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Di�erent Models of Parallel Asynchronous Iterationswith Overlapping BlocksDaniel B. Szyld�Dedicated to the memory of Paulo Jorge Paes LemeAbstractDi�erent computational and mathematical models used in the programmingand in the analysis of convergence of asynchronous iterations for parallel solutionof linear systems of algebraic equations are studied. The di�erences between themodels are highlighted. Special consideration is given to models that allow foroverlapping blocks, i.e., for the same variable being updated by more than oneprocessor.Keywords. Linear systems, H-matrices, chaotic relaxation, iterative methods, parallel al-gorithms, asynchronous algorithms.AMS Subject Classi�cation: 65F10. CR: G 1.31 IntroductionIn this paper we track the development of di�erent models of asynchronous iterations.We trace the history of these parallel methods, where each processor executes its owninstructions, reading data produced by other processors, but not waiting for new dataif the latter is not yet available. There is no synchronization barrier to overcome,and thus all processors compute their tasks with no interruption. These methodsusually have a slower asymptotic convergence rate than methods which wait fornewer information, but because they do not wait, in many instances they producean approximation to the solution of the problem in much less computational time.�Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122-6094, USA(szyld@math.temple.edu). This work was supported by the National Science Foundation grantDMS-9625865. 1



2 Models of Asynchronous Iterations wih Overlap(References are not mentioned in this introduction, but in each section when thediscussion brings attention to them.)Asynchronous methods have been proposed and applied to di�erent types of linearand nonlinear algebraic equations, optimization problems, and di�erential equations.To keep the discussion focused, we restrict our study mostly to linear equations. Fur-thermore, we concentrate on block methods with overlaps, i.e., when some variablesare approximated by more than one processor. This is the computational modelwhich is most bene�cial.We make the distinction between computational models (represented in this paperby a pseudocode) and mathematical models, which give an expression of the iterateas a function of the previous ones. Mathematical models are used to describe thecomputational ones, and can therefore be used to study their convergence properties.We describe di�erent mathematical models in a similar manner, exposing how theyrelate to each other. We show how the di�erent mathematical models have attemptedto describe the computational model, but not always succeeded in capturing someelements. For example, not all mathematical models had vectors keeping the di�erentvalues that the overlapping variables are taking in the di�erent processors.2 First computational modelWe begin by considering a computational model for the parallel asynchronous solution(by blocks) of a large and sparse linear system of algebraic equations of the formAv = b; (1)where A = (aij) 2 Rn�n is a nonsingular matrix, and b 2 Rn is given. To that end,let In = f1; 2; : : : ; ng and L sets G` � In, ` = 1; : : : ; L, so that [L̀=1G` = In, be thesets de�ning the blocks. We call the set G = fG1; G2; : : : ; GLg a covering of In. Thevariables with indices in Gi \Gj (i 6= j) are said to be the variables with overlap. IfGi \ Gj = ; for all i 6= j, i; j = 1; : : : ; L, the set G is a partition of In. Let n` bethe cardinality of G`, ` = 1; : : : ; L. The set G determines a covering (or partition)of any vector x 2 Rn, so that if G` = f�1; �2; : : : ; �n`g, we have the subvectorsx` = (x�1 ; x�2; : : : ; x�n`)T 2 Rn` , ` = 1; : : : ; L. Similarly, the submatrices (or blocks)of A determined by G are A`k = (a�ij ) 2 Rn`�nk , where �i 2 G`, i = 1; : : : ; n` andj 2 Gk, j = 1; : : : ; nk.In practice, the set G could be determined by the geometry of the underlyingproblem, e.g., when domain decomposition methods are used and A corresponds to adiscretization of a di�erential equation [59] (each subdomain containing the variables



Daniel B. Szyld 3in x`, say, and the variables with overlap correspond to the overlap between thesubdomains), or it may originate from a reordering algorithm applied to the sparsematrix A, as done, e.g., in [7], [50], [58]. Depending on the geometry, or on theordering algorithm used, the cardinality of sets G`, n`, may vary over a wide range,in other words, some of the square matricesA`` (which are assumed to be nonsingularthroughout the paper) may be small while others may be large. This occurs, e.g.,when the solution of a di�erential equation needs to be resolved in some subdomainswith more detail than in others. In the algorithms discussed in this paper, the n`�n`linear systems are solved by di�erent processors, and thus, if these systems have asimilar sparsity pattern, the corresponding computational e�ort also varies widely.This is usually referred to as load imbalance. Asynchronous methods like the onesstudied in this paper overcome the problem of load imbalance by continuing thecomputations with the available data; see, e.g., the numerical experiments in [34].It is useful sometimes to assume that the variables (and equations) are renum-bered so that the indices within each set G` are numbered consecutively, and thatif � 2 G`,  2 Gk with ` < k, then � � . This is not always possible in thecase of overlap, though. We will nevertheless adopt this notation, and note that allthe material covered in this paper can be shown without this additional assump-tion. We observe that only in the case that G is a partition of In, we can writexT = (xT1 ;xT2 ; : : : ;xTL) andA = 266664 A11 A12 � � � A1LA21 A22 � � � A2L... ... . . . ...AL1 AL2 � � � ALL 377775 : (2)If the set G is not a partition, but a covering, then, there are overlapping blocks, andthere are some variables belonging to more than one subvector x`, and the represen-tation (2) is no longer appropriate. We emphasize that in many iterative methods,the overlap plays an important role in qualitatively improving the convergence of themethods; see, e.g., [1], [15], [22], [25], [32], [33], [38], [40] [41], [43], [59], [61], [66].This is why we concentrate on the overlapping cases in this paper.We are ready to describe the �rst asynchronous computational model, i.e., howthe computer is actually programmed to execute its instructions. In the rest of thepaper, we refer to this model simply as asynchronous iterations.Given an initial approximation x to the solution of (1), each processor of a parallelcomputer executes the following procedure, independently of each other.



4 Models of Asynchronous Iterations wih Overlap1. determine `.2. read xk, k 6= `.3. solve (or approximate) A``x` = b` �Xk 6=`A`kxk.4. write x`.Steps 1 to 4 are repeated until some termination or stopping criterion is met.We do not discuss the stopping criterion in this paper, and instead refer thereader to [27] and the references given therein. We say that this is an asynchronousiteration since there is no synchronization between the execution of the instructionsof the processor with those of any other processor, i.e., there is no wait for data duringexecution. We emphasize that in this model, the processor reads all subvectors xk,k 6= ` in step 2 which are available before the beginning the execution of step 3.Observe that when there is overlap, if the index � belongs to more than one set G`,say, then we may have two or more di�erent values for x� at any given time.This asynchronous iteration is a generalization of the block Jacobi method. Fora description of the block Jacobi method and its convergence analysis, see any of theclassical texts, e.g., [9], [63], [67].We have presented this computational model in a very general way, so as toinclude programming di�erent types of architectures. For example, consider a dis-tributed computer with L processors, in which each processor has local memory butthere is no global memory. Then each processor has a value of ` assigned to it fromthe beginning of all computations, and step 1 is trivial. The write instruction instep 4 implies that the values of the subvector x` are broadcasted, or sent to all theother processors. Thus, the read instruction in step 2 is a local read, i.e., it readsthe values received previously, until the moment before step 3 begins. Any values ofsubvectors xk received while step 3 is executing are not used until the next iteration(the situation in which these values are used during the current iteration is consid-ered in the computational model described in Section 5). On the other hand, if thereare fewer than L processors, the processes 1 to 4 combined can be considered as atoken in a queue, and the value of ` is part of that token; see, e.g., [16], [17]. Thefree processor grabs a token from the queue, executes it, and puts it back at the endof the queue.In this general setting the computational model presented here represents the wayasynchronous iterations are programmed in most cases reported in the literature;see, e.g., [11]. In this paper we concentrate on the solution of the linear system(1), but most of our analysis applies also to the solution of nonlinear systems usingasynchronous �xed point iterations. In other words, given a nonlinear function F :Rn ! Rn, the solution of F(x) = x is obtained by a similar computational model,



Daniel B. Szyld 5where at step 3, the processor solves for x` (or its approximation) in the equationF`(x1; : : : ;x`; : : : ;xL) = x`. This model then relates to the work by many authors;see, e.g., [6], [10], [14], [26], [37], [42], [45], [47], [48], [56], [62], and the referencesgiven therein. See also further extensions in Section 6.3 First Mathematical ModelsThe �rstmathematical model analyzing the convergence of the asynchronous iterationdates from 1959. At that time there were no parallel machines, and Schechter [57]studied his method as a block counterpart to the (point) free steering iterations dueto Ostrowski [51]. Schechter explicitly considered overlapping blocks. Ostrowski[52] later studied this block version (without overlap) as well. Even though thecomputational model they had in mind was strictly sequential, having the (single-processor) computer execute the asynchronous iteration steps 1 to 4 repeatedly in asequential manner, their convergence analyses equally apply to the parallel setting.We emphasize the distinction between the mathematical models, which attempt torepresent mathematically the asynchronous iterations, i.e., the computational model,and the latter, which represent the way the computations are carried out.In order to describe the mathematical models, let i be the iteration numberassociated with the time at which the asynchronous iteration procedure is executed.To be precise, we associate to the tag i, the time at the beginning of the executionof step 2. The subvectors of x are tagged with this iteration number when they arecomputed. Thus, at the end of steps 3 and 4, xì has been computed and stored.De�ne Ni � IL = f1; : : : ; Lg as ` 2 Ni if x` is computed at the time associatedwith the tag i. Let r(k; i) be the tag of the subvector xk available at the beginningof the computation of xì (if ` 2 Ni), i.e., at step 2, xr(k;i)k , which was (previously)computed at the time associated with the tag r(k; i), is read. With this notationxr(`;i)` is the subvector x` available at the beginning of the computation of xì (if` 2 Ni). This vector is not used in the models described in this section, but it isused in a model described in Section 4. Sometimes the di�erence d(k; i) = i� r(k; i)is called a delay. If all delays are zero, i.e., if there are no delays, and if there is nooverlap, the asynchronous iteration behaves like a standard (synchronous) iterativemethod, such as, e.g., block Jacobi, etc. With this notation, the mathematical modelin [57] and [52] is as follows.



6 Models of Asynchronous Iterations wih OverlapLet an initial approximation to the solution of (1), x0 be given, then, for i = 1; : : : ;xì = 8><>: xi�1` if ` =2 Nithe solution of A``xì = b` �Xk 6=`A`kxr(k;i)k if ` 2 Ni: (3)The basic assumptions used in the mathematical models in [52], [57] are thefollowing.(i) r(k; i)� i for all k 2 IL, i = 1; : : : :(ii) The set fi j ` 2 Nig is unbounded for all ` 2 IL.(iii) limi!1r(k; i) =1 for all k 2 IL.We should mention that assumption (iii), which states that, as the iteration proceeds,iterates which lag too far behind are no longer used, is only stated implicitly in [57],while assumption (i), which states that only previously computed iterates can beused, is also only implicit in [52], [57]. Condition (ii) states that no subvector ceasesto be renewed as the iterations proceed.We say that (3), together with (i){(iii), form the basic mathematical model ofasynchronous iterations. Before we state the convergence theorems from [52], [57]associated with this mathematical model, we introduce some notation and de�nitions,following, e.g., [9], [63]. Given a vector x 2 Rn, we say that it is nonnegative(positive), denoted x � 0 (x > 0), if all components of x are nonnegative (positive).Similarly, if x;y 2 Rn, x � y means that x � y � 0. These de�nitions carryover immediately to matrices. For any matrix A = (aij) 2 Rn�n, we de�ne itscomparison matrix hAi = (�ij) by �ii = jaiij; �ij = �jaij j; i 6= j. A nonsingularmatrix A is called monotone if A�1 � O, it is called an M -matrix if it has non{positive o�{diagonal entries and it is monotone, and it is called an H-matrix, if hAiis an M -matrix. H-matrices are generalized diagonally dominant matrices; see, e.g.,[64]. The representation A = M � N is called a splitting if M is nonsingular, itis called and M -splitting if M is an M -matrix and N � O, a regular splitting ifM�1 � O and N � O, and a weak regular splitting if M�1 � O and M�1N � O.Given a set G, and appropriate norms in Rn` , for A 2 Rn�n we de�ne its type-Icomparison matrix hhAii = (��`k) 2 RL�L as ��`` = kA�1`` k�1, ��`k = �kA`kk, ` 6= k,`; k 2 IL. This name is used in [3]; see also [29], [53], [55].Theorem 3.1 [57] Let G be a covering (or a partition) of In. Let A and each of thematrices A`` be monotone, ` 2 IL. Let (�A`k) � O, ` 6= k, `; k 2 IL. Let conditions(i){(iii) hold. Then, the asynchronous method (3) converges to the solution of (1) forany initial vector x0.



Daniel B. Szyld 7We point out again that some components of the vector x, say xj , have di�erentvalues when the index j belongs to more than one set G`. It follows from Theorem 3.1that each copy of xj converges to the same value, namely vj , where v is the solution of(1). This situation is similar to the convergence of the Schwarz alternating procedurewith overlapping subdomains; see, e.g., [59].Theorem 3.2 [52] Let G be a partition of In. Let A be such that hhAii is an M -matrix. Let conditions (i){(iii) hold. Then, the asynchronous method (3) convergesto the solution of (1) for any initial vector x0.We comment briey on the proof of Theorem 3.1 in [57]. Given a �xed coveringG, the norm of a vector x 2 Rn used for the convergence analysis iskxk = LX̀=1kx`k`; (4)where k�k` is any norm in Rn` (recall that there is overlap between these subvectors).For the proof, the matrices A�1`` are embedded into n�n nonnegative matrices K` =(�ij), so that �ij = 0 if either i or j =2 G`, and the nonzero part has the correspondingelements of A�1`` . Then, nonnegative matrices of the form T` = I �K`A are shownto map the residual at one step to the one at the next step. We also note that thecorresponding theorem in [57] is more general, including in its convergence theoryunder- and overrelaxation, and regular splittings other than block Jacobi.The �rst mathematical model of asynchronous iterations with parallel machinesin mind is due to Chazan and Miranker [24]. Their model corresponds to pointmethods, i.e., L = n, and G` = f`g, ` 2 In. They mention the block methodas a simple extension, but their analysis is restricted to the nonoverlapping case.Their mathematical model is similar to (3) (in the point case), with the followingassumptions.(i0) 0 � d(k; i) for all k 2 IL, i = 1; : : : :(ii0) ` 2 Ni for some i in�nitely often for all ` 2 IL.(iii0) There exists a �xed integer d such that d(k; i) < d for all k 2 IL, i = 1; : : : :It is easy to see that conditions (i){(ii) and (i0){(ii0) are equivalent. If the sequencer(k; i) satis�es condition (ii0), or equivalently (ii), some authors call this sequenceadmissible; see, e.g., [18], [20]. In these papers, a sequence satisfying (iii0) is calledregulated. Condition (iii) is more general than (iii0) since no uniform bound d isrequired, as pointed out in, e.g., [6], [11], [21]; see also [60] for an analysis of acondition other than (iii0). Most convergence results in this paper correspond to themore general assumption (iii). We should mention though that there are modelswhere the additional assumption on uniformity is required; see, e.g., [11, Ch. 7].



8 Models of Asynchronous Iterations wih Overlap4 The Multisplitting ModelsO'Leary and White [49] introduced the multisplitting method for the parallel solutionof a system of the form (1), in which each processor computes a di�erent approxima-tion to the solution, and then a weighted average of these approximations is takenas the iterate. Only when these weights are nonzero the corresponding componentsneed to be computed. This method has been extensively studied and extended tononlinear problems, di�erential equations, and other directions; see, e.g., [18], [23],[40], [39], [54], [65]. For the multisplitting method, let A = M` � N`, ` 2 IL, besplittings, and let E` 2 Rn�n be nonnegative diagonal weighting matrices such thatLXi=1E` = I. If the weighting matrices E` consist of all zeros and ones, then, we saythat there is no overlap. There is overlap if some entries are such that 0 < (E`)jj < 1for some `; j.Multisplittings have proved to be a good mathematical tool to analyze di�erenttypes of block methods. We describe here mathematical models of asynchronousiterations based on this idea. To that end, consider weighting matrices E` withnonzeros only in diagonal entries with indices in G`, and splittings A =M` �N` sothat (M`)`i`j = a`i`j , i; j = 1; : : : ; n`, i.e., so that the M` has A`` as the `th diagonalblock. Usually,M` is taken as block diagonal. The diagonal blocks other than the `thare not relevant in these mathematical models since they do not inuence the outcomeof the computations being modeled, and they can be taken to be, e.g., the identity orthe diagonal blocks of A. With the splittings thus constructed, E`M�1` y = A�1`` y`for any vector y 2 Rn. We note that E`M�1` is therefore equal to the matrix K`used by Schechter in his proof of Theorem 3.1, and described in Section 3. With thisnotation, the hypothesis in Theorem 3.1 is that A =M` �N` are regular splittings,` 2 IL. Denote by ~x` the vector computed by the `th splitting, ` 2 IL. This occurs,e.g., in the computation by the `th processor. Observe that ~x` 2 Rn while x` 2 Rn`and in these models we consider x` as a subvector of ~x`.The �rst mathematical model of asynchronous iterations using multisplittingswas presented by Bru, Elsner and Neumann [18], using assumptions (i0){(iii0). Itsextension to the block case can be found, e.g., in [19], [20], [44]. The followingdescription of this mathematical model is not exactly the one used in these references,but it can be shown to be equivalent in the non-overlap case.



Daniel B. Szyld 9Given an initial vector x0, set ~x0̀ = x0, for ` 2 IL, then, for i = 1; : : : ;~xì = 8>><>>: ~xi�1` if ` =2 Ni(I� E`)~xr(`;i) +E`M�1` "N`  LXk=1Ek~xr(k;i)k !+ b# if ` 2 Ni: (5)As pointed out recently in [3], the model (5) (and its original formulation in [18])represents the asynchronous iterations described in Section 2 only in the case of non-overlap, i.e., when G is a partition and (E`)jj = 1, if j 2 G`, and zero otherwise.In the case of overlap, this model would represent another computational algorithm,where a convex combination of the old iterate and the new one is computed; see (5).To our knowledge this overlap case has not been implemented in practice; e.g., theexperiments in [19], [20], [44], correspond to partitions of In.The second mathematical model presented in this section is the linear counterpartto that in [3], and generalizes the models in [21], [35]. It is another attempt torepresent the asynchronous iterations in the case of overlap.Given an initial vector x0, set ~x0̀ = x0, for ` 2 IL, then, for i = 1; : : : ;~xì = 8>><>>: ~xi�1` if ` =2 NiM�1` "N`  LXk=1Ek~xr(k;i)k !+ b# if ` 2 Ni; (6)and at the end of the process, the approximation to the solution of (1) is xi =LX̀=1E`~xì .Note that in contrast to model (3), the possible di�erent values in the overlapare weighted at each step and combined. We mention here that a similar constructis present in the models studied in [11, sec. 7.7], [13], where convex combinations ofthe iterates are taken.The last model in this section is the asynchronous weighted additive Schwarzmethod (AWAS) introduced recently in [34]. It is a mathematical model which keepsL separate vectors, one for each set G` (we abuse slightly the notation and callthese vectors ~x` 2 Rn), and thus allows for di�erent values of the same componentin the overlap to be represented, just as in the discussion after Theorem 3.1. Thisis accomplished by having L separate sets of weighting matrices. In fact, one canhave separate sets of matrices in each iteration i to reect possible di�erent choicesof the overlapped variables, depending, e.g., on which one has been computed mostrecently. The weighting matrices are then Eik`, such that LXk=1Eik` = I, for ` 2 IL,



10 Models of Asynchronous Iterations wih Overlapi = 1; : : : ; see also [4], where similar weighting matrices are used. The AWAS modelis as follows.Given (possibly di�erent) initial approximations ~x0̀, ` 2 IL, for i = 1; : : :,~xì = 8>><>>: ~xi�1` if ` =2 NiLXk=1Eik`M�1k �Nk~x~r(k;i)k + b� if ` 2 Ni: (7)We emphasize that this is a mathematical model, and that the computations in(7) are not all performed in the same processor. In fact, each computationM�1k �Nk~x~r(k;i)k + b� (8)takes place in a di�erent processor, k 2 IL. Here the tag ~r(k; i) corresponds to thetime where the computation (8) is about to begin. These tags are thus di�erent thanthose in the other mathematical models, though they satisfy conditions (i){(iii) aswell. In practical implementations, it is not necessary to keep the L vectors of lengthn in memory, since only their subvectors x` of length n` have useful (non-redundant)information. Thus LX̀=1n`, and not nL memory locations su�ce to store the iterationvectors.Both models (6) and (7) were shown to be convergent under conditions (i){(iii)and additional hypotheses (e.g. on the splittings) when A is either a monotonematrix or an H-matrix. For brevity, we only reproduce the result from [34], asTheorem 4.1 below, where the notation jAj stands for a matrix whose entries arejaij j. Extensive experiments reported in [34] reveal that, in the case of overlap,computations with (7), i.e., the weighted additive Schwarz version { which trulyrepresents the asynchronous iterations, keeping separate values for the variables inthe overlap { outperforms the computations with (6), i.e., the multisplitting version.Theorem 4.1 Let the diagonal nonnegative weighting matrices Eìk be such thatLXk=1Eik` = I, for ` 2 IL, i = 1; : : : : Let conditions (i){(iii) hold. Then, for each` 2 IL, each sequence f~xìg computed by the asynchronous method (7) converges tothe solution of (1) for any set of initial vectors ~x0̀; ` 2 IL, in the following two cases.(a) A�1 � O and each splitting A =M` �N` is weak regular, ` 2 IL.(b) A is an H-matrix and hAi � hM`i � jN`j, ` 2 IL.The proof of Theorem 4.1, as well as those in [3], [35] are based on extensions ofa convergence result of El Tarazi [28], like the following.



Daniel B. Szyld 11Theorem 4.2 [35] Let G be a covering (or a partition) of In. Let S(i) be a sequenceof operators on Rn having a common �xed point x�. Let k�k` be a norm on Rn` ; ` 2 IL.Let a 2 RL; a > 0 and denote k � ka the weighted max-norm on Rn given bykxka = max`=1;���;Lf 1a` kx`k`g: (9)For all i = 1; 2; : : :, assume that there exists a constant � 2 [0; 1) such thatkS(i)x� x�ka � �kx� x�ka for all x 2 Rn:Assume further that conditions (i){(iii) hold. Then the asynchronous iterationxì = 8<: xi�1` if ` 62 NiS(i)`��(xr(1;i)1 )T ; : : : ; (xr(L;i)L )T�T� if ` 2 Ni;i = 1; 2; : : :, converges to x� for any initial guess x0.We point out that, as a consequence of using Theorem 4.2, the results in the lastfew years, both for linear and nonlinear systems, all use the weighted max norm (9),as compared to the norm (4), say.5 Totally Asynchronous IterationsWe present a computational model in which the (components of the) subvectors (orvectors) are read only when needed. This implies that these might be newer versionsthan those at the beginning of the iteration as in the asynchronous iterations ofSection 2.Given an initial approximation x to the solution of (1), each processor of a parallelcomputer executes the following procedure, independently of each other.1. determine `, and set y b`.2. for each k 2 IL, k 6= `, read xk, and compute y y �A`kxk.3. solve (or approximate) A``x` = y.4. write x`.Steps 1 to 4 are repeated until some termination or stopping criterion is met.We emphasize the distinction between the step 2 here and the computationalmodel in Section 2. New information from other processors keeps arriving while thecomputation of the right-hand side progresses, and some components of the subvectorxk might be di�erent when used than at the beginning of the computation of the



12 Models of Asynchronous Iterations wih Overlapstep. In other words, included in this computational model are models in whichpart of the data is read during the computational steps. For example, the modelmight include reads of some components of subvectors, which become available duringthe calculations, i.e., partial updatings. Following [35], we call this model totallyasynchronous iterations.It follows that this totally asynchronous iterations model reduces to the asyn-chronous iterations model of Section 2, e.g., when no new information arrives toprocessor `, say, between the beginning of step 1 and step 3. This model can beexpected to converge faster, since newer information is incorporated as it becomesavailable. However, there are cases, e.g., in the two-stage methods mentioned inSection 6, where as the newer information arrives, more computation is required.In these cases, the possible advantage of this formulation depends, e.g., on the pro-portion of this new computation vis a vis the overall computation, and thus on thespeci�c problem being solved; see the discussion in [35, Section 4].Mathematical models representing totally asynchronous iterations can be foundin [21], [35], and the recent paper by Miellou, El Baz and Spiteri [46]. In this lastreference, it is shown, under the hypothesis that the splittings are M -splittings,that if the initial guess is a supersolution, i.e., if x0 � v, then the sequence ofapproximations produced by the algorithm is a monotonically decreasing sequenceconverging to the solution of (1). It is also the only reference we know of in whichcomputational results with totally asynchronous iterations are reported. The proofsin the other references apply to any initial vector, and to more general splittings,and use extensions of a very general theorem due to Frommer [30], where the spacesdo not need to be normed, but just to be topological product spaces with somecompatibility between the topology and the partial order.6 Final CommentsThe computational and mathematical models collected in this paper apply to moregeneral cases. Two-stage methods are those in which the linear systems in step 3of either the asynchronous or the totally asynchronous iteration is approximated byseveral iterations of an inner iterative method, e.g., associated with splittings (inRn`) A`` = P` �Q`, or in the case of multisplitting models, with inner splittings (inRn)M`` = F`�G`; see, e.g., [21], [34], [35], [44]. We note that a more general totallyasynchronous iteration model applies to the two-stage methods, since new data canbe read in each of the inner iterations if available; see [21], [35]. Another extensionof the models discussed in this paper relates to di�erent relaxation alternatives,



Daniel B. Szyld 13including multiparameter versions; see, e.g., [2], [5], [20], [21], [36], [44]. Many of theconvergence theorems mentioned in this paper apply to the two-stage methods andto the multiparameter versions, by using the induced splitting of the correspondingiteration matrix; see, [8], [34]. Finally, we mention two surveys by Bertsekas andTsitsiklis [12] and Frommer [31], where several aspects of asynchronous iterationsare discussed.Acknowledgements. We thank Michele Benzi, Andreas Frommer, Violeta Mi-gall�on, and Jos�e Penad�es for carefully reading an earlier draft. Their comments havehelped improve our presentation.References[1] G�otz Alefeld, Ingrid Lenhardt, and G�unter Mayer. On multisplitting methodsfor band matrices. Numerische Mathematik, 75:267{292, 1997.[2] Zhong-Zhi Bai. Variants of the synchronous and asynchronous matrix multi-splitting unsymmetric AOR methods. Journal of Fudan University (NaturalScience), 34:139{148, 1995.[3] Zhong-Zhi Bai, Violeta Migall�on, Jos�e Penad�es, and Daniel B. Szyld. Block andasynchronous two-stage methods for mildly nonlinear systems. Research Report97{51, Department of Mathematics, Temple University, Philadelphia, Pa., May1997.[4] Zhong-Zhi Bai, Jia-Chang Sun, and De-Ren Wang. A uni�ed famework for theconstruction of various matrix multisplitting iterative methods for large sparsesystems of linear equations. Computers & Mathematics with Applications, 32:51{76, 1996.[5] Zhong-Zhi Bai, De-Ren Wang, and D.J. Evans. Models of asynchronous parallelmultisplitting relaxed iterations. Parallel Computing, 21:565{582, 1995.[6] G�erardM. Baudet. Asynchronous iterative methods for multiprocessors. Journalof the Association for Computing Machinery, 25:226{244, 1978.[7] Michele Benzi, Hwajeong Choi, and Daniel B. Szyld. Threshold ordering forpreconditioning nonsymmetric problems. In G. Golub et al., editors, Proceedingsof the Workshop on Scienti�c Computing 97 { Hong Kong. Lecture Notes inComputer Science, pages 159{165. Springer, 1997. To appear.
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