
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of
the Least Squares Problem

R. A. Renaut∗

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA

The linear least squares problem, minx ‖Ax−b‖2, is solved by applying a multisplitting(MS) strategy in which
the system matrix is decomposed by columns intop blocks. Theb andx vectors are partitioned consistently
with the matrix decomposition. The global least squares problem is then replaced by a sequence of local
least squares problems which can be solved in parallel by MS. In MS the solutions to the local problems are
recombined using weighting matrices to pick out the appropriate components of each subproblem solution.
A new two-stage algorithm which optimizes the global update each iteration is also given. For this algorithm
the updates are obtained by finding the optimal update with respect to the weights of the recombination. For
the least squares problem presented, the global update optimization can also be formulated as a least squares
problem of dimensionp. Theoretical results are presented which prove the convergence of the iterations.
Numerical results which detail the iteration behavior relative to subproblem size, convergence criteria and
recombination techniques are given. The two-stage MS strategy is shown to be effective for near-separable
problems. © 1998 John Wiley & Sons, Ltd.

KEY WORDS least squares;QRfactorization; iterative solvers; parallel algorithms; multisplitting

1. Introduction

We consider the solution of the overdetermined system of linear equations

Ax = b (1.1)

whereA is anm × n (m ≥ n) real matrix of rankn andx andb are vectors of lengthn.
Direct solutions of this system can be obtained by a least squares algorithm for

min
x∈5n

||Ax − b||2 (1.2)

∗ Correspondence to R. A. Renaut, Department of Mathematics, Arizona State University, Tempe, AZ 85287-
1804, USA.

CCC 1070–5325/98/010011– 21 $17.50 Received 25 June 1995
©1998 John Wiley & Sons, Ltd. Revised 1 May 1997

12 R. A. Renaut

via theQR factorization ofA [9]. Typical methods for computing theQR decomposition
use Householder transformations, Givens transformations, or the Gram–Schmidt process.
One possible approach to the parallelization of these least squares algorithms therefore
involves the determination of parallel algorithms for orthogonal transformations [4].

Another straightforward method symmetrizes (1.1) by forming the normal equations

ATAx = ATb (1.3)

This system can be solved directly using Gaussian elimination or iteratively using any stan-
dard method such as conjugate gradients or a Krylov-subspace algorithm [1]. Parallelization
of these algorithms can proceed at the matrix operation level, in which appropriate data
mapping allows for efficient realizations of matrix–vector update operations [15].

Each of the parallelization strategies mentioned above has the advantage that all con-
vergence characteristics of the serial algorithm are maintained because the serial algorithm
itself is not modified. On the other hand, considered separately, each detail of the algorithm
may pose conflicting demands for efficient parallelism. Also, the approach is potentially
very time intensive because of lack of portability across architectures.

The alternative approach considered here is to develop new algorithms which have
great potential for parallelism, are essentially architecture-independent algorithms and use
as much serial expertise as possible. The multisplitting (MS) philosophy introduced by
O’Leary and White [14] for the solution of regular systems of equations, meets both goals
and could be applied at the system level for the solution of the normal equations (1.3). A
direct implementation, however, requires the formation of the operatorATA, which is not
desirable. Instead we propose least squares MS algorithms for the solution of (1.2). Specif-
ically, MS is an iterative technique which uses domain partitioning to replace a large-scale
problem by a set of smaller subproblems, each of which can be solved independently in par-
allel. The success of MS relies on an appropriate recombination strategy of the subproblem
solutions to give the global solution.

This paper presents three least squares (LS) algorithms based on the MS approach;

(i) an LS algorithm with a standard MS approach to solution recombination,
(ii) an iterative refinement implementation of the LS algorithm,

(iii) a two-stage MSLS algorithm which solves a second LS problem to determine the
optimal weights at the recombination phase.

Theoretical properties of these algorithms are determined and an estimate of their rela-
tive parallel computational costs, ignoring communication, are presented. A performance
evaluation via numerical implementation is also provided.

The format of the paper is as follows. In Section 2 we review the linear MS algorithm
introduced in [14]. The new algorithms designed for the least squares problem are also
presented and estimates of their computational costs are provided. A theoretical analysis
of the convergence properties of the algorithms is detailed in Section 3. Results of some
numerical tests are reported in Section 4. Finally, conclusions and suggestions for future
directions of the research are discussed in Section 5.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 13

2. Description of multisplitting

2.1. Multisplitting forAx = b

Iterative methods based on a single splitting,A = M −N , are well known [16]. Multisplit-
tings generalize the splitting to take advantage of the computational capabilities of parallel
computers. A multisplitting ofA is defined as follows:

Definition 2.1. Linear multisplitting (LMS). Given a matrixA ∈ 5n×n and a collection of
matricesM(j), N(j), E(j) ∈ 5n×n, j = 1 : p, satisfying

(i) A = M(j) − N(j) for eachj , j = 1 : p,
(ii) M(j) is regular,j = 1 : p,

(iii) E(j) is a non-negative diagonal matrix,j = 1 : p and
∑p

j=1 E(j) = I .

Then the collection of triples(M(j), N(j), E(j)), j = 1 : p is called a multisplitting ofA
and the LMS method is defined by the iteration:

xk+1 =
p∑

j=1

E(j)(M(j))−1(N(j)xk + b), k = 1, . . . (2.1)

The advantage of this method is that at each iteration there arep independent problems
of the kind

M(j)yk
j = N(j)xk + b, j = 1 : p (2.2)

whereyk
j represents the solution to the local problem. The work for each equation in (2.2) is

assigned to one (or a set of) processor(s) and communication is required only to produce the
update given in (2.1). In general, some (most) of the diagonal elements inE(j) are zero and
therefore the corresponding components ofyk

j need not be calculated. If theyk
j are disjoint,

j = 1 : p, the method corresponds to block Jacobi and is called non-overlapping. Then,
the diagonal matricesE(j) have only zero and one entries. For overlapped subdomains the
elements inE(j) need not be just zeros and ones but Frommer and Pohl [7] showed that
the benefit of overlap is the inclusion of extra variables in the minimization for the local
variables, and that the updated values on the overlapped portion of the domain should not
be utilized, i.e., the weights are still zeros or ones.

Before we continue to develop the MS approach for the solution of the least squares
problem it is useful to realize that MS can be seen as a domain decomposition algo-
rithm, in which the update given by (2.2) only provides an updated solution for a por-
tion of the domain. Specifically, the variable domainx ∈ 5n is partitioned according to
x = (x1, x2, . . . , xp)T, where each subdomain hasxi ∈ 5ni and

∑p

i=1 ni = n, without
overlap of subdomains. The solutionyk+1

j is then the solution with updated values only on

thej th portion of the partition. The same idea is applied to define a least squares multisplit-
ting (LSMS) approach.

2.2. Linear least squares

For (1.2) the matrixA is partitioned into blocks of columns consistently with the decom-
position ofx into blocks asA = (A1, A2, . . . , Ap), where eachAi ∈ 5m×ni . This is not
unlike the row projection methods as described, for example, in [3], except that there the

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

14 R. A. Renaut

decomposition ofA is into blocks of rows. The two approaches are not equivalent. With
the column decompositionAx = ∑p

i=1 Aixi (1.2) can be replaced by the subproblems

min
y∈5ni

||Aiy − bi(x)||2, 1 ≤ i ≤ p

wherebi(x) = b−∑
j 6=i Ajxj = b−Ax +Aixi . Clearly each of these subproblems is also

a linear least squares problem, amenable to solution byQR factorization of submatrixAi .
Equivalently, denote the solution at iterationk by xk = (xk

1, xk
2, . . . , xk

p), then the solution
at iterationk + 1 is found from the solution of the local subproblems

min
yk+1
i

∈5ni

||Aiy
k+1
i − bi(x

k)||, 1 ≤ i ≤ p (2.3)

according to

xk+1 =
p∑

i=1

αk+1
i x̄k+1

i (2.4)

The updated local solution to the global problem is given by

x̄k+1
i = (xk

1, xk
2, . . . , xk

i−1, y
k+1
i , xk

i+1, . . . , x
k
p) (2.5)

where the non-negative weights satisfy
∑p

i=1 αk+1
i = 1 and the solutions of the subproblems

(2.3) are denoted byyk+1
i . This update equation is still valid for overlapped domains with

the one–zero weighting scheme, except that the notation has to be modified in (2.3) to
indicate that (2.3) is solved with respect to a larger block and thatyk+1

i in (2.5) is the update
restricted to the local domain.

For blocki of (2.4)

xk+1
i = (αk+1

i x̄k+1
i)i +

(p∑
j=1
j 6=i

αk+1
j x̄k+1

j

)
i

= αk+1
i yk+1

i +
p∑

j=1
j 6=i

αk+1
j xk

i (2.6)

= αk+1
i yk+1

i + (1 − αk+1
i)xk

i

This is completely local and can be rewritten as

xk+1
i = xk

i + αk+1
i (yk+1

i − xk
i) (2.7)

= xk
i + αk+1

i δk+1
i

where nowαk+1
i δk+1

i is the step taken on partitioni. The update ofbi(x
k) in (2.3) can then

be expressed as:

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 15

bi(x
k+1) = bi(x

k) −
p∑

j=1
j 6=i

αk+1
j Aj δ

k+1
j (2.8)

= bi(x
k) −

p∑
j=1
j 6=i

αk+1
j Bk+1

j

whereBk+1
j = Ajδ

k+1
j . The overlapped update ofbi(x

k+1) follows similarly but does
require communication. The basic LSMS algorithm usingp processes follows:

Algorithm 2.1. LSMS

For all processesi, 1 ≤ i ≤ p,
calculateQiRi = Ai ,
initialize y0

i = x0
i , k = 0, α0

i = 0, αk
i = α = 1

p
, bi(x

0) = b.
While not converged,

k = k + 1
calculateAiδi = Bi ! Matrix vector update,
communicateBi to all processors ! Global communication,
updatebi via (2.9).
Find yi to solve (2.3) ! Solve local least squares,
δi = yi − xi

xi = xi + αδi ! Updatexi ,
test for convergence locally,
communicate convergence result to all processors,

end while.
End

This algorithm is highly parallel and completely load-balanced when the problem size
is the same for each process. For the overlapped case, modifications of the algorithm are
necessary, but because of the zero–one weightings used, these modifications are minor.

Testing for convergence can be carried out either locally or globally. In the former case
it is only necessary to share a logical variable with all the other processes. Otherwise the
vectorx must be accumulated and a global check performed. Observe that this algorithm is
presented as a slave-only model. A master–slave model requires only minor modification.

From (2.9) and defining the residualr = b − Ax

r(xk+1) = r(xk) −
p∑

j=1

αk+1
j Aj δ

k+1
j (2.9)

it is easy to see that iterative refinement requires only a minor modification of Algorithm 2.1.
Specifically, after the first iteration, the update ofbi by (2.9) can be replaced by the update
of r from (2.9) and in the update (2.7) we useδk+1

i = yk+1
i . The communication and

computation costs are unchanged, but the local least squares problem (2.9) is replaced by

min
yk+1
i

∈5
ni

||Aiy
k+1
i − r(xk)||2

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

16 R. A. Renaut

for which the right-hand side is now the same for all subproblems. This algorithm is the MS
analog of the iterative refinement procedure for least squares introduced by Golub [8]. In
light of the investigation by Higham [13], and to give a fair comparison between methods,
we have chosen to implement the iterative refinement (LSMSIR) using single precision
residuals. Golub and Wilkinson [10] revealed, however, that the procedure is satisfactory
only when the true residual vector is sufficiently small. We might expect, therefore, that
LSMSIR will not offer improvement compared with LSMS. This is confirmed by the nu-
merical experiments presented in Section 4.

Equation (2.7) suggests that convergence might be improved by use of a global update us-
ing a line search procedure. In particular, in [18] it was suggested that one choice would be to
setαk+1

i = αi = 1 which amounts to the updatexk+1
i = yk+1

i . Another improvement sug-
gested employs a one dimensional line search dependent onα = αk+1

i , or ap-dimensional
minimization of the residual over the parameters{αk+1

i , 1 ≤ i ≤ p}. In the latter case this
can be formulated as a least squares minimization

min
α∈5

p
||Dα − r(xk)||2 (2.10)

whereD ∈ 5m×p has columnsdk+1
j = Ajδ

k+1
j . Forp << n this represents non-parallel

overhead of a least squares solve, requiring the formation of theQRfactorization ofD, but
it has the potential to improve the speed of convergence of the iteration.

Algorithm 2.2. Optimal recombination ORLSMS

For all processorsi, 1 ≤ i ≤ p

calculateQiRi = Ai ,
initialize xi , k = 1,
calculateAixi = Bi ,
formbi via (2.9) andr = bi − Bi ,
find yi to solve (2.3)
δi = yi − xi .
While not converged

calculateAiδi = di

communicatedi to all processors
calculateQDRD = D and solve (2.10) forα
updatexi = xi + αiδi

test convergence
updateBi = Bi + αidi

communicateBi to all processors
formbi via (2.9) andr = bi − Bi

find yi to solve (2.3)
δi = yi − xi ,

end while.
End

Note that in this version of the algorithm we have employed a redundant update in which
every process solves the outer least squares problem forα. This does have the advantage

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 17

that each process can keep a record of the global update, provided that the initial guess
is known to each process. The per iteration communication cost is now two global vector
exchanges. Hence, the per iteration communication costs are twice those without the optimal
recombination. Observe, also, theORalgorithm can be modified to act on theIR algorithm.
Again a master–slave mode of the algorithm follows in a straightforward manner.

2.3. Computation performance analysis

We have already remarked on the communication costs of the algorithms presented in
the previous section. Moreover, our intent here is to evaluate the potential parallelism in
these MS algorithms, without consideration of communication bandwidths, cache size or
other architecture-dependent factors. Therefore, we do have to define a measure of parallel
efficiency. To do this we estimate to the highest order the computation costs associated with
each algorithm as compared with a direct solve by the least squares solution of the whole
system. We make an assumption that theQR factorization is calculated by Householder
transformations, which are a little cheaper than the Givens rotations.

Serial cost of theQRsolution of (1.2) is given by

CS = 2n2(m − n/3) + mn + n2

where the first term is for the determination ofR, the second for the update ofb and the
final for the back substitution to givex. The per process cost for Algorithm 2.1 is

CP = 2n2
i (m − ni/3) + K(2mni + n2

i)

whereK is the total number of iterations required to achieve a specified convergence
criterion. The first term represents the formation of theQRfactorization ofAi . Costs to first
order inm or n are ignored. WhenIR is incorporated, the costs are unchanged, provided
the residual is calculated to the same precision as the remainder of the operations.

Algorithm 2.2 does have a basic iteration cost that is greater because of theQR factor-
ization ofD. Hence in this case

CPOR = 2n2
i (m − ni/3) + K(2mni + n2

i + 2p2(m − p/3) + mp + p2)

The percentage parallel efficiency achieved is given by

E = CS × 100

CP × p
(2.11)

wherep is the number of processes used in the calculation. Moreover, for theORalgorithms
CP is replaced byCPOR. Measurements of these efficiencies are given in our presentation
of the numerical results. Note that when overlap is introduced into the systems, the formulae
are still valid but withni replaced byni = n/p + oi whereoi determines the amount of the
overlap.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

18 R. A. Renaut

3. Convergence

3.1. Convergence of the linear LSMS algorithm

In order to investigate the convergence of Algorithm 2.1 we need to determine the linear
iterative scheme satisfied by the global updatexk+1. We shall assume that the system matrix
A in (1.1) has full rank so that the solution to (1.2) exists and is unique.

Because the matrixA is of full column rank, so are the submatricesAi . Therefore the
solution of the least squares problem (2.3) exists, is unique and is given by

yi = (AT
i Ai)

−1AT
i b −

p∑
j=1
j 6=i

(AT
i Ai)

−1AT
i Ajx

k
j

Hence theith component of the global update (2.4) can be written

xk+1
i =

p∑
j=1

Cijx
k
j + αi(A

T
i Ai)

−1AT
i b

where

Cij =
{

(1 − αi)Ini
i = j

−αi(A
T
i Ai)

−1AT
i Aj i 6= j

(3.1)

HereIni
is the identity matrix of orderni , the matricesCij are theij blocks of a matrix

C, with block sizeni × nj , andC ∈ 5n×n, consistent withx ∈ 5n. Equivalently, (2.4)
becomes

xk+1 = Cxk + b̃ (3.2)

whereb̃i = αi(A
T
i Ai)

−1AT
i b. Moreover,C = C(α), so that convergence depends on the

parameterα.
It is easily seen that iterative refinement for Algorithm 2.1 leads exactly to (3.2). The con-

vergence behavior of both algorithms is thus, the same. They differ only in implementation
and, consequently, effects of finite precision arithmetic.

Theorem 3.1. The iterative scheme defined by (3.2) withαi = α = 1 is a block Jacobi
iterative scheme for the solution of the normal equations (1.3).

Proof
Setα = 1 in (3.1). Then it is clear that the equivalent form of (3.2) is

Mxk+1 = Nxk + b̄ (3.3)

whereM is a diagonal matrix with entriesAT
i Ai , N is given by

Nij =
{

0 i = j

−AT
i Aj i 6= j

andb̄i = AT
i b. Therefore (3.2) solves the equation

(M − N)x = b̄

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 19

and from (3.1),M − N = ATA andb̄ = ATb.

Corollary 3.1. The iterative scheme defined by (3.2) for fixedα, 0 < α < 1, is a relaxed
block Jacobi scheme for the solution of the normal equations (1.3).

The condition for the convergence of (3.2) whenα = 1 is now immediate because the
system matrixATA is symmetric and positive definite (SPD), (see Corollary 5.47 in Chapter
7 of [2]).

Theorem 3.2. The iteration defined by (3.2) withαi = α = 1 converges for any initial
vectorx0 if and only ifM + N is positive definite.

Moreover, the Gauss–Seidel implementation of Algorithm 2.1 necessarily converges
because for successive-over-relaxation (SOR) convergence is given by Corollary 5.48 in
Chapter 7 of [2].

Theorem 3.3. The block SOR method converges for all0 < α < 2.

It is now helpful to introduce the notationµ = ρ(M−1N), the spectral radius ofM−1N ,
µ̃ ∈ σ(M−1N), an element in the spectrum ofM−1N andµ∗ the smallest eigenvalue of
M−1N .

Lemma 3.1. All the eigenvalues̃µ of M−1N satisfyµ̃ < 1.

Proof
The system matrix defined by the normal equations is SPD.M is also SPD and the iteration
with α = 1 is symmetrizable, i.e., there exists a matrixW , detW 6= 0, such thatW(I −
M−1N)W−1 is SPD [11]. In this case a choice forW isW = M1/2. Therefore, by Theorem
2.2.1 in [11] the eigenvalues ofM−1N are real and satisfỹµ < 1.

Theorem 3.4. The relaxed iteration converges for any sufficiently small positiveα satis-
fying

0 < α <
2

1 − µ∗

Proof
The result follows from the observation that the iteration matrix of the relaxed block Jacobi
iteration is given by

H = (1 − α)I + αM−1N

Therefore ifλ ∈ σ(H), we haveλ = 1 − α(1 − µ̃), and ρ(H) < 1 if and only if
0 < α < 2

1−µ∗ .

By Theorem 3.2ρ(M−1N) < 1 whenM + N is positive definite and therefore we can
concludeµ∗ > −1 in the above to give:

Corollary 3.2. The relaxed block Jacobi iteration converges ifM + N is positive definite
and0 < α < 1.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

20 R. A. Renaut

Remark 1
The row projection methods [3] use block algorithms to solve the set of equations

{
AATy = b

x = ATy

with and without preconditioning. On the other hand, the column decomposition introduced
here solves the normal equations.

3.2. Convergence of the ORLSMS algorithm

Unlike Algorithm 2.1 the convergence of Algorithm 2.2 cannot be investigated by the deter-
mination of a linear iteration forx. Rather, Algorithm 2.2 needs to be seen as a procedure for
the minimization of the non-linear functionf (x) = ||Ax −b||22. As such Algorithm 2.2 can
then be interpreted as a modification of the parallel variable distribution (PVD) algorithm
for non-linear functions,f (x), introduced by Ferris and Mangasarian [6].

In the PVD, minimization off occurs in two stages, a parallel stage and a synchronization
stage. The former corresponds to the determination of the parallel solution of the local
problem (2.3) but with the additional local update of the non-local variables by a scaling
of the search direction for those variables. These search directions are a set of vectors
dk for iteratesxk, usually given bydk = − ∇f (xk)

||∇f (xk)|| . A version for which these search

directions are taken to be zero is denoted by PVD0. In the synchronization stage,xk+1 is
updated via the minimization off , but now with respect to the weightings for the linear
combination ofxk with the local solutions̄xk+1

i . The minimization is constrained by the
requirement that the updatexk+1 is a strictly convex combination ofxk and thex̄k+1

i . This
ensuresf (xk+1) < f (xk) and hence a decrease in the objective function each iteration.
Convergence of the PVD algorithm forf ∈ LC1

K(5n) is given by Theorem 2.1 in [6]. Here
the setLC1

K(5n) is the set of functions with Lipschitz continuous first partial derivatives
on 5n with Lipschitz constantsK.

Theorem 3.5. For a bounded sequence{dk}, either the sequence{xk+1} terminates at a
stationary pointxk̄, i.e., a point at which∇f (x) = 0, or each of its accumulation points is
stationary andlimk→∞ ∇f (xk) = 0.

The proof of this theorem employs not only the requirement thatf has a Lipschitz
continuous gradient, that the sequence{dk} is bounded, but also that in the synchronization
stepf (xk+1) ≤ 1

p

∑p

l=1 f (x̄k+1
l), because of the convex update ofxk.

In Algorithm 2.2 the search directions are zero, and thus, ORLSMS is actually a version
of PVD0. Furthermore, forf (x) = ||Ax − b||22 we have

||∇f (y) − ∇f (x)||22 = ||2ATA(y − x)||22
andf ∈ LC1

K(5n) with K = 2ρ(ATA). To prove convergence for ORLSMS it therefore
only remains to check that the modification of the synchronization stage employed in
Algorithm 2.2 satisfies the assumptionf (xk+1) ≤ 1

p

∑p

l=1 f (x̄k+1
l) used in the proof

of Theorem 3.5 But at synchronization in Algorithm 2.2,x is updated by (2.4), for which
r(x̄k+1

l) = f (x̄k+1
l) < r(xk). Therefore, this condition is necessarily satisfied, otherwise

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 21

1
p

∑p

l=1 f (x̄k+1
l) <

∑p

l=1 αk+1
l f (x̄k+1

l) and the minimum is not found, contradicting the
minimization of the outer stage. Thus, Theorem 3.5 applies for the ORLSMS algorithm.

Furthermore, the functionf (x) = ||Ax − b||22 is strongly convex,

f (y) − f (x) − ∇f (x)(y − x) ≥ K

2
||y − x||22, ∀x, y ∈ 5n

whereK = 2ρ(ATA). Therefore, the linear convergence result of Ferris and Mangasarian
[6] also applies.

Theorem 3.6. The sequence{xk} defined by the algorithm ORLSMS converges linearly to
the unique solutionxLS of (1.2) at the linear root rate

||xk − x|| ≤
(

f (x0) − f (xLS)

ρ(ATA)

)1/2(
1 − 1

p

(
K

K1

)2)k/2

whereK1 is the Lipschitz constant for∇lf (xl).

On the contrary, however, when we seek to apply Theorem 3.5 to the LSMS algo-
rithm, we do not have an update at the synchronization stage for which it is necessary that
f (xk+1) ≤ f (xk). In particular, this reduction in the objective function is just the reduction
in the residual function and we see, not unexpectedly, that when we determine the require-
ment for this decrease we obtain exactly the restriction onα as given by Theorem 3.4 In
order to force convergence, the implementation used actually updatesx, either as given by
(2.7) or, when this update does not lead to a decrease in the objective function, the update
to x is taken as the local solutionxi which leads to the minimum off for that iteration.
Therefore, the convergence theory for the PVD is useful in this case for determining the
weakness of the relaxed splitting and immediately suggests the modification required to
force convergence.

4. Numerical results

Here, numerical results of tests of the algorithms in Section 2 are presented for three ex-
amples. Further results can be found in [12] and [17]. The first example comes from a
table-flatness problem and generates a structured matrix. This is one of the structured ma-
trices used by Duff and Reid in [5], and for the case we chose generates a matrix of size
840× 484 with 2 518 non-zero entries, which is reasonably conditioned, condition number
≈ 105. Results presented for this test case are referred to as results for measured data. To
indicate how the algorithms perform for sparse matrices with arbitrary structure no attempt
was made to fit the splitting to the structure of the problem by reordering the unknowns.
For dense matrices, we used two matrices of size 600× 500 with random entries gener-
ated according to a normal probability distribution and a uniform probability distribution,
respectively. The condition numbers of these matrices were approximately 20 and 398, re-
spectively. The results presented for these matrices are referred to as results for normal and
uniform data, respectively. Note, all matrices used in the evaluation were reasonably well
conditioned.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

22 R. A. Renaut

Table 1. Comparison of four methods, for tolerance 10T E , T E = −3 andT E = −5. Measured
data

Algorithm LSMS LSMSIR ORLSMS ORLSMSIR

P O T E KR KE KR KE KR KE KR KE

2 0 −3 12 49 12 50 6 23 6 23
0 −5 31 86 31 89 14 41 14 43

3 0 −3 15 70 15 70 6 23 6 23
0 −5 45 91 45 169 15 43 15 43

4 0 −3 19 89 19 89 6 23 6 23
0 −5 57 146 57 N 15 43 15 43

5 0 −3 22 106 22 106 6 23 6 23
0 −5 69 206 69 406 15 45 15 43

6 0 −3 25 123 25 123 6 21 6 21
0 −5 80 188 80 252 15 41 15 43

7 0 −3 28 137 28 137 6 23 6 23
0 −5 90 280 90 281 15 43 15 43

8 0 −3 30 84 30 84 6 232 6 230
0 −5 75 N 75 N 15 N 14 N

Table 2. Comparison of four methods, for tolerance 10T E , T E = −3 andT E = −5. Normal
data

Algorithm LSMS LSMSIR ORLSMS ORLSMSIR

P O T E KR KE KR KE KR KE KR KE

2 0 −3 47 172 47 172 35 129 35 129
−5 220 489 220 599 126 343 127 355

3 0 −3 58 243 58 243 43 183 43 183
−5 386 884 384 1 072 198 564 196 561

4 0 −3 69 287 69 287 47 213 47 213
−5 519 1 272 525 N 233 682 235 679

5 0 −3 75 316 75 316 50 230 50 230
−5 668 1 703 665 2 036 262 760 261 756

6 0 −3 80 339 80 339 51 245 51 245
−5 786 2 012 789 2 427 284 794 285 816

7 0 −3 85 343 85 343 52 249 52 249
−5 877 N 890 N 290 812 293 848

8 0 −3 90 358 90 358 53 255 53 255
−5 992 N 992 N 300 878 298 884

A representative selection of the results is given in Tables 1–7. The notation is as follows:

P—number of processors
O—overlap between domains
T E—10T E is the tolerance
KR—number of iterations to convergence 10T E in l2 norm of the relative error
KE—number of iterations to convergence 10T E in l2 norm of the relative residual
N—convergence was not achieved to this tolerance after 2 500 iterations

Tables 1–3 present a comparison of the four algorithms without overlap at tolerances
10−3 and 10−5. Tables 4–7 show how the algorithms perform when overlap is incorporated.
All calculations are in single precision.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 23

Table 3. Comparison of four methods, for tolerance 10T E , T E = −3 andT E = −5. Uniform
data

Algorithm LSMS LSMSIR ORLSMS ORLSMSIR

P O T E KR KE KR KE KR KE KR KE

2 0 −3 42 158 42 158 30 109 30 109
−5 218 1 948 217 2 158 130 N 130 N

3 0 −3 59 204 59 204 42 159 42 163
−5 349 N 351 N 255 N 300 N

4 0 −3 70 247 70 247 51 201 51 205
−5 481 N 479 N 312 N 317 N

5 0 −3 75 248 75 248 53 336 53 368
−5 586 N 587 N 625 N 639 N

6 0 −3 86 268 86 268 62 391 62 405
−5 689 N 690 N 527 N 568 N

7 0 −3 98 280 98 280 70 437 70 315
−5 745 N 739 N 521 N 560 N

8 0 −3 99 294 99 294 72 361 72 333
−5 889 N 898 N 599 N 610 N

Table 4. Effect of overlap on convergence for ORLSMS and ORLSMSIR and error convergence
10−4. Measured data

Splitting

Algorithm O 2 3 4 5 6 7 8

0 31 33 33 33 33 33 2 193
ORLSMS 10 31 33 33 33 31 33 310

20 31 33 33 33 31 31 321
30 33 33 33 33 33 31 31

0 31 33 33 33 33 33 2 180
ORLSMSIR 10 31 33 33 33 31 33 308

20 31 33 33 33 31 31 323
30 33 33 33 33 33 31 31

Table 5. Effect of overlap on convergence for ORLSMS and ORLSMSIR and residual
convergence 10−4. Measured data

Splitting

Algorithm O 2 3 4 5 6 7 8

0 10 10 10 10 10 10 9
ORLSMS 10 10 10 10 10 10 10 19

20 10 10 10 10 10 10 20
30 10 10 10 10 10 10 10

0 10 10 10 10 10 10 9
ORLSMSIR 10 10 10 10 10 10 10 19

20 10 10 10 10 10 10 20
30 10 10 10 10 10 10 10

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

24 R. A. Renaut

Table 6. Effect of overlap on convergence for ORLSMS and ORLSMSIR and error convergence
10−4. Uniform data

Splitting

Algorithm O 2 3 4 5 6 7 8

0 N 717 920 N 1 599 1 396 1 475
ORLSMS 10 104 273 369 470 428 504 561

20 117 246 304 334 339 461 490
30 136 219 260 315 369 400 407

0 N N N 2 248 2 159 1 896 1 857
ORLSMSIR 10 97 279 342 491 432 498 575

20 122 250 312 324 339 448 477
30 124 202 260 311 365 386 396

Table 7. Effect of overlap on convergence for ORLSMS and ORLSMSIR and residual
convergence 10−4. Uniform data

Splitting

Algorithm O 2 3 4 5 6 7 8

0 72 105 144 162 191 201 227
ORLSMS 10 55 107 96 109 112 121 135

20 66 64 97 103 106 109 121
30 56 82 91 104 104 110 112

0 72 105 145 162 192 201 227
ORLSMSIR 10 57 107 96 109 112 121 136

20 66 80 97 100 106 109 121
30 56 83 91 104 103 111 110

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 25

In summary the numerical results show:

(i) Convergence for a minimum residual solution is achieved more quickly than for a
minimal error solution.

(ii) Iterative refinement does not improve the convergence rates, for either Algorithm 2.1
or 2.2, confirming the observation of Golub and Wilkinson [10].

(iii) Algorithm 2.2 has generally much better convergence properties for a minimum resid-
ual solution than Algorithm 2.1 because of the optimal recombination of the local
solutions at each iteration.

(iv) Overlap can improve the rate of convergence. The amount of overlap to use is problem
dependent. For a dense matrix the cost of the subproblem solution increases with
overlap so that at some point more overlap is no longer beneficial. For separable or
near separable problems the ideal overlap is often immediately clear. In other cases
graph theoretic techniques may be needed to determine optimal groupings of variables.

(v) Overlap does not always reduce the number of outer iterations to convergence of the
ORalgorithms. A decrease in the objective function is guaranteed each iteration but
the minimization with respect to the weights,αi , may lead to different subspaces being
weighted differently than in the non-overlapped case. Hence, faster convergence is not
guaranteed, i.e., rate of convergence is dependent on the vectorsαk.

Figures 1–5 illustrate the results of Tables 1–7, using the estimate of percentage parallel
efficiency given by (2.11). In Figures 1–3 the line types areO, +, X and∗ for the algorithms
LSMS, LSMSIR, ORLSMS and ORLSMSIR, respectively. In Figures 4 and 5 the line types
∗, O, X and+ indicate overlap 0, 10, 20 and 30, respectively. Efficiency for the random
matrices is less than for the structured cases. Also, because overlap is more costly, the gain
in rate of convergence is not recognized in terms of parallel efficiency when overlap is large.
Efficiencies greater than 100 indicate speed-up of the split algorithm as compared with a
straightforward directQRsolve. The introduction ofOR is effective at improving parallel
efficiency.

5. Conclusions

The algorithms presented in this paper provide a viable parallel strategy for the solution
of the linear least squares problem. In particular, a two-level approach to minimization
in which subproblem solutions are obtained independently, but then combined to give an
optimal global update, is very successful. The method has been demonstrated to work not
only for a sparse test example but also for dense random matrices. We conclude that the
approach is of particular value for:

(i) Problems that are inherently near separable. In these cases the optimal local solutions
quickly converge to the global optimum and the cost of each subproblem solve is
relatively cheap. The method is then viable.

(ii) Large dense problems which are too memory intensive to be solved on a single pro-
cessor machine. Although, in this case, parallel efficiency is very low, the algorithm
provides an effective solution technique.

Furthermore, these algorithms have the additional advantages, compared with direct
parallelization of the serial algorithm, of simplicity, portability and flexibility.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

26 R. A. Renaut

2 4 6 8
0

100

200

300

400

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 1: Error 10^−3

2 4 6 8
0

100

200

300

Splitting p
P

er
ce

nt
ag

e
E

ffi
ci

en
cy

Table 1: Error 10^−5

2 4 6 8
100

200

300

400

500

600

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 1: Residual 10^−3

2 4 6 8
100

200

300

400

500

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 1: Residual 10^−5

Figure 1. Comparison of parallel efficiency of algorithms for data from Table 1

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 27

2 4 6 8
50

60

70

80

90

100

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 2: Error 10^−3

2 4 6 8
10

20

30

40

50

60

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 2: Error 10^−5

2 4 6 8
100

150

200

250

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 2: Residual 10^−3

2 4 6 8
20

40

60

80

100

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 2: Residual 10^−5

Figure 2. Comparison of parallel efficiency of algorithms for data from Table 2

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

28 R. A. Renaut

2 4 6 8
40

60

80

100

120

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 3: Error 10^−3

2 4 6 8
6

8

10

12

14

16

Splitting p
P

er
ce

nt
ag

e
E

ffi
ci

en
cy

Table 3: Error 10^−5

2 4 6 8
100

150

200

250

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 3: Residual 10^−3

2 4 6 8
20

40

60

80

100

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 3: Residual 10^−5

Figure 3. Comparison of parallel efficiency of algorithms for data from Table 3

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 29

2 4 6 8
0

100

200

300

400

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 4: IR Error 10^−4

2 4 6 8
0

100

200

300

400

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 4: Error 10^−4

2 4 6 8
100

200

300

400

500

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 5: IR Residual 10^−4

2 4 6 8
100

200

300

400

500

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 5: Residual 10^−4

Figure 4. Comparison of parallel efficiency for overlap 0, 10, 20, 30 for data from Tables 4 and 5

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

30 R. A. Renaut

2 4 6 8
60

80

100

120

140

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 7: IR Residual 10^−4

2 4 6 8
60

80

100

120

140

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 7: Residual 10^−4

2 4 6 8
0

20

40

60

80

100

Splitting p

P
er

ce
nt

ag
e

E
ffi

ci
en

cy

Table 6: IR Error 10^−4

2 4 6 8
0

20

40

60

80

100

Splitting p
P

er
ce

nt
ag

e
E

ffi
ci

en
cy

Table 6: Error 10^−4

Figure 5. Comparison of parallel efficiency for overlap 0, 10, 20, 30 for data from Tables 6 and 7

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

A Parallel Multisplitting Solution of the Least Squares Problem 31

REFERENCES

1. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine and H. van der Vorst.Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, Philadelphia, 1994.

2. A. Berman and R. J. Plemmons.Nonnegative Matrices in the Mathematical Sciences. Classics
in Applied Mathematics, SIAM, Philadelphia, 1994.

3. R. Bramley and A. Sameh. Row projection methods for large nonsymmetric linear systems.
SIAM J. Sci. Stat. Comput., 13, 168–193, 1992.

4. E. Chu and A. George. QR factorization of a dense matrix on a hypercube multiprocessor.
SIAM J. Sci. Stat. Comput., 11(5), 990–1028, 1990.

5. I. S. Duff and J. K. Reid. A comparison of some methods for the solution of sparse overdeter-
mined systems of linear equations.J. Inst. Maths. Applics., 17, 267–280, 1976.

6. M. C. Ferris and O. L. Mangasarian. Parallel variable distribution.SIAM J. Optimization,
4(4), 815–832, 1994.

7. A. Frommer and B. Pohl. A comparison result for multisplittings and waveform relaxation
methods.Numer. Linear Algebra Appl., 2, 335–346, 1995.

8. G. H. Golub. Numerical methods for solving least squares problems.Numer. Math., 7, 206–
216, 1965.

9. G. H. Golub and C. van Loan.Matrix Computations, second edition. John Hopkins Press,
Baltimore, 1989.

10. G. H. Golub and J. H. Wilkinson. Note on the iterative refinement of least squares solution.
Numer. Math., 9, 139–148, 1966.

11. L. A. Hageman and D. M. Young.Applied Iterative Methods. Academic Press, New York,
1981.

12. Q. He.Parallel multisplittings for nonlinear minimization. Ph.D. thesis, Arizona State Uni-
versity, 1997. In preparation.

13. N. J. Higham. Iterative refinement enhances the stability of QR decomposition methods for
solving linear equations.BIT, 31, 447–468, 1991.

14. D. P. O’Leary and R. E. White. Multi-splitting of matrices and parallel solution of linear
systems.SIAM J. Alg. Disc. Meth., 6, 630–640, 1985.

15. J. M. Ortega.Introduction to Parallel and Vector Solutions of Linear Systems. Plenum Press,
New York and London, 1988.

16. J. M. Ortega and W. C. Rheinboldt.Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York, 1970.

17. R. A. Renaut, Q. He and F.-S. Horng. Parallel multisplitting for minimization, inGrand Chal-
lenges in Computer Simulation, A. Tentner, editor, pp. 317–322, High Performance Computing
1995. Society for Computer Simulation, 1995.

18. R. A. Renaut and H. D. Mittelmann. Parallel multisplittings for optimization.J. Parallel Alg.
and Appl., 7, 17–27, 1995.

© 1998 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., 5, 11–31 (1998)

