1 [4]. In some rare practical cases, the syncusn
version would converge whereas the asynchronous one wotild n

As a remark, some elements of the solution vector may be ctadfny several processors. This overlapping may reduce
the number of iterations required to obtain the convergeite impact of overlapping over the speed of convergence is
exemplified in [4].

3.2 Comparison of the multisplitting and the GMRES method

The multisplitting method is compared with the GMRES methmldich is widely used for solving sparse non-symmetric
linear systems. This comparison is exemplified in 4.3 by mizakexperiments performed using the GREMLINS code and
the GMRES solver from the PETSc library.

There is a fundamental difference between the multispijitind the GMRES method. The former can be executed with
the asynchronous model which may overlap communicatiort®byputation. In this case, the number of iterations to reach
the convergence is often larger, but there is no more synétation between processors. In the latter, at each iteratere
are commonly three synchronizations. There is a huge sgndtation step that allows processors to exchange thegrdep
dencies with all their neighbors before computing the spamatrix vector product. Then there is another synchroiozat
which allows processors to reduce their scalar productsllyithere is a last synchronization for computing the namd
deciding whether the convergence criterion is reached br no

Comparing data transfers involved in each method, the spliliing algorithm only requires data transfer for the rxat
vector product. But the main feature of this method, in thaakronous mode, is that even if some neighbors cannot send
their data dependencies because they are not ready toeradnsi, then a processor can compute its local matrix vector
product even if some entries have not been updated. In dpposhe GMRES method requires that all processors send
their data dependencies before computing the matrix vectmiuct. Moreover there are two other synchronizationsinSo
a grid environment context with geographically distanésiand variable network parameters, synchronizationseatly r
penalizing and occur by definition simultaneously. In opfa@s, asynchronous iterative algorithms offer the adaget of



better scheduled communications. Moreover the overlapofraunications by computation allows the overall system to
converge faster even if some communications links are sltves other ones or processors quite heterogeneous.

In fact, the previous explanation is also true for othefatiee methods which cannot be executed in asynchronous.mode
All synchronous methods require to have a synchronizatemisefore computing the matrix vector product. Then dejmend
on the method, the number of reductions is variable but at e@e is required to compute the convergence test.

3.3 The GREMLINS code

The GREMLINS code implements in C++ the multisplitting medhfor solving non-symmetric sparse linear systems.
It uses the CRAC library [14] for communication. Depending on a flag set by tiser in the GREMLINS code, commu-
nications with CRAC can be synchronous or asynchronousofigh the internals of CRAC are based on multithreading,
the CRAC programming interface uses the message passiadigiar. CRAC basically has three functionalities: sending a
message, receiving a message and detecting the convergdreemission of a message is never blocking. The message
is copied into the outgoing queue when the sending methaallesdc The receiving method is blocking in the synchronous
mode, whereas it is not in the asynchronous mode. In the lediee, if one or several versions of a message arrived, the
method returns its last version, otherwise it returns magthThe convergence method requires a boolean argumecatirdj
if local convergence has been achieved and determinesiéibtonvergence has been reached using a centralizedthaigori

With the multisplitting method, the initial linear systemdplit into subsystems. Each subsystem is solved on itgreesi
processor. In the previous version of the GREMLINS code,[1i#ee scientific libraries could be chosen for solving the
subsystems: MUMPS [1], SparseLib [16] and SuperLU [15]. GREMLINS code has been improved to also allow the use
of the PETSc library [6].

The GREMLINS code consists of:

e C++ methods that first ensure the distribution of the matnia then, in an iterative process, compute the right-hand-
sides, send them to the different processors, receive thé@t from the different processors and detect the canver
gence. These methods implement an iterative so-caliéet solver and use the CRAC library to communicate.

e C++ methods using a scientific library that solve the sulesystin a serial way. These methods implement a sequential
so-callednnersolver, that can be direct or iterative, depending on thatipchosen. For each library, the inner solver
consists of at most two methods: a constructor (that clabgigerforms initializations in object oriented prograrimgn
models and is not necessarily present) and a method csdlled that actually computes the solution of the linear
system.

With the outer solver, the initial matrix and the submatiaee represented in a CSR (Compressed Sparse Row) forinat tha
consists of three arrays: one for the column indices, on¢hinumerical values and one for the positions in the previou
arrays of the first entry in each row. The right-hand-side @redsolution of each subsystem are represented by classical
numerical arrays.

With the inner solver, the representation for the matrig, lght-hand-side and the solution depends on the libragg.us
If necessary, the matrix is converted from the CSR formayipulsy described, into another format required by thealija
This conversion is performed once, in the constructor ofitiner solver. In thesolvemethod, the right-hand-side and the
solution may also be converted if particular types are megliior these two arrays.

4 Numerical experiments
4.1 Context of the experiments

The multisplitting method has been used with processomtéacin the same cluster or in different sites to solve linear
systems arising from real life problems [4]. In this case]ai§i stored on a processor which is in charge of distributireg
data to the others. Therefore the memory size of this procéissits the size of the file to be processed. In [4], the size o
the largest matrix assigned from a file is 130,228. The aasstiinear system is solved on at most 20 processors. Im orde
to solve larger problems without long data file transfers, lthear systems studied in this paper are generated atmen ti

Each processor computes specific matrix rows, so that eatifixrisaautomatically distributed on the processors. Each
generated matrix consists of several non-empty diagottasmain diagonal, the two nearest neighbor diagonals aret ot
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diagonals are equally scattered between the main diagodahe desired bandwidth. As an example, a matrix Wition-
empty diagonals and a bandwidth equals to half the matrixisizepresented in Figure 2. Off-diagonal entries are nando
values between -1 and 0. Each diagonal entry is the invertizeasum of the entries of the same row plus a fixed value
and a random value from an interval specified by the user @ntjpe the fixed value equals 1.1 and the random value lies
between 0 and 1.2). Such generated matrices are M-matBtéddfined as Z-matrices with eigenvalues whose real parts
are positive). Z-matrices,e. matrices whose diagonal entries are strictly positive dfidiagonal entries non-positive, and
also diagonally dominant matrices satisfy the convergenaodition of both the synchronous and the asynchronousovers
of the multisplitting method [4].

Bandwidth

Figure 2. A generated matrix with 7 non-empty diagonals and a bandwidth equal to half the matrix
size

Numerical experiments have been carried out on GRID’8080 experimental grid platform featuring 5000 processors
which are geographically distributed accross nine sitésrémce [9]. Recently this network has been augmented tadecl!
one site in Brazil. Most of those sites have a Gigabit Ethemaévork for local machines. Links between the differetési
range from 2.5 Gb/s to 10 Gb/s. Processors in the platforrmastly AMD Opteron, but also Intel Xeon and Intel Itanium.

To run a code on the GRID’5000 platform, processors have teberved. The choice of the sites and the number of
processors used depend on the resources available in theBgcause clusters in the GRID’5000 architecture userdiffe
ent operating systems and libraries, a common Linux imagebban deployed on the nodes reserved for the experiments
described in this section. Thus the same operating sysiteraries and compilers could be available on any site.

Two types of experiments are described. First, the perfoo@abtained using different libraries to solve the sulesystin
the multisplitting method is analysed. Second, the muitisy method is compared with the restarted version oflGMRES
(General Minimal RESidual) method [28] implemented in t€MSc library. This second point provides a comparison of
the GREMLINS solver with a standard parallel one.

4.2 Comparison of different inner solvers in the GREMLINS code

Different inner solvers for the subsystems in the multtiplj method have been compared: direct solvers from the
MUMPS or the SuperLU library and iterative solvers from tHeTlSc or the SparselLib library. With the latter libraries th
GMRES method has been used with an ILU preconditioner [28].

Table 1 presents results measured in a local context: 1Gf@gsors with a frequency of 2.4 GHz in Orsay. The results
presented in Table 2 have been measured with 155 processodistant context: 59 processors in Rennes, 50 processors i
Sophia and 46 processors in Toulouse, having a frequen@spéctively 2.0 GHz, 2.0 GHz and 2.6 GHz. With multicore

8GRID'5000: http://www.grid5000.fr



processors, one core per processor has been used, beaarssoivers are not thread safe except SparseLib. That means
that if several instances of the same solvers are run, ahread-safe program will crash.

The matrices involved in Tables 1 and 2 have the same 2iz@7(), the same bandwidtl2(10%) and the same number of
diagonals (13, 23 or 33) but their elements have differehtasa These values result from a combination of random galue
and parameters that are set by the user and have an impaa oarthergence speed of the multisplitting method. Indeed
the number of iterations required to achieve convergendétarefore the execution time of the GREMLINS code is relate
to the spectral radius of the iteration matrix in the mulitipg method. Although they have the same pattern, theioes
from Tables 1 and 2 have been generated using different gdeasn In the synchronous mode, a matrix from Table 2 would
require fewer iterations and therefore lead to a faster @@ance than the corresponding one from Table 1 in the same
context (local or distant processors).

The run time and the number of iterations performed by therostlver in the multisplitting method, in both the syn-
chronous and the asynchronous mode, are reported in Talaled 2. In each case, the computation has been performed
ten times with the time reported being the mean value. Asuhdime varies from one execution to another, the standard
deviation from the mean execution time is also reportedaénsiynchronous mode, the number of iterations is constamt fr
one execution to another. It is not the case in the asynclhiomode, for which the number of iterations performed depend
on the network traffic; the minimum and the maximum numbeteybitions measured have been reported into square brack-
ets. In the asynchronous mode, within one execution, thebeumf iterations also varies from one processor to another.

At each execution, it is the number of iterations performgdhe supermaster, a processor that has a specific function fo
communications with the CRAC library [14], that has been soeed.

Solver Synchronous Asynchronous
time (s) stand. dev. nb.iter. time(s) stand. dev. nb. iter.
13 diagonals
MUMPS 98.79 0.31 83 93.79 0.51 [240-249]
SuperLU 84.09 0.24 83 98.07 0.50 [417-441]
SparseLib 87.21 0.26 83 91.68 0.48 [388-426]
PETSc 84.14 0.29 83 95.70 0.43 [424-457]
23 diagonals
MUMPS  278.43 0.23 148 258.98 0.37 [421-439]
SuperLU 253.71 0.24 148 248.57 0.49 [506-532]
SparseLib  272.39 0.28 148 259.32 0.41 [441-451]
PETSc 270.04 0.36 148 255.46 0.48 [411-414]
33 diagonals
MUMPS  407.06 0.29 205 376.94 0.41 [556-574]
SuperLU 367.49 0.31 205 351.04 0.37 [714-747]
SparseLib  394.02 0.27 205 364.86 0.34 [604-608]
PETSc 398.23 0.32 205 369.91 0.45 [527-566]

Table 1. Execution times with the four solvers for generated matrices of size 2.10” and band-
width 2.105 on 100 processors in a local cluster in Orsay.

With the matrices considered, both in a local context anddis&nt context, no inner solver performs clearly bettanth
the others. In the synchronous mode, the number of itermpenformed by the outer solver is the same whatever the inner
solver is. As the number of diagonals increases, so do theatational volume, the number of iterations in the syncbren

mode and the run time both in the synchronous mode and in yimelaonous one. Run times in the asynchronous mode are
slightly better than in the synchronous one from a certamier of diagonals.

4.3 Comparison of the GREMLINS code and the PETSc library

The multisplitting method implemented in the GREMLINS cdues been compared with the GMRES method imple-
mented in the PETSc library, both in a local and in a distantext. The inner solver used in the multisplitting method is
a direct one from the MUMPS library. As already mentionedijmer solver performs clearly better in the experiments re-
ported in 4.2. The MUMPS library has been chosen since itwmes less memory than SuperLU. Because no preconditioner
has been implemented yet in the GREMLINS code, the GMRES addihs also been used without any preconditioner. The
run time and the number of iterations of the outer solver s @REMLINS code have been compared with those of the



Solver Synchronous Asynchronous
time (s) stand. dev. nb.iter. time(s) stand. dev. nb. iter.

13 diagonals
MUMPS 25.15 0.68 12 42.09 1.01 [199-215]
SuperLU 23.42 0.81 12 44.15 1.29 [510-526]
SparseLib 23.00 0.77 12 32.67 1.12 [272-310]
PETSc 23.57 0.82 12 40.89 0.91 [322-453]
23 diagonals
MUMPS 57.00 0.92 17 54.35 1.01 [170-188]
SuperLU  55.45 0.67 17 51.40 1.27 [333-389]
SparseLib 54.88 0.98 17 54.82 0.99 [302-330]
PETSc 55.33 0.85 17 53.87 1.16 [322-369]
33 diagonals
MUMPS 83.88 1.01 21 75.16 1.06 [191-199]
SuperLU 78.54 0.89 21 66.58 0.95 [344-359]
SparseLib 79.83 0.96 21 70.44 1.59 [230-255]
PETSc 79.12 0.78 21 71.70 1.27 [203-218]

Table 2. Execution times with the four solvers for generated matrices of size 2.10” and band-
width 2.105 on 155 processors: 59 in Rennes, 50 in Sophia and 46 in Toulouse.

restarted GMRES method. Although the run time required bygéneration of the matrix has not been reported, particular
attention has been paid to memory allocation. Indeed withRE: preallocation of memory is critical to achieve good per
formances during matrix assembly. By specifying the nunatb@onzeros per row (before actually setting the matrix gaju

the total execution time has been significantly reduced.

Table 3 presents results measured in a local context (1@@gsors with a frequency of 2.4 GHz in Orsay) with matrices
of size2.10” and bandwidti2.10. The matrices studied for Table 3 with 13, 23 or 33 diagonats$ &lso been used for
Table 2. As the number of diagonals increases, the run tigiedtly increases. It is noticeable that, in this experitmesith
the multisplitting method the run time is slightly highertiee asynchronous mode than in the synchronous one. When the
number of diagonals increases, the relative differencerdrmt the synchronous execution time and the asynchronaus on
decreases. This difference depends on the matrix, the ggoreand the interconnection network involved. Indeeduhe
time is lower in the asynchronous mode than in the synchreooe, on the one hand for the same matrix with 23 or 33
diagonals in a distant context (see Table 2) and on the otireat In the same context for a matrix with 23 or 33 diagonals
having the same pattern but element values that lead to @stmmvergence (see Table 1).

Except with the matrix having 13 diagonals, the number oétiens and the run time are lower with the GMRES method
implemented in PETSc than with the multisplitting methotieTocal context of this experiment is favourable to the PETS
library. As the number of diagonals increases, the ratidefrtin time of the GREMLINS code over the one of the PETSc
code increases. In this experiment, this ratio is at most 2.

Multisplitting (MUMPS) PETSc

Nb. Synchronous Asynchronous

diagonals time (s) stand.dev. nb.iter. time(s) stand. devnb. iter. time (s) stand. dev. nb. iter.
13 15.50 0.21 12 20.59 0.45 [54-56] 17.56 0.25 12
23 32.04 0.24 17 39.56 0.47 [66-72] 24.28 0.28 14
33 42.11 0.34 21 48.90 0.56 [81-82] 27.69 0.19 15
43 54.95 0.27 25 58.65 0.39 [78-81] 30.58 0.22 16
53 62.49 0.18 28 66.48 0.45 [97-100] 34.13 0.27 17
63 73.40 0.27 32 76.33 0.41 [104-110] 37.78 0.32 18

Table 3. Execution times of the GREMLINS code and the PETSc code for generated matrices of
size 2.107 and bandwidth 2.10 on 100 processors in a local cluster in Orsay.

Tables 4 and 5 present run times measured in a distant cpate$88 processors: 68 in Orsay (2.4 GHz), 70 in Rennes
(2.0 GHz) and 60 in Sophia (2.0 GHz).

The results reported in Table 4 refer to matrices of €287 and bandwidt2.10*. As already noticed in 4.2, the



performance of the multisplitting method is better in thgrehronous mode than in the synchronous one from a certain
number of diagonals. In this experiment, the run time of tRd 8c code is higher than the one of the GREMLINS code.
As in Table 3, as the number of diagonals increases, theahtite run time of the GREMLINS code over the one of the
PETSc code also increases. In Table 4, this ratio, that reess than 1, is at lea@t (this value refers to the matrix with

13 diagonals).

Multisplitting (MUMPS) PETSc

Nb. Synchronous Asynchronous

diagonals time (s) stand.dev. nb.iter. time(s) stand. devnb. iter. time (s) stand. dev. nb. iter.
13 20.76 0.92 37 23.14 1.09 [172-198] 42.10 1.12 47
23 27.56 1.01 46 33.02 1.02 [215-245] 49.09 0.87 54
33 38.71 0.98 57 33.58 1.52 [169-186] 55.41 1.32 60
43 51.48 1.05 68 43.50 0.98 [173-189] 57.75 1.09 68
53 65.03 1.09 78 53.58 1.23 [187-204] 69.20 1.1 71
63 75.04 0.98 91 72.44 1.54 [243-286] 76.92 1.34 80

Table 4. Execution times of the GREMLINS code and the PETSc code for generated matrices of
size 2.10” and bandwidth 2.10* on 198 processors: 68 in Orsay, 70 in Rennes and 60 in Sophia.

All the matrices studied for Table 5 have 13 diagonals. Thizie S varies from2.107 to 7.107 and their bandwidth is
10—3S. As their size increases, the communication time also as&e and therefore the run time increases as well. As their
size varies, the number of iterations both with the GREMLE®8e in the synchronous mode and with the PETSc code does
not differ much. As usually noticed in Tables 1 to 4 for maggavith 13 diagonals, the GREMLINS code performance is
better in the synchronous mode than in the asynchronouseanept for the matrix of siz&.107. It is noticeable that the
number of iterations with the PETSc code is slightly higihartthe one with the GREMLINS code in the synchronous mode.
The performance of the GREMLINS code is better than thateRETSc code, except when the GREMLINS code is run in
the asynchronous mode with the matrix of skze)”.

Remark 1 The number of iterations is related to, on the one hand, tleetsal radius of the iteration matrix for the mul-
tisplitting method, and on the other hand, the conditionifighe matrix for the GMRES method. The size of the matrices
studied in this article is too high for their conditioning b exactly evaluated. However, a satisfactory conditigmihthe
matrices can deduced from the convergence observed witAMRES method.

5 Conclusion and per spectives

For solving a linear system, the multisplitting method istarative method that consists in splitting the matrix irgotan-
gle submatrices. In a distributed environment, each psmresay be in charge of managing a submatrix. The GREMLINS
code enables one to use several variants of the multigglittiethod in a grid environment. First, iterations can bégpered
in a synchronous or in an asynchronous mode. Then the linkagstems that arise from the matrix decomposition can be
solved using a direct or an iterative method. Several libsagan be used for solving the subsystems: MUMPS, SparseLib
SuperLU and also PETSc in the current version of the GREMLiNGe.

Multisplitting (MUMPS) PETSc

Size Synchronous Asynchronous

time (s) stand.dev. nb.iter. time(s) stand. dev. nb. iter. imet(s) stand. dev  nb. iter.
2.107 20.76 0.76 37 23.14 0.89 [172-198] 42.10 0.99 47
3.107 29.53 1.08 39 56.66 1.02 [281-314] 52.53 0.67 47
4.107  36.53 1.01 41 43.17 0.78 [160-179]  59.68 0.87 47
5.107 39.16 1.61 36 53.18 1.21 [158-175] 59.10 0.99 46
6.107 51.64 0.68 42 77.02 0.19 [195-213] 77.94 0.67 55
7.107 98.47 1.23 36 93.71 1.91 [189-215]  120.09 1.87 46

Table 5. Execution times of the GREMLINS code and the PETSc code for generated matrices having
13 diagonals on 198 processors: 68 in Orsay, 70 in Rennes and 60 in Sophia.



The GREMLINS code performance has been analysed in a locéxiof.e. on processors from the same cluster) and
also in a distant ond.€. on processors from clusters located in different geogragblsites). With the matrices studied, the
choice of the solver for the subsystems has no significana@hip terms of performance, neither in a local nor in a distan
context. From a certain number of diagonals in the matrix aynchronous mode may lead to better performances than the
synchronous one. This performance difference, that ihisbg GRID'5000, is more marked if the network bandwidth is
degraded [4].

The multisplitting method implemented in the GREMLINS cdues been compared with the GMRES method imple-
mented in the PETSc library. Because the GREMLINS code has tesigned to run efficiently in a grid environment, its
performance is particularly satisfactory in a distant eahtIn the numerical experiments carried out in a distantext, the
run time of PETSc is up to twice the one of the GREMLINS code.aQacal cluster, the performance of PETSc is usually
better. Again a ratio between the run times that is at mossdkan noticed.

Several perspectives to this work are planed. Each matrotuad in the numerical experiments is not entirely managed
by one processor. A part of the matrix is generated by eaategsor belonging to the grid. Matrices arising from real lif
problems have also been studied [4]. In this case, a file isdtmn one processor that sends parts of the matrix to thesothe
But this limits the size of the matrix. In order to solve largal life problems without long data file transfers, the GRENIS
code may be linked with a finite element method software, siscthe ParaFEM free library [27]. After the finite element
computation, the large sparse linear system resulting fittenmodelling would be solved using the GREMLINS code,
without being explicitly built. Each processor would budidd solve a local sparse linear system.

The GREMLINS code can be run in a synchronous or in an asynolisomode, thanks to the CRAC library. But CRAC
does not make any difference between processors belorgihg grid, even if some processors are on the same localgdaral
cluster. The GREMLINS code could be improved to make a betierof the local parallel clusters in a grid. Because the
PETSc library is designed to fully take advantage of paratienputers and local clusters, it could be used over locsitels
to solve parallel linear systems generated by the multisgli method. Communications would be performed, on the one
hand, by the MPI library used by PETSc on local clusters andhe other hand, by the CRAC library on distant clusters.
This implies adaptations in the CRAC library, that shoulddrae compatible with MPI.
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