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Abstract

Different computational and mathematical models used in the programming
and in the analysis of convergence of asynchronous iterations for parallel solution
of linear systems of algebraic equations are studied. The differences between the
models are highlighted. Special consideration is given to models that allow for
overlapping blocks, i.e., for the same variable being updated by more than one
processor.
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1 Introduction

In this paper we track the development of different models of asynchronous iterations.
We trace the history of these parallel methods, where each processor executes its own
instructions, reading data produced by other processors, but not waiting for new data
if the latter is not yet available. There is no synchronization barrier to overcome,
and thus all processors compute their tasks with no interruption. These methods
usually have a slower asymptotic convergence rate than methods which wait for
newer information, but because they do not wait, in many instances they produce
an approximation to the solution of the problem in much less computational time.
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DMS-9625865.
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(References are not mentioned in this introduction, but in each section when the
discussion brings attention to them.)

Asynchronous methods have been proposed and applied to different types of linear
and nonlinear algebraic equations, optimization problems, and differential equations.
To keep the discussion focused, we restrict our study mostly to linear equations. Fur-
thermore, we concentrate on block methods with overlaps, i.e., when some variables
are approximated by more than one processor. This is the computational model
which is most beneficial.

We make the distinction between computational models (represented in this paper
by a pseudocode) and mathematical models, which give an expression of the iterate
as a function of the previous ones. Mathematical models are used to describe the
computational ones, and can therefore be used to study their convergence properties.
We describe different mathematical models in a similar manner, exposing how they
relate to each other. We show how the different mathematical models have attempted
to describe the computational model, but not always succeeded in capturing some
elements. For example, not all mathematical models had vectors keeping the different
values that the overlapping variables are taking in the different processors.

2 First computational model

We begin by considering a computational model for the parallel asynchronous solution
(by blocks) of a large and sparse linear system of algebraic equations of the form

Av =D, (1)

where A = (a;;) € R"*" is a nonsingular matrix, and b € R" is given. To that end,
let I, = {1,2,...,n} and L sets Gy C I,, { = 1,..., L, so that UL, Gy = 1., be the
sets defining the blocks. We call the set G = {G1,G5,...,GL} a covering of T,. The
variables with indices in G; NG (¢ # j) are said to be the variables with overlap. If
GinG;=0foralli#j, 4, j=1,...,L, the set G is a partition of I,,. Let n; be
the cardinality of Gy, { = 1,..., L. The set G determines a covering (or partition)
of any vector x € R", so that if Gy = {a1,a9,...,0;,,}, we have the subvectors
X0 = (Tayy Tag, - - .,xanZ)T €R™ (=1,...,L. Similarly, the submatrices (or blocks)
of A determined by G are Ay, = (dq,-,) € R™*"™ where a; € Gy, 1 = 1,...,ny and
v, €Gr, J=1,...,n4.

In practice, the set GG could be determined by the geometry of the underlying
problem, e.g., when domain decomposition methods are used and A corresponds to a

discretization of a differential equation [59] (each subdomain containing the variables
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in xy, say, and the variables with overlap correspond to the overlap between the
subdomains), or it may originate from a reordering algorithm applied to the sparse
matrix A, as done, e.g., in [7], [50], [58]. Depending on the geometry, or on the
ordering algorithm used, the cardinality of sets Gy, ny, may vary over a wide range,
in other words, some of the square matrices Ay, (which are assumed to be nonsingular
throughout the paper) may be small while others may be large. This occurs, e.g.,
when the solution of a differential equation needs to be resolved in some subdomains
with more detail than in others. In the algorithms discussed in this paper, the nys x ng
linear systems are solved by different processors, and thus, if these systems have a
similar sparsity pattern, the corresponding computational effort also varies widely.
This is usually referred to as load imbalance. Asynchronous methods like the ones
studied in this paper overcome the problem of load imbalance by continuing the
computations with the available data; see, e.g., the numerical experiments in [34].

It is useful sometimes to assume that the variables (and equations) are renum-
bered so that the indices within each set (G, are numbered consecutively, and that
if @ € Gy, v € Gy with £ < k, then a < v. This is not always possible in the
case of overlap, though. We will nevertheless adopt this notation, and note that all
the material covered in this paper can be shown without this additional assump-

tion. We observe that only in the case that G is a partition of T,, we can write

xT = (x{,xT,...,x}) and
An Ay - Aqg
An Ay - Ay
A= : (2)
A A -0 Agg

If the set GG is not a partition, but a covering, then, there are overlapping blocks, and
there are some variables belonging to more than one subvector x;, and the represen-
tation (2) is no longer appropriate. We emphasize that in many iterative methods,
the overlap plays an important role in qualitatively improving the convergence of the
methods; see, e.g., [1], [15], [22], [25], [32], [33], [38], [40] [41], [43], [59], [61], [66].
This is why we concentrate on the overlapping cases in this paper.

We are ready to describe the first asynchronous computational model, i.e., how
the computer is actually programmed to execute its instructions. In the rest of the
paper, we refer to this model simply as asynchronous iterations.

Given an initial approximation x to the solution of (1), each processor of a parallel
computer executes the following procedure, independently of each other.
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1. determine /.

. read xi, k # (.

solve (or approximate) Ayx, = by — ZAszk-
k£l

w N

4. write xy.
Steps 1 to 4 are repeated until some termination or stopping criterion is met.

We do not discuss the stopping criterion in this paper, and instead refer the
reader to [27] and the references given therein. We say that this is an asynchronous
iteration since there is no synchronization between the execution of the instructions
of the processor with those of any other processor, i.e., there is no wait for data during
execution. We emphasize that in this model, the processor reads all subvectors xy,
k # ( in step 2 which are available before the beginning the execution of step 3.
Observe that when there is overlap, if the index a belongs to more than one set G/,
say, then we may have two or more different values for z, at any given time.

This asynchronous iteration is a generalization of the block Jacobi method. For
a description of the block Jacobi method and its convergence analysis, see any of the
classical texts, e.g., [9], [63], [67].

We have presented this computational model in a very general way, so as to
include programming different types of architectures. For example, consider a dis-
tributed computer with L processors, in which each processor has local memory but
there is no global memory. Then each processor has a value of £ assigned to it from
the beginning of all computations, and step 1 is trivial. The write instruction in
step 4 implies that the values of the subvector x, are broadcasted, or sent to all the
other processors. Thus, the read instruction in step 2 is a local read, i.e., it reads
the values received previously, until the moment before step 3 begins. Any values of
subvectors xj received while step 3 is executing are not used until the next iteration
(the situation in which these values are used during the current iteration is consid-
ered in the computational model described in Section 5). On the other hand, if there
are fewer than L processors, the processes 1 to 4 combined can be considered as a
token in a queue, and the value of { is part of that token; see, e.g., [16], [17]. The
free processor grabs a token from the queue, executes it, and puts it back at the end
of the queue.

In this general setting the computational model presented here represents the way
asynchronous iterations are programmed in most cases reported in the literature;
see, e.g., [11]. In this paper we concentrate on the solution of the linear system
(1), but most of our analysis applies also to the solution of nonlinear systems using
asynchronous fixed point iterations. In other words, given a nonlinear function F :
R"™ — R", the solution of F(x) = x is obtained by a similar computational model,
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where at step 3, the processor solves for x; (or its approximation) in the equation
Fi(x1,...,%¢,...,x1) = x¢. This model then relates to the work by many authors;
see, e.g., [6], [10], [14], [26], [37], [42], [45], [47], [48], [56], [62], and the references
given therein. See also further extensions in Section 6.

3 First Mathematical Models

The first mathematical model analyzing the convergence of the asynchronous iteration
dates from 1959. At that time there were no parallel machines, and Schechter [57]
studied his method as a block counterpart to the (point) free steering iterations due
to Ostrowski [51]. Schechter explicitly considered overlapping blocks. Ostrowski
[52] later studied this block version (without overlap) as well. Even though the
computational model they had in mind was strictly sequential, having the (single-
processor) computer execute the asynchronous iteration steps 1 to 4 repeatedly in a
sequential manner, their convergence analyses equally apply to the parallel setting.
We emphasize the distinction between the mathematical models, which attempt to
represent mathematically the asynchronous iterations, i.e., the computational model,
and the latter, which represent the way the computations are carried out.

In order to describe the mathematical models, let ¢ be the iteration number
associated with the time at which the asynchronous iteration procedure is executed.
To be precise, we associate to the tag ¢, the time at the beginning of the execution
of step 2. The subvectors of x are tagged with this iteration number when they are
computed. Thus, at the end of steps 3 and 4, xé has been computed and stored.
Define N; C Iy, = {1,...,L} as { € N; if x; is computed at the time associated
with the tag i. Let r(k,¢) be the tag of the subvector x;, available at the beginning

r(k,)

of the computation of x! (if £ € N;), i.e., at step 2, x, ", which was (previously)

computed at the time associated with the tag r(k,?), is read. With this notation

r(£,7)
Xy

is the subvector x, available at the beginning of the computation of xé (if
¢ € N;). This vector is not used in the models described in this section, but it is
used in a model described in Section 4. Sometimes the difference d(k, i) = ¢ —r(k,?)
is called a delay. If all delays are zero, i.e., if there are no delays, and if there is no
overlap, the asynchronous iteration behaves like a standard (synchronous) iterative
method, such as, e.g., block Jacobi, etc. With this notation, the mathematical model

in [57] and [52] is as follows.
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Let an initial approximation to the solution of (1), x° be given, then, for i = 1,...,

' x,”! if (¢ N,
X) = 4 the solution of Auxé = by — ZAgkxz(k’Z) if £ e N;. (3)
Py

The basic assumptions used in the mathematical models in [52], [57] are the
following.

(i) r(k,i)<iforall kelp,i=1,....
(ii) The set {i | £ € N;} is unbounded for all ¢ € I,.
(iii) lim r(k,7) = oo for all k € 1.

We should mention that assumption (iii), which states that, as the iteration proceeds,
iterates which lag too far behind are no longer used, is only stated implicitly in [57],
while assumption (i), which states that only previously computed iterates can be
used, is also only implicit in [52], [57]. Condition (ii) states that no subvector ceases
to be renewed as the iterations proceed.

We say that (3), together with (i)-(iii), form the basic mathematical model of
asynchronous iterations. Before we state the convergence theorems from [52], [57]
associated with this mathematical model, we introduce some notation and definitions,
following, e.g., [9], [63]. Given a vector x € R", we say that it is nonnegative
(positive), denoted x > 0 (x > 0), if all components of x are nonnegative (positive).
Similarly, if x,y € R", x > y means that x —y > 0. These definitions carry
over immediately to matrices. For any matrix A = (a;;) € R"*", we define its
comparison matrix (A) = (ay;) by i = |ai|, a;; = —|a|, @ # j. A nonsingular
matrix A is called monotone if A=! > O, it is called an M-matrix if it has non—
positive off-diagonal entries and it is monotone, and it is called an H-matrix, if (A)
is an M-matrix. H-matrices are generalized diagonally dominant matrices; see, e.g.,
[64]. The representation A = M — N is called a splitting if M is nonsingular, it
is called and M-splitting if M is an M-matrix and N > O, a regular splitting if
M~! > O and N > O, and a weak regular splitting if M~! > O and M~!N > O.

Given a set (&, and appropriate norms in R™, for A € R"*" we define its type-I
comparison matrix ((A)) = (a) € REXE as apy = ||AL| 7Y, am = —||Awl|, € # &,
(,k € 1. This name is used in [3]; see also [29], [53], [55].

Theorem 3.1 [57] Let G be a covering (or a partition) of . Let A and each of the
matrices Ay be monotone, { € 1y,. Let (—Ay) > O, L # k, (,k € 1,. Let conditions
(i)—(iii) hold. Then, the asynchronous method (3) converges to the solution of (1) for

any initial vector xY.
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We point out again that some components of the vector x, say z;, have different
values when the index j belongs to more than one set Gy. It follows from Theorem 3.1
that each copy of z; converges to the same value, namely v;, where v is the solution of
(1). This situation is similar to the convergence of the Schwarz alternating procedure

with overlapping subdomains; see, e.g., [59].

Theorem 3.2 [52] Let G be a partition of 1,,. Let A be such that ((A)) is an M-
matriz. Let conditions (1)—(iii) hold. Then, the asynchronous method (3) converges
to the solution of (1) for any initial vector x°.

We comment briefly on the proof of Theorem 3.1 in [57]. Given a fixed covering

G, the norm of a vector x € R"™ used for the convergence analysis is

L
1x[ =D lIxelle, (4)
=1

where || -||¢ is any norm in R™ (recall that there is overlap between these subvectors).
For the proof, the matrices Azgl are embedded into n X n nonnegative matrices K, =
(Kqj), so that k;; = 0 if either ¢ or j ¢ Gy, and the nonzero part has the corresponding
elements of A&l. Then, nonnegative matrices of the form T, = I — K,A are shown
to map the residual at one step to the one at the next step. We also note that the
corresponding theorem in [57] is more general, including in its convergence theory
under- and overrelaxation, and regular splittings other than block Jacobi.

The first mathematical model of asynchronous iterations with parallel machines
in mind is due to Chazan and Miranker [24]. Their model corresponds to point
methods, ie., L = n, and Gy = {{}, { € T,. They mention the block method
as a simple extension, but their analysis is restricted to the nonoverlapping case.
Their mathematical model is similar to (3) (in the point case), with the following
assumptions.

(i"y 0<d(k,i)forallkely,i=1,....
(ii") € € N; for some 7 infinitely often for all £ € Ij,.
(iii’) There exists a fixed integer d such that d(k,i) < dforall k€I, i=1,....

It is easy to see that conditions (i)—(ii) and (i’)—(ii’) are equivalent. If the sequence
r(k, 1) satisfies condition (ii’), or equivalently (ii), some authors call this sequence
admissible; see, e.g., [18], [20]. In these papers, a sequence satisfying (iii’) is called
regulated. Condition (iii) is more general than (iii’) since no uniform bound d is
required, as pointed out in, e.g., [6], [11], [21]; see also [60] for an analysis of a
condition other than (iii’). Most convergence results in this paper correspond to the
more general assumption (iii). We should mention though that there are models

where the additional assumption on uniformity is required; see, e.g., [11, Ch. 7].
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4 The Multisplitting Models

O’Leary and White [49] introduced the multisplitting method for the parallel solution
of a system of the form (1), in which each processor computes a different approxima-
tion to the solution, and then a weighted average of these approximations is taken
as the iterate. Only when these weights are nonzero the corresponding components
need to be computed. This method has been extensively studied and extended to
nonlinear problems, differential equations, and other directions; see, e.g., [18], [23],
[40], [39], [54], [65]. For the multisplitting method, let A = M, — Ny, { € 1y, be

splittings, and let E; € R™*™ be nonnegative diagonal weighting matrices such that
L

ZEg = I. If the weighting matrices E, consist of all zeros and ones, then, we say
=1
that there is no overlap. There is overlap if some entries are such that 0 < (Ey);; < 1

for some £, j.

Multisplittings have proved to be a good mathematical tool to analyze different
types of block methods. We describe here mathematical models of asynchronous
iterations based on this idea. To that end, consider weighting matrices E, with
nonzeros only in diagonal entries with indices in G, and splittings A = My — Ny so
that (My)ee, = ae,, 7,5 = 1,...,m4, i.e., so that the My has Ay as the (th diagonal
block. Usually, My is taken as block diagonal. The diagonal blocks other than the {th
are not relevant in these mathematical models since they do not influence the outcome
of the computations being modeled, and they can be taken to be, e.g., the identity or
the diagonal blocks of A. With the splittings thus constructed, EgMZly = Azglyg
for any vector y € R™. We note that EgMZl is therefore equal to the matrix K,
used by Schechter in his proof of Theorem 3.1, and described in Section 3. With this
notation, the hypothesis in Theorem 3.1 is that A = M, — Ny are regular splittings,
£ € Tp,. Denote by x, the vector computed by the {th splitting, £ € Tr,. This occurs,
e.g., in the computation by the fth processor. Observe that x, € R™ while xy € R™
and in these models we consider x; as a subvector of x,.

The first mathematical model of asynchronous iterations using multisplittings
was presented by Bru, Elsner and Neumann [18], using assumptions (i’)-(iii"). Its
extension to the block case can be found, e.g., in [19], [20], [44]. The following
description of this mathematical model is not exactly the one used in these references,

but it can be shown to be equivalent in the non-overlap case.
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Given an initial vector x°, set x? = x°, for { € 1y, then, for i = 1,...,
%! if (¢ N;

L .
(I- E)x ) + E,M;? [Ng (Z Eki;(’“)) + b] iteen.,
k=1

M
L
|

As pointed out recently in [3], the model (5) (and its original formulation in [18])
represents the asynchronous iterations described in Section 2 only in the case of non-
overlap, i.e., when G is a partition and (E;);; = 1, if j € G4, and zero otherwise.
In the case of overlap, this model would represent another computational algorithm,
where a convex combination of the old iterate and the new one is computed; see (5).
To our knowledge this overlap case has not been implemented in practice; e.g., the

experiments in [19], [20], [44], correspond to partitions of I,.

The second mathematical model presented in this section is the linear counterpart
to that in [3], and generalizes the models in [21], [35]. It is another attempt to

represent the asynchronous iterations in the case of overlap.

Given an initial vector x°, set X9 = x, for ¢ € Iy, then, for i =1,...,
%! if (¢ N,

M-LIN L E ~r(ky) . ) (6)
’ ¢ Z EX, +b if £€N;,
k=1

M
L

and at the end of the process, the approximation to the solution of (1) is x' =
L
> Ex;.
/=1

Note that in contrast to model (3), the possible different values in the overlap
are weighted at each step and combined. We mention here that a similar construct

is present in the models studied in [11, sec. 7.7], [13], where convex combinations of

the iterates are taken.

The last model in this section is the asynchronous weighted additive Schwarz
method (AWAS) introduced recently in [34]. It is a mathematical model which keeps
L separate vectors, one for each set Gy (we abuse slightly the notation and call
these vectors x;, € R"), and thus allows for different values of the same component
in the overlap to be represented, just as in the discussion after Theorem 3.1. This
is accomplished by having L separate sets of weighting matrices. In fact, one can
have separate sets of matrices in each iteration 7 to reflect possible different choices

of the overlapped variables, depending, e.g., on which one has been computed most

L
recently. The weighting matrices are then E{,, such that ZE}M =1, for { € 1,
k=1
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i=1,...; see also [4], where similar weighting matrices are used. The AWAS model
is as follows.

Given (possibly different) initial approximations %9, ¢ € I, for i = 1,...,

%! if (¢ N,

X) = =7 (ki)

- (7)
SELME! (N5 +b) i Ce N
k=1

We emphasize that this is a mathematical model, and that the computations in
(7) are not all performed in the same processor. In fact, each computation

-1 o7k
M; ! (N + b) (8)
takes place in a different processor, k € Ij,. Here the tag 7#(k,i) corresponds to the
time where the computation (8) is about to begin. These tags are thus different than
those in the other mathematical models, though they satisfy conditions (i)-(iii) as
well. In practical implementations, it is not necessary to keep the L vectors of length

n in memory, since only their subvectors x; of length ny have useful (non-redundant)
L

information. Thus an, and not nl memory locations suffice to store the iteration
vectors. =

Both models (6) and (7) were shown to be convergent under conditions (i)—(iii)
and additional hypotheses (e.g. on the splittings) when A is either a monotone
matrix or an H-matrix. For brevity, we only reproduce the result from [34], as
Theorem 4.1 below, where the notation |A| stands for a matrix whose entries are
la;;|. Extensive experiments reported in [34] reveal that, in the case of overlap,
computations with (7), i.e., the weighted additive Schwarz version — which truly
represents the asynchronous iterations, keeping separate values for the variables in
the overlap — outperforms the computations with (6), i.e., the multisplitting version.

Theorem 4.1 Let the diagonal nonnegative weighting matrices E};k be such that

L
ZE}Q =1 for{ € Ir, i = 1,.... Let conditions (i)—(iii) hold. Then, for each
k=1
C € 1y, each sequence {X}} computed by the asynchronous method (7) converges to

the solution of (1) for any set of initial vectors X9, { € Ty, in the following two cases.
(a) A=! > O and each splitting A = M, — N, is weak regular, { € Ty,.
(b) A is an H-matriz and (A) < (M) — |Ny|, ¢ € 11,

The proof of Theorem 4.1, as well as those in [3], [35] are based on extensions of

a convergence result of El Tarazi [28], like the following.
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Theorem 4.2 [35] Let GG be a covering (or a partition) of I,. Let S(7) be a sequence
of operators on R™ having a common fized point X.. Let||-||s be a norm on R™, ( € 1.

Let a € B a > 0 and denote || - ||a the weighted maz-norm on R™ given by
Illa =, max {- I} )
Hlla = X g, i

For alli=1,2,... assume that there exists a constant 8 € [0,1) such that

|9(0)x — Xulla < O||x — Xu|la for all x € R™.
Assume further that conditions (i)-(iii) hold. Then the asynchronous iteration

' zi! if (¢ N;
v _ . . T
i S(i), (((x§<“>)T,...,(XTL@’”)T) ) if (€ N;,

1=1,2,..., converges to X, for any initial guess xg.

We point out that, as a consequence of using Theorem 4.2, the results in the last
few years, both for linear and nonlinear systems, all use the weighted max norm (9),
as compared to the norm (4), say.

5 Totally Asynchronous Iterations

We present a computational model in which the (components of the) subvectors (or
vectors) are read only when needed. This implies that these might be newer versions
than those at the beginning of the iteration as in the asynchronous iterations of
Section 2.

Given an initial approximation x to the solution of (1), each processor of a parallel
computer executes the following procedure, independently of each other.

1. determine {, and set y <« by.

2. for each k €1y, k # (, read X, and compute y «— y — AyrXj.
3. solve (or approximate) Ayx;=Yy.

4. write xy.

Steps 1 to 4 are repeated until some termination or stopping criterion is met.

We emphasize the distinction between the step 2 here and the computational
model in Section 2. New information from other processors keeps arriving while the
computation of the right-hand side progresses, and some components of the subvector

x; might be different when used than at the beginning of the computation of the
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step. In other words, included in this computational model are models in which
part of the data is read during the computational steps. For example, the model
might include reads of some components of subvectors, which become available during
the calculations, i.e., partial updatings. Following [35], we call this model totally

asynchronous iterations.

It follows that this totally asynchronous iterations model reduces to the asyn-
chronous iterations model of Section 2, e.g., when no new information arrives to
processor £, say, between the beginning of step 1 and step 3. This model can be
expected to converge faster, since newer information is incorporated as it becomes
available. However, there are cases, e.g., in the two-stage methods mentioned in
Section 6, where as the newer information arrives, more computation is required.
In these cases, the possible advantage of this formulation depends, e.g., on the pro-
portion of this new computation vis a vis the overall computation, and thus on the
specific problem being solved; see the discussion in [35, Section 4].

Mathematical models representing totally asynchronous iterations can be found
in [21], [35], and the recent paper by Miellou, El Baz and Spiteri [46]. In this last
reference, it is shown, under the hypothesis that the splittings are M-splittings,
that if the initial guess is a supersolution, i.e., if x° > v, then the sequence of
approximations produced by the algorithm is a monotonically decreasing sequence
converging to the solution of (1). It is also the only reference we know of in which
computational results with totally asynchronous iterations are reported. The proofs
in the other references apply to any initial vector, and to more general splittings,
and use extensions of a very general theorem due to Frommer [30], where the spaces
do not need to be normed, but just to be topological product spaces with some

compatibility between the topology and the partial order.

6 Final Comments

The computational and mathematical models collected in this paper apply to more
general cases. Two-stage methods are those in which the linear systems in step 3
of either the asynchronous or the totally asynchronous iteration is approximated by
several iterations of an inner iterative method, e.g., associated with splittings (in
R™) Ay = Py — Qu, or in the case of multisplitting models, with inner splittings (in
R"™) My = Fy— Gy; see, e.g., [21], [34], [35], [44]. We note that a more general totally
asynchronous iteration model applies to the two-stage methods, since new data can
be read in each of the inner iterations if available; see [21], [35]. Another extension

of the models discussed in this paper relates to different relaxation alternatives,
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including multiparameter versions; see, e.g., [2], [5], [20], [21], [36], [44]. Many of the
convergence theorems mentioned in this paper apply to the two-stage methods and
to the multiparameter versions, by using the induced splitting of the corresponding
iteration matrix; see, [8], [34]. Finally, we mention two surveys by Bertsekas and
Tsitsiklis [12] and Frommer [31], where several aspects of asynchronous iterations
are discussed.

Acknowledgements. We thank Michele Benzi, Andreas Frommer, Violeta Mi-
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helped improve our presentation.
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