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Abstract

Solving large sparse linear systems is essential in numerous scientific domains. Several algorithms, based on direct or
iterative methods, have been developed for parallel architectures. On distributed grids consisting of processors located in
distant geographical sites, their performance may be unsatisfactory because they suffer from too many synchronizations and
communications. The GREMLINS code has been developed for solving large sparse linear systems on distributed grids. It
implements the multisplitting method that consists in splitting the original linear system into several subsystems that can be
solved independently. In this paper, the performance of theGREMLINS code obtained with several libraries for solving the
linear subsystems is analysed. Its performance is also compared with that of the widely used PETSc library, that enables
one to develop portable parallel applications. Numerical experiments have been carried out both on local clusters and on
distributed grids.

Keywords: asynchronous iterations, grid computing, iterative method, multisplitting method, sparse linear solver.

1 Introduction

Numerous scientific applications must solve large sparse linear systems. Because of considerable requirements in terms
of memory allocation and execution time, it may happen that this computation cannot be carried out on a single-processor
computer. Several multi-processor environments exist, such as parallel machines or clusters of computers. A grid may be
defined as a set of interconnected local clusters. The large number of processors it offers may be a relatively inexpensive
answer to growing computational needs. Because of the variety of machines and interconnection networks it is usually
composed of, a grid is a heterogeneous environment. Since the performance of numerical algorithms, designed to run on
parallel homogeneous computers, may be unsatisfactory on such a grid, new coarse-grained and asynchronous efficient
parallel algorithms must be proposed.

The GREMLINS1 code has been developed to solve efficiently large sparse linear systems on a grid [13]. It implements

1GREMLINS (GRid Efficient Methods for LINear Systems):http://info.iut-bm.univ-fcomte.fr/gremlins
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the multisplitting method [26, 29] which is based on a decomposition of the matrix into rectangular submatrices. Each
processor belonging to the grid solves linear subsystems using a direct or an iterative method. Successive approximations to
the global solution are computed. These iterations can be performed in a synchronous or in an asynchronous mode. With
the first version of the GREMLINS code, the linear subsystemscould be solved using direct methods from the MUMPS2

library [1] or the SuperLU3 library [15] or using iterative methods from the SparseLib4 library [16]. The PETSc5 library [6]
is a popular suite of data structures and routines for scientific computing. Applications developed with PETSc are portable:
a common code can be run on a sequential machine or on various parallel architectures. PETSc employs the MPI6 standard
for all message-passing communication. By paying particular attention to memory allocation, PETSc takes full advantage of
parallel machines. For solving linear systems with PETSc, various iterative methods and also direct methods from external
libraries can be used.

The originality of this paper lies in the two different typesof work it describes. First, the GREMLINS code has been
improved to allow each processor in a grid to use PETSc for solving its linear subsystems. Second, the performance of the
PETSc library for solving large linear systems has been compared with that of the GREMLINS code, both on a local cluster
and on a grid consisting of processors from several geographical sites.

In [13], the initial version of this work is described. In particular, the complete multisplitting algorithm with many
implementation details is presented. The CRAC environmentwhich enabled the implementation of asynchronous iterative
algorithms is described. However, as this work was less advanced, the systems solved in [13] could not be as large as now.
In the present paper, important features of this previous work are reminded, so that it can be self-contained. The focus is
put on experiments showing the relevancy of this present work. In particular, the GMRES method implemented in PETSc
is compared, as an inner solver, to other solvers (SparseLib, MUMPS and SuperLU). Furthermore the GREMLINS code is
compared with PETSc, the standard sparse matrix solver. This comparison highlights that with geographically distant sites,
this standard solver is not so efficient.

This paper is organized as follows. In Section 2 some relatedworks are presented and discussed. The principles of the
multisplitting method and the architecture of the GREMLINScode are presented in Section 3. Numerical experiments are
described in Section 4. First, the performance of the GREMLINS code has been analysed, several possible libraries being
used to solve serially the linear subsystems generated by the multisplitting method. Then the performance of the PETSc
library and that of the GREMLINS code have been compared. Both numerical experiments have been carried out in a local
and in a distant context. Section 5 presents concluding remarks and planed perspectives.

2 Related works

Many scientists are interested in solving large sparse linear systems. Solvers can be classified into direct or iterative
methods. Concerning direct methods, the most efficient onesare based on the LU decomposition [22, 18]. Because of
the complexity of the elimination process in direct methods, iterative methods are usually preferred for very large systems.
A wide range of iterative methods is available [28]: for example, Jacobi, Gauss-Seidel and Krylov subspace methods (such
as conjugate gradient, GMRES, BICGSTAB) can be cited. The convergence of iterative methods can be improved by precon-
ditioners such as the Successive Over Relaxation (SOR) preconditioner [23] and sparse approximate inverse preconditioners
that are based on factorized sparse approximate inverses oron the minimization of some convenient norm [12, 21]. Recently
explicit approximate inverse preconditioners have been introduced for solving sparse linear systems [17, 19, 20]. In [7],
interested readers will find issues for implementing iterative methods in a sequential manner. Most solvers have also been
designed in parallel to leverage computation power of clusters. Nevertheless few methods have been adapted in the context
of grid computing with geographically distant clusters.

One concern in the parallelization of solvers is the identification of synchronization points. In Krylov methods, whichare
based on projections into Krylov subspaces, the computation of a vector (by a matrix-vector product) is usually followed by its
orthogonalization against a set of vectors. Inner productsin the orthogonalization act as synchronization points. Designed to
obtain more parallelism and data locality, the s-step variants [10, 11] consist in generating a basis for the Krylov subspace first,
and to orthogonalize this set afterwards. They showed satisfactory performance on homogeneous multiprocessor machines.
However in a heterogeneous environment, algorithms must beboth asynchronous and coarse-grained.

2MUMPS (MUltifrontal Massively Parallel Sparse direct Solver): http://graal.ens-lyon.fr/MUMPS
3SuperLU:http://crd.lbl.gov/ ˜ xiaoye/SuperLU
4SparseLib:http://math.nist.gov/sparselib++
5PETSc (Portable, Extensible Toolkit for Scientific computation): http://www-unix.mcs.anl.gov/petsc
6MPI (Message Passing Interface):http://www-unix.mcs.anl.gov/mpi
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A hybrid version of GMRES is presented in [30]. This method combines a parallel GMRES method with the least square
method that requires some eigenvalues obtained from a parallel Arnoldi algorithm. In the paper, only small matrices are
considered: the largest one has only 3600 unknowns.

The implementation of a parallel 3D solver based on Navier-Stokes system is described in [24]. The solver is built with
Globus. Experiments are also quite small since the number ofunknowns is less than 20000.

In [13] large sparse linear systems are solved in a grid computing context using GREMLINS. In this work, only direct
solvers are experimented inside the multisplitting method.

A parallel hybrid solver based on both direct methods and iterative methods is presented in [25]. It allows one to solve
large matrices but it is only dedicated to homogeneous clusters, not to grid environments.

Except previous works described in [13], all the solvers cited in this section are based on synchronous iterative methods.
One of the originality of the GREMLINS solver is to be able to run either in synchronous or asynchronous iteration mode.

3 The multisplitting method

3.1 Principles of the multisplitting method

For solving a linear system, the multisplitting method generalizes the block Jacobi method. Moreover the multisplitting
method supports the asynchronous iteration model, it can beused with direct and/or iterative inner solvers (even simul-
taneously) and it allows processors to compute common components by mixing freely overlapped components between
processors. Its main principles are described here.

Let us consider then× n non-symmetric sparse linear system

AX = B (1)

and let us assume it has a unique solution. The multisplitting method consists in splitting the matrix into horizontal rectangle
matrices. For the sake of simplicity, let us consider the decomposition generates as many rectangle matrices as processors.
Thus each processor is in charge of managing one submatrix, denoted byASub. The part of the rectangle matrix before
the submatrix represents the left dependencies, calledDepLeft, and the part after the submatrix represents the right depen-
dencies, calledDepRight. Let us denote byXSub the part of the solution vector andBSub the part of the right-hand-side
vector involved in the computation. Figure 1 describes the decomposition ofA,X andB into several parts (DepLeft,ASub,
DepRight,Xleft, XSub,XRight, BSub) required locally by a processor.

B
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Figure 1. Decomposition of the matrix A, the solution vector X and the right-hand-side vector B into
several parts required locally by a processor

At each step, each assigned processor computesXSub by solving the following subsystem

ASub ∗XSub = BSub−DepLeft ∗XLeft−DepRight ∗XRight. (2)

Then the solutionXSub must be sent to each processor depending on it.
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Solving a linear system using the multisplitting method requires several steps described below.

1. Initialization
The matrix can be loaded from a data file or generated at run time. Each processor manages the load of the rectangle
matrixDepLeft+ASub+DepRight. Then until convergence, each processor iterates on:

2. Computation
At each iteration, each processor computesBLoc = BSub −DepLeft ∗XLeft− DepRight ∗ XRight. Then, it
solves the linear systemASub ∗XSub = BLoc.

3. Data exchange
Each processor sendsXSub, the part of the solution vector it has computed, to the otherprocessors. When a processor
receives a part of the solution vector from another processor, it should update the appropriate part ofXLeft orXRight

according to the rank of the sending processor.

4. Convergence detection
Convergence can be detected using a centralized algorithm described in [2] or a decentralized one, that is a more
general version, as described in [3].

In the multisplitting method, the model of asynchronous iterations may reduce the run time. In this case, receptions are
non blocking, computations are dissociated from communications using threads and an appropriate convergence algorithm is
used. Additional references on theoretical aspects of asynchronous iterative algorithms can be found in [8].

The serial solver used for the linear subsystems can be a direct one or an iterative one. With a direct solver, the most
consuming part is the factorization of the submatrix, that is performed at the first iteration only. Then other iterations are
faster, because only the right-hand-side changes. With an iterative solver, all the iterations require approximatively the same
time.

The number of iterations required to solve the system is related to the spectral radius of the iteration matrix: the closer
the spectral radius is to1, the more iterations are required, as for all iterative methods. The convergence condition in the
asynchronous version is more restrictive than in the synchronous one. In the synchronous version, the spectral radius of the
iteration matrix associated with each submatrix must be strictly less than 1; in the asynchronous version, the spectralradius
of the absolute value of each iteration matrix must be strictly less than 1 [4]. In some rare practical cases, the synchronous
version would converge whereas the asynchronous one would not.

As a remark, some elements of the solution vector may be computed by several processors. This overlapping may reduce
the number of iterations required to obtain the convergence. The impact of overlapping over the speed of convergence is
exemplified in [4].

3.2 Comparison of the multisplitting and the GMRES method

The multisplitting method is compared with the GMRES method, which is widely used for solving sparse non-symmetric
linear systems. This comparison is exemplified in 4.3 by numerical experiments performed using the GREMLINS code and
the GMRES solver from the PETSc library.

There is a fundamental difference between the multisplitting and the GMRES method. The former can be executed with
the asynchronous model which may overlap communications bycomputation. In this case, the number of iterations to reach
the convergence is often larger, but there is no more synchronization between processors. In the latter, at each iteration, there
are commonly three synchronizations. There is a huge synchronization step that allows processors to exchange their depen-
dencies with all their neighbors before computing the sparse matrix vector product. Then there is another synchronization
which allows processors to reduce their scalar products. Finally there is a last synchronization for computing the normand
deciding whether the convergence criterion is reached or not.

Comparing data transfers involved in each method, the multisplitting algorithm only requires data transfer for the matrix
vector product. But the main feature of this method, in the asynchronous mode, is that even if some neighbors cannot send
their data dependencies because they are not ready to transfer them, then a processor can compute its local matrix vector
product even if some entries have not been updated. In opposition, the GMRES method requires that all processors send
their data dependencies before computing the matrix vectorproduct. Moreover there are two other synchronizations. Soin
a grid environment context with geographically distant sites and variable network parameters, synchronizations are really
penalizing and occur by definition simultaneously. In opposition, asynchronous iterative algorithms offer the advantage of
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better scheduled communications. Moreover the overlap of communications by computation allows the overall system to
converge faster even if some communications links are slower than other ones or processors quite heterogeneous.

In fact, the previous explanation is also true for other iterative methods which cannot be executed in asynchronous mode.
All synchronous methods require to have a synchronization step before computing the matrix vector product. Then depending
on the method, the number of reductions is variable but at least one is required to compute the convergence test.

3.3 The GREMLINS code

The GREMLINS code implements in C++ the multisplitting method for solving non-symmetric sparse linear systems.
It uses the CRAC7 library [14] for communication. Depending on a flag set by theuser in the GREMLINS code, commu-
nications with CRAC can be synchronous or asynchronous. Although the internals of CRAC are based on multithreading,
the CRAC programming interface uses the message passing paradigm. CRAC basically has three functionalities: sending a
message, receiving a message and detecting the convergence. The emission of a message is never blocking. The message
is copied into the outgoing queue when the sending method is called. The receiving method is blocking in the synchronous
mode, whereas it is not in the asynchronous mode. In the latter case, if one or several versions of a message arrived, the
method returns its last version, otherwise it returns nothing. The convergence method requires a boolean argument indicating
if local convergence has been achieved and determines if global convergence has been reached using a centralized algorithm.

With the multisplitting method, the initial linear system is split into subsystems. Each subsystem is solved on its assigned
processor. In the previous version of the GREMLINS code [13], three scientific libraries could be chosen for solving the
subsystems: MUMPS [1], SparseLib [16] and SuperLU [15]. TheGREMLINS code has been improved to also allow the use
of the PETSc library [6].

The GREMLINS code consists of:

• C++ methods that first ensure the distribution of the matrix and then, in an iterative process, compute the right-hand-
sides, send them to the different processors, receive the solutions from the different processors and detect the conver-
gence. These methods implement an iterative so-calledoutersolver and use the CRAC library to communicate.

• C++ methods using a scientific library that solve the subsystems in a serial way. These methods implement a sequential
so-calledinnersolver, that can be direct or iterative, depending on the library chosen. For each library, the inner solver
consists of at most two methods: a constructor (that classically performs initializations in object oriented programming
models and is not necessarily present) and a method calledsolve that actually computes the solution of the linear
system.

With the outer solver, the initial matrix and the submatrices are represented in a CSR (Compressed Sparse Row) format that
consists of three arrays: one for the column indices, one forthe numerical values and one for the positions in the previous
arrays of the first entry in each row. The right-hand-side andthe solution of each subsystem are represented by classical
numerical arrays.

With the inner solver, the representation for the matrix, the right-hand-side and the solution depends on the library used.
If necessary, the matrix is converted from the CSR format, previoulsy described, into another format required by the library.
This conversion is performed once, in the constructor of theinner solver. In thesolvemethod, the right-hand-side and the
solution may also be converted if particular types are required for these two arrays.

4 Numerical experiments

4.1 Context of the experiments

The multisplitting method has been used with processors located in the same cluster or in different sites to solve linear
systems arising from real life problems [4]. In this case, a file is stored on a processor which is in charge of distributingthe
data to the others. Therefore the memory size of this processor limits the size of the file to be processed. In [4], the size of
the largest matrix assigned from a file is 130,228. The associated linear system is solved on at most 20 processors. In order
to solve larger problems without long data file transfers, the linear systems studied in this paper are generated at run time.

Each processor computes specific matrix rows, so that each matrix is automatically distributed on the processors. Each
generated matrix consists of several non-empty diagonals:the main diagonal, the two nearest neighbor diagonals and other

7CRAC (Communication Routines for Asynchronous Computations)
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diagonals are equally scattered between the main diagonal and the desired bandwidth. As an example, a matrix with7 non-
empty diagonals and a bandwidth equals to half the matrix size is represented in Figure 2. Off-diagonal entries are random
values between -1 and 0. Each diagonal entry is the inverse ofthe sum of the entries of the same row plus a fixed value
and a random value from an interval specified by the user (in practice the fixed value equals 1.1 and the random value lies
between 0 and 1.2). Such generated matrices are M-matrices [5] (defined as Z-matrices with eigenvalues whose real parts
are positive). Z-matrices,i.e. matrices whose diagonal entries are strictly positive and off-diagonal entries non-positive, and
also diagonally dominant matrices satisfy the convergencecondition of both the synchronous and the asynchronous version
of the multisplitting method [4].

Bandwidth

Figure 2. A generated matrix with 7 non-empty diagonals and a bandwidth equal to half the matrix
size

Numerical experiments have been carried out on GRID’50008, an experimental grid platform featuring 5000 processors
which are geographically distributed accross nine sites inFrance [9]. Recently this network has been augmented to include
one site in Brazil. Most of those sites have a Gigabit Ethernet network for local machines. Links between the different sites
range from 2.5 Gb/s to 10 Gb/s. Processors in the platform aremostly AMD Opteron, but also Intel Xeon and Intel Itanium.

To run a code on the GRID’5000 platform, processors have to bereserved. The choice of the sites and the number of
processors used depend on the resources available in the grid. Because clusters in the GRID’5000 architecture use differ-
ent operating systems and libraries, a common Linux image has been deployed on the nodes reserved for the experiments
described in this section. Thus the same operating system, libraries and compilers could be available on any site.

Two types of experiments are described. First, the performance obtained using different libraries to solve the subsystems in
the multisplitting method is analysed. Second, the multisplitting method is compared with the restarted version of theGMRES
(General Minimal RESidual) method [28] implemented in the PETSc library. This second point provides a comparison of
the GREMLINS solver with a standard parallel one.

4.2 Comparison of different inner solvers in the GREMLINS code

Different inner solvers for the subsystems in the multisplitting method have been compared: direct solvers from the
MUMPS or the SuperLU library and iterative solvers from the PETSc or the SparseLib library. With the latter libraries, the
GMRES method has been used with an ILU preconditioner [28].

Table 1 presents results measured in a local context: 100 processors with a frequency of 2.4 GHz in Orsay. The results
presented in Table 2 have been measured with 155 processors in a distant context: 59 processors in Rennes, 50 processors in
Sophia and 46 processors in Toulouse, having a frequency of respectively 2.0 GHz, 2.0 GHz and 2.6 GHz. With multicore

8GRID’5000: http://www.grid5000.fr
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processors, one core per processor has been used, because inner solvers are not thread safe except SparseLib. That means
that if several instances of the same solvers are run, a non-thread-safe program will crash.

The matrices involved in Tables 1 and 2 have the same size (2.107), the same bandwidth (2.106) and the same number of
diagonals (13, 23 or 33) but their elements have different values. These values result from a combination of random values
and parameters that are set by the user and have an impact on the convergence speed of the multisplitting method. Indeed
the number of iterations required to achieve convergence and therefore the execution time of the GREMLINS code is related
to the spectral radius of the iteration matrix in the multisplitting method. Although they have the same pattern, the matrices
from Tables 1 and 2 have been generated using different parameters. In the synchronous mode, a matrix from Table 2 would
require fewer iterations and therefore lead to a faster convergence than the corresponding one from Table 1 in the same
context (local or distant processors).

The run time and the number of iterations performed by the outer solver in the multisplitting method, in both the syn-
chronous and the asynchronous mode, are reported in Tables 1and 2. In each case, the computation has been performed
ten times with the time reported being the mean value. As the run time varies from one execution to another, the standard
deviation from the mean execution time is also reported. In the synchronous mode, the number of iterations is constant from
one execution to another. It is not the case in the asynchronous mode, for which the number of iterations performed depends
on the network traffic; the minimum and the maximum number of iterations measured have been reported into square brack-
ets. In the asynchronous mode, within one execution, the number of iterations also varies from one processor to another.
At each execution, it is the number of iterations performed by the supermaster, a processor that has a specific function for
communications with the CRAC library [14], that has been measured.

Synchronous AsynchronousSolver
time (s) stand. dev. nb. iter. time (s) stand. dev. nb. iter.

13 diagonals
MUMPS 98.79 0.31 83 93.79 0.51 [240-249]
SuperLU 84.09 0.24 83 98.07 0.50 [417-441]
SparseLib 87.21 0.26 83 91.68 0.48 [388-426]

PETSc 84.14 0.29 83 95.70 0.43 [424-457]
23 diagonals

MUMPS 278.43 0.23 148 258.98 0.37 [421-439]
SuperLU 253.71 0.24 148 248.57 0.49 [506-532]
SparseLib 272.39 0.28 148 259.32 0.41 [441-451]

PETSc 270.04 0.36 148 255.46 0.48 [411-414]
33 diagonals

MUMPS 407.06 0.29 205 376.94 0.41 [556-574]
SuperLU 367.49 0.31 205 351.04 0.37 [714-747]
SparseLib 394.02 0.27 205 364.86 0.34 [604-608]

PETSc 398.23 0.32 205 369.91 0.45 [527-566]

Table 1. Execution times with the four solvers for generated matrices of size 2.107 and band-
width 2.106 on 100 processors in a local cluster in Orsay.

With the matrices considered, both in a local context and in adistant context, no inner solver performs clearly better than
the others. In the synchronous mode, the number of iterations performed by the outer solver is the same whatever the inner
solver is. As the number of diagonals increases, so do the computational volume, the number of iterations in the synchronous
mode and the run time both in the synchronous mode and in the asynchronous one. Run times in the asynchronous mode are
slightly better than in the synchronous one from a certain number of diagonals.

4.3 Comparison of the GREMLINS code and the PETSc library

The multisplitting method implemented in the GREMLINS codehas been compared with the GMRES method imple-
mented in the PETSc library, both in a local and in a distant context. The inner solver used in the multisplitting method is
a direct one from the MUMPS library. As already mentioned, noinner solver performs clearly better in the experiments re-
ported in 4.2. The MUMPS library has been chosen since it consumes less memory than SuperLU. Because no preconditioner
has been implemented yet in the GREMLINS code, the GMRES method has also been used without any preconditioner. The
run time and the number of iterations of the outer solver in the GREMLINS code have been compared with those of the
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Synchronous AsynchronousSolver
time (s) stand. dev. nb. iter. time (s) stand. dev. nb. iter.

13 diagonals
MUMPS 25.15 0.68 12 42.09 1.01 [199-215]
SuperLU 23.42 0.81 12 44.15 1.29 [510-526]
SparseLib 23.00 0.77 12 32.67 1.12 [272-310]

PETSc 23.57 0.82 12 40.89 0.91 [322-453]
23 diagonals

MUMPS 57.00 0.92 17 54.35 1.01 [170-188]
SuperLU 55.45 0.67 17 51.40 1.27 [333-389]
SparseLib 54.88 0.98 17 54.82 0.99 [302-330]

PETSc 55.33 0.85 17 53.87 1.16 [322-369]
33 diagonals

MUMPS 83.88 1.01 21 75.16 1.06 [191-199]
SuperLU 78.54 0.89 21 66.58 0.95 [344-359]
SparseLib 79.83 0.96 21 70.44 1.59 [230-255]

PETSc 79.12 0.78 21 71.70 1.27 [203-218]

Table 2. Execution times with the four solvers for generated matrices of size 2.107 and band-
width 2.106 on 155 processors: 59 in Rennes, 50 in Sophia and 46 in Toulouse.

restarted GMRES method. Although the run time required by the generation of the matrix has not been reported, particular
attention has been paid to memory allocation. Indeed with PETSc, preallocation of memory is critical to achieve good per-
formances during matrix assembly. By specifying the numberof nonzeros per row (before actually setting the matrix values)
the total execution time has been significantly reduced.

Table 3 presents results measured in a local context (100 processors with a frequency of 2.4 GHz in Orsay) with matrices
of size2.107 and bandwidth2.106. The matrices studied for Table 3 with 13, 23 or 33 diagonals had also been used for
Table 2. As the number of diagonals increases, the run time logically increases. It is noticeable that, in this experiment, with
the multisplitting method the run time is slightly higher inthe asynchronous mode than in the synchronous one. When the
number of diagonals increases, the relative difference between the synchronous execution time and the asynchronous one
decreases. This difference depends on the matrix, the processors and the interconnection network involved. Indeed therun
time is lower in the asynchronous mode than in the synchronous one, on the one hand for the same matrix with 23 or 33
diagonals in a distant context (see Table 2) and on the other hand in the same context for a matrix with 23 or 33 diagonals
having the same pattern but element values that lead to a slower convergence (see Table 1).

Except with the matrix having 13 diagonals, the number of iterations and the run time are lower with the GMRES method
implemented in PETSc than with the multisplitting method. The local context of this experiment is favourable to the PETSc
library. As the number of diagonals increases, the ratio of the run time of the GREMLINS code over the one of the PETSc
code increases. In this experiment, this ratio is at most 2.

Multisplitting (MUMPS) PETSc
Nb. Synchronous Asynchronous

diagonals time (s) stand. dev. nb. iter. time (s) stand. dev.nb. iter. time (s) stand. dev. nb. iter.
13 15.50 0.21 12 20.59 0.45 [54-56] 17.56 0.25 12
23 32.04 0.24 17 39.56 0.47 [66-72] 24.28 0.28 14
33 42.11 0.34 21 48.90 0.56 [81-82] 27.69 0.19 15
43 54.95 0.27 25 58.65 0.39 [78-81] 30.58 0.22 16
53 62.49 0.18 28 66.48 0.45 [97-100] 34.13 0.27 17
63 73.40 0.27 32 76.33 0.41 [104-110] 37.78 0.32 18

Table 3. Execution times of the GREMLINS code and the PETSc code for generated matrices of
size 2.107 and bandwidth 2.106 on 100 processors in a local cluster in Orsay.

Tables 4 and 5 present run times measured in a distant context, on 198 processors: 68 in Orsay (2.4 GHz), 70 in Rennes
(2.0 GHz) and 60 in Sophia (2.0 GHz).

The results reported in Table 4 refer to matrices of size2.107 and bandwidth2.104. As already noticed in 4.2, the
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performance of the multisplitting method is better in the asynchronous mode than in the synchronous one from a certain
number of diagonals. In this experiment, the run time of the PETSc code is higher than the one of the GREMLINS code.
As in Table 3, as the number of diagonals increases, the ratioof the run time of the GREMLINS code over the one of the
PETSc code also increases. In Table 4, this ratio, that remains less than 1, is at least0.5 (this value refers to the matrix with
13 diagonals).

Multisplitting (MUMPS) PETSc
Nb. Synchronous Asynchronous

diagonals time (s) stand. dev. nb. iter. time (s) stand. dev.nb. iter. time (s) stand. dev. nb. iter.
13 20.76 0.92 37 23.14 1.09 [172-198] 42.10 1.12 47
23 27.56 1.01 46 33.02 1.02 [215-245] 49.09 0.87 54
33 38.71 0.98 57 33.58 1.52 [169-186] 55.41 1.32 60
43 51.48 1.05 68 43.50 0.98 [173-189] 57.75 1.09 68
53 65.03 1.09 78 53.58 1.23 [187-204] 69.20 1.1 71
63 75.04 0.98 91 72.44 1.54 [243-286] 76.92 1.34 80

Table 4. Execution times of the GREMLINS code and the PETSc code for generated matrices of
size 2.107 and bandwidth 2.104 on 198 processors: 68 in Orsay, 70 in Rennes and 60 in Sophia.

All the matrices studied for Table 5 have 13 diagonals. TheirsizeS varies from2.107 to 7.107 and their bandwidth is
10−3S. As their size increases, the communication time also increases and therefore the run time increases as well. As their
size varies, the number of iterations both with the GREMLINScode in the synchronous mode and with the PETSc code does
not differ much. As usually noticed in Tables 1 to 4 for matrices with 13 diagonals, the GREMLINS code performance is
better in the synchronous mode than in the asynchronous one,except for the matrix of size7.107. It is noticeable that the
number of iterations with the PETSc code is slightly higher than the one with the GREMLINS code in the synchronous mode.
The performance of the GREMLINS code is better than that of the PETSc code, except when the GREMLINS code is run in
the asynchronous mode with the matrix of size3.107.

Remark 1 The number of iterations is related to, on the one hand, the spectral radius of the iteration matrix for the mul-
tisplitting method, and on the other hand, the conditioningof the matrix for the GMRES method. The size of the matrices
studied in this article is too high for their conditioning tobe exactly evaluated. However, a satisfactory conditioning of the
matrices can deduced from the convergence observed with theGMRES method.

5 Conclusion and perspectives

For solving a linear system, the multisplitting method is aniterative method that consists in splitting the matrix intorectan-
gle submatrices. In a distributed environment, each processor may be in charge of managing a submatrix. The GREMLINS
code enables one to use several variants of the multisplitting method in a grid environment. First, iterations can be performed
in a synchronous or in an asynchronous mode. Then the linear subsystems that arise from the matrix decomposition can be
solved using a direct or an iterative method. Several libraries can be used for solving the subsystems: MUMPS, SparseLib,
SuperLU and also PETSc in the current version of the GREMLINScode.

Multisplitting (MUMPS) PETSc
Size Synchronous Asynchronous

time (s) stand. dev. nb. iter. time (s) stand. dev. nb. iter. time (s) stand. dev nb. iter.
2.107 20.76 0.76 37 23.14 0.89 [172-198] 42.10 0.99 47
3.10

7 29.53 1.08 39 56.66 1.02 [281-314] 52.53 0.67 47
4.10

7 36.53 1.01 41 43.17 0.78 [160-179] 59.68 0.87 47
5.107 39.16 1.61 36 53.18 1.21 [158-175] 59.10 0.99 46
6.107 51.64 0.68 42 77.02 0.19 [195-213] 77.94 0.67 55
7.107 98.47 1.23 36 93.71 1.91 [189-215] 120.09 1.87 46

Table 5. Execution times of the GREMLINS code and the PETSc code for generated matrices having
13 diagonals on 198 processors: 68 in Orsay, 70 in Rennes and 60 in Sophia.
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The GREMLINS code performance has been analysed in a local context (i.e. on processors from the same cluster) and
also in a distant one (i.e. on processors from clusters located in different geographical sites). With the matrices studied, the
choice of the solver for the subsystems has no significant impact in terms of performance, neither in a local nor in a distant
context. From a certain number of diagonals in the matrix, the asynchronous mode may lead to better performances than the
synchronous one. This performance difference, that is slight on GRID’5000, is more marked if the network bandwidth is
degraded [4].

The multisplitting method implemented in the GREMLINS codehas been compared with the GMRES method imple-
mented in the PETSc library. Because the GREMLINS code has been designed to run efficiently in a grid environment, its
performance is particularly satisfactory in a distant context. In the numerical experiments carried out in a distant context, the
run time of PETSc is up to twice the one of the GREMLINS code. Ona local cluster, the performance of PETSc is usually
better. Again a ratio between the run times that is at most 2 has been noticed.

Several perspectives to this work are planed. Each matrix involved in the numerical experiments is not entirely managed
by one processor. A part of the matrix is generated by each processor belonging to the grid. Matrices arising from real life
problems have also been studied [4]. In this case, a file is stored on one processor that sends parts of the matrix to the others.
But this limits the size of the matrix. In order to solve largereal life problems without long data file transfers, the GREMLINS
code may be linked with a finite element method software, suchas the ParaFEM free library [27]. After the finite element
computation, the large sparse linear system resulting fromthe modelling would be solved using the GREMLINS code,
without being explicitly built. Each processor would buildand solve a local sparse linear system.

The GREMLINS code can be run in a synchronous or in an asynchronous mode, thanks to the CRAC library. But CRAC
does not make any difference between processors belonging to the grid, even if some processors are on the same local parallel
cluster. The GREMLINS code could be improved to make a betteruse of the local parallel clusters in a grid. Because the
PETSc library is designed to fully take advantage of parallel computers and local clusters, it could be used over local clusters
to solve parallel linear systems generated by the multisplitting method. Communications would be performed, on the one
hand, by the MPI library used by PETSc on local clusters and, on the other hand, by the CRAC library on distant clusters.
This implies adaptations in the CRAC library, that should become compatible with MPI.
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