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Abstract

An implementation of a parallel rational Krylov method for the generalised ma-
trix eigenvalue problem is discussed. The implementation has been done on a
MIMD computer and a cluster of workstations. The Rational Krylov algorithm
is an extension of the shifted and inverted Arnoldi method where several shifts
are used to compute basis vectors for one subspace. In this parallel implemen-
tation, the different shifted matrices are factorised each on one processor and
then the iteration vectors are generated in parallel.

Keywords: eigenvalues, eigenvectors, sparse, parallel, rational, Krylov, shift,
invert, Arnoldi
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Chapter 1

Introduction

Eigenproblems occur frequently in science and engineering. Examples of every-
day eigenproblems are vibrations in a car and in a stretched string on a piano.
Other areas where eigenproblems occur are hydrodynamic stability, magnetohy-
drodynamics, Ising spin model, modes in a waveguide, economics and operation
research, just to name a few. For an overview of eigenproblems see the paper
by Bai, Day, Demmel and Dongarra [4].

Example 1. The modelling of different modes of a Transverse Magnetic wave
(TM) travelling in the z-direction in a hollow-waveguide with arbitrary cross-
section 1s done by the differential equation

—Vie, = k?ez, e, = 0 on the boundary
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where the eigenfunction e, is related to the electric field in the z-direction by
E., = e,elP? 3 is the propagation constant. The eigenvalue k. is related to the
cutoff frequency f. by the relation

c- ke

fc: Gy

where ¢ is the speed of light. The cutoff frequency f. is the lowest frequency
the mode corresponding to k. propagates. O

The solution of a practical eigenproblem can be composed into three sub-
tasks, modelling of the problem, discretisation of the model and solving the
discrete problem. This report deals with the last subtask.

Modelling

Mathematical modelling deals with how to describe reality in mathematical
terms, for example setting up the differential equations for the waveguide.



Discretisation

The discretisation process consists of reducing the continuous problem into a
matrix problem by approximating the required unknown function by a vector
representing the value of the function at a discrete set of points. Common
discretisation processes are the finite difference and the finite element methods.
They are used to discretise differential equations and can be used to discretise
the waveguide problem. The matrices that the finite difference and the finite
element methods generate are sparse i.e most elements are zero. The matrices
often become large when they approximate complicated continuous problems in
order to make a good approximation.

Solving the Discrete Problem

When we have obtained a discrete problem, we need to put it into a matrix
problem that can be solved with a computer and find an algorithm that solves
it. This report deals with an algorithm, the parallel rational Krylov algorithm,
that solves the matrix eigenproblem with a parallel computer. The algorithm is
not dependent of the origin of the matrices. They can come from a discretisation
of a continuous problem, be random numbers or model a discrete problem like
an electric power network. However the algorithm is more or less suitable for
different types of problems.

Parallel Computers

A parallel computer is a computer that can use several processors to work to-
gether on the same problem. The main reasons to use a parallel computer
instead of a sequential computer are to solve existing problems faster or to
solve larger problems. The type of parallel computer that we have used is a
computer where each processor has its own memory and the processors commu-
nicate through a network. The processors are relatively fast and have relatively
large memory.

Eigenproblems

The kind of eigenproblems that can be solved with the parallel rational Krylov
algorithm discussed in this report is

Au=)ABu, A BcC"" uec(C", el (1.1)

The algorithm is suitable for eigenproblems where several eigenvalues in a spe-
cific region in the complex plane are desired, together with the corresponding
eigenvectors, and where the matrices are large and sparse.

The rational Krylov algorithm is an extension to the shift and invert Arnoldi
algorithm. A good introduction to large eigenvalue computation and to the
Arnoldi method is given in the book by Saad [17]. An implementation of the
shift and invert Arnoldi is given in the paper by Kooper, Van Der Vorst and
Goedbloed [10]. A parallel Arnoldi method is implemented by Booten, Meijer,
te Riele and Van Der Vorst [5].



The Parallel Rational Krylov Algorithm

Let p shifts p1,..., i, be given in a region in the complex plane, where we want
eigenvalues and corresponding eigenvectors. Construct an orthonormal basis
v1,...,v,, for the space

Ko = Span{vl’(A - ﬂlB)_lel’ s a((A - /'LlB)_lB)mlvla
(A—p2B)"'Buoy,...,((A— p2B)"'B)™2 0y,

(A—psB) 'Buy,...,((A—psB)"'B)™ v},

where m; are positive integers, m = mi+ma+...+ms;+1 and Dim(K,) < m.
Approximate eigenvalues and eigenvectors are computed from the restriction of
the matrix pencil (1.1) to the subspace K,,.

There are two different major ways to parallelise the rational Krylov algo-
rithm. The first one is to parallelise the matrix operation » = (A — p; B) ™! Bu;
and the process of orthogonalising » against the basis. This has been done for
the Arnoldi process. This report deals with a second way that uses different
shifts in the matrix operator » = (A — y; B)~'Buv; on different processors as
follows.

Perform p factorisations in parallel, one on each processor i.

LU, =(A—uB),i=1,...,p
Then let processor number ¢ perform the multiplications
rip1 = U7 L7 Boy
and later
tipp = U7 LT By, j=qp+i+1,¢=0,1,...

7j4p 1s orthogonalised against all previous basis vectors vy, ... ,vj4p—1 either on
the same processor or on a master processor. The remaining part is normalised
and put into v;1,. In the orthogonalisation process, the different processors
need to exchange data with each other.

The rational Krylov algorithm is suited for medium sized problems and the
algorithm discussed 1s intended for problems where speed is more important
than to solve the largest possible problem that can fit onto a parallel computer.

Summary

The objective of this work is to implement a parallel rational Krylov method,
as described in the second way above, and to analyse speedup and convergence
performance. In order to solve very large problems with the algorithm, we
need to combine the two different ways above of parallelisation the algorithm.
However this is outside the scope of this report.

The implementation is experimental, and is not yet intended for distribution.
More work needs to be done in analysing the numerical stability and in the area
of parallel sparse general LU factorisation. Shift strategies are an important
part of a commercial or public domain software of the (parallel) rational Krylov
method. However this report does not deal with shift strategies.



With the best implementation of the algorithm we got a speedup of 5.0 using
6 processors, see chapter 5.

The parallel rational Krylov method as implemented in this report has some
numerical problems that the sequential version does not have, these numerical
problems need to be investigated further, see the tests.

The (parallel) rational Krylov method is likely to perform better than the
shifted and inverted Arnoldi method when the region with the desired eigenval-
ues differs to a great extent from the typical circular convergence region of the
shift and invert Arnoldi method.

Outline

In chapter 2 we introduce basic concepts about parallel computers and paral-
lel algorithms that we need for the discussion of the parallel rational Krylov
method. In chapter 3 we first discuss subspace methods for eigenvalue compu-
tations and then we go on to the Arnoldi method. The Arnoldi method is a
subspace method that gives the basic idea for the rational Krylov method. In
the rest of the chapter we discuss the rational Krylov method and the parallel
rational Krylov method. In chapter 4 we give two different major idea programs
of the parallel rational Krylov algorithm and discuss some implementation de-
tails. In chapter 5 we give the test results of the aspects speed performance and
numerical behaviour. We also compare the (parallel) rational Krylov method
to the shift and invert Arnoldi method. At the end of the chapter we discuss
some possible shift strategies.

Notation

Matrices are written with upper case bold letters like A, vectors are written
with lower case bold letters like v and scalars are written with lower case italic
letters like o With h; ; we mean the element H (4, j) and with h; we mean the
Jith column of H. With V; we mean the first j columns of the matrix V.
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Chapter 2

Parallel Computing

Before we discuss the parallel eigenvalue algorithms, we need some basic under-
standing of parallel computers and algorithms.

2.1 Introduction

The need to solve larger problems or decrease the execution time for existing
ones will always demand more powerful computers. One way to satisfy the
needs is to build faster one-processor machines. Since the first computer was
built there has been a tremendous increase in computing power, however we will
sooner or later reach the physical limit of how fast one-processor can run. If we
wish to increase the performance with existing processor technology, one way
to do 1t is to use several processors at the same time i.e. parallel computers. In
a parallel computer several processors are put together in such a way that they
can work independently and exchange data with each other. In this report we
are mainly interested in parallel algorithms. With a parallel algorithm we mean
an algorithm that can be divided into several sub-parts that can be treated in
parallel. The sub-parts may have to exchange information with each other at
certain points of time.

In order to discuss parallel algorithms we need some basic knowledge of
parallel computers. We look at three different ways of classifying computers;
instruction and data streams, granularity of the operations and memory locali-
sation.

2.1.1 Instruction and Data Streams

The most common way to describe computer architectures is Flynn’s taxonomy
see [7, 6]. The classification is based on the number of instructions and data
streams that can be processed simultaneously.

e (SISD) Single Instruction stream -Single Data stream
e (SIMD) Single Instruction stream -Multiple Data stream
e (MISD) Multiple Instruction stream -Single Data stream

(
(
(
(

e (MIMD) Multiple Instruction stream -Multiple Data stream



SIMD and MIMD are the existing parallel computer types.

SISD

SISD 1s the usual one-processor computer.

SIMD

SIMD computers have only one instruction stream. The different processors
execute the same operation at every moment of time, but each of them with
different data. Not all parallel algorithms can be implemented on an SIMD suc-
cessfully. An SIMD computer usually has several thousands of processors. One
example of a problem that can use an SIMD is matrix addition, C = A + B.
First A and B are distributed over the processors in a such a way that for
each index pair ¢, j a; ; and b; ; are located on the same processor, then a par-
ticular processor just adds the part of A and B that belongs to its domain,
¢ = a;; + b; ;. Examples of SIMD computers are the Connection Machines,
CM-1 and CM-2. Another SIMD computer is the Maspar MP-1. For informa-
tion about these computers see [18].

MISD

No computer has ever been build after this model according to [18].

MIMD

MIMD is the most flexible computer type. Each processor runs its own pro-
cess/processes and communicates with the other processors when needed. An
example of an MIMD computer is the IBM-SP2. An MIMD computer usually
has fewer processors than an SIMD machine but each of them is most often
much faster.

2.1.2 Granularity

A categorisation of the inherent parallelism of an algorithm is the grain size.
Typically the grain size can be divided into fine grain, medium grain and coarse
grain parallelism according to if units, tens or hundreds and more operations are
performed between each communication point. SIMD computers are most suited
for fine grain parallelism, while MIMD computers are most suited for coarse
grain parallelism. The level of granularity a computer is suited for depends on
how much time each operation takes compared with how much time it takes to
exchange data with other processors.

The algorithms discussed in this report are relatively coarse grain and they
are implemented on an MIMD computer (IBM-SP2), so we will concentrate on
MIMD computers.

2.1.3 Memory Localisation

MIMD computers (and SIMD) can be divided into two major subclasses

e Shared memory computers



o Message passing computers

Shared Memory

The processors share the main memory, but usually each processor has its own
cache. The communication is done through the shared main memory.

Message Passing

Each processor has its own memory. Communication is done through messages
that are sent on an interconnecting network. This is the subclass on which we
will concentrate.

2.1.4 Parallel Virtual Machine

Several heterogeneous computers can be connected through a network and act
as a parallel computer. PVM (parallel virtual machine) is a software package
that makes this possible, see [8]. PVM uses messages to exchange data between
processes; and the two programming languages C and Fortran are supported
by PVM. Several Parallel MIMD computers also support PVM as a way to
exchange data between processors.

The main difference, between a parallel MIMD computer with distributed
memory and a cluster of workstations connected through a standard network
acting as a parallel computer, is the speed of communication between the pro-
cessors. A parallel computer has a fast dedicated network with much higher
performance than a standard network.

The algorithms in this report are implemented using PVM and Fortran.
The programs run on an IBM-SP2, a MIMD parallel computer with distributed
memory and a cluster of SUN workstations connected through an Ethernet.

2.2 Measuring Program Performance

If we implement a parallel algorithm using p processors, the best we can hope
for is a program that runs p times faster than if it was to run on a single
processor. However this is seldom reached in practice. Below we will discuss
some performance measures and why the optimum speed is rarely reached.

Speedup

The speedup S, on p processors, is given by
SP =1 /Tp’

where 77 is the execution time for the sequential program on one processor
and T, is the execution time for the parallel program on p processors. The
theoretical peak performance is S, = p.



Efficiency
The Efficiency F), is given by

S
E, =100~2%
p

The theoretical peak performance is E, = 100%.
The main reasons why FE, and S, rarely reach their peak values are

e it takes time to transfer data between processors
e all processors do not have the same load

e parts of the program have no natural parallelism in them

Communication Time

The total time it takes to transfer b bytes from one processor to another is
t=L+5b / B,

where L is the latency, that i1s the time it takes to set up the communication
link. The bandwidth B is the rate of transfer in byte per seconds after a com-
munication link has been established.

Example 2. The process of sending a message with PVM is composed into the
sub-parts of initiating a sending buffer, packing data into the buffer and sending
the buffer. An arriving message is first stored into a temporary buffer and is
later unpacked by the program that receives the message.

To estimate the communication speed we note that on the IBM-SP2 the
whole process of sending a double precision number from processor A to pro-
cessor B and back to A again with PVMe (IBMs version of PVM) takes 400us,
just the send operation takes 42us. The same procedure with a double precision
array of length 10000 takes 12ms and 3.3ms respectively.

The computation speed on the other hand can be seen from that the calcula-
tion of the inner product between two vectors of length 10000 takes 870us on one
processor. The computation speed varies depending on how data is transferred
between different memory hierarchy.

The latency L can be approximated by 42us, that is the time for the send
operation for one double precision number. The bandwidth B for a double
precision vector of length n = 10000 is 8 - 10000/6 - 1073 = 13.3M byte per
second, or differently expressed 13.3/8 = 1.7 M double precision numbers per
second. The number of floating point operations per second (flops) for the
scalar product is 2 - 10000/870 - 107% = 23M flops. In this case the compute
communicate ratio is 23/1.7 = 13.5

The above example shows that in order to write efficient parallel programs
on the IBM-SP2 and similar computers, the number of floating point numbers
sent from one processor to another should be much smaller than the number of
floating point operations.

10



Load Balancing

In order to achieve high efficiency in a parallel program, it is important to keep
the time spent waiting for data from other processors to a minimum and the
time spent doing useful work to a maximum. The process of allocating work to
processors in such a way as to keep the processors’ idle time as short as possible,
is called load balancing.

Sequential Parts of a Program

Not all algorithms can be successfully implemented on a parallel computer be-
cause a large portion of the algorithm has no parallelism in it. Even parallel
programs may have parts in them that are not parallel, for example control
sequences. Some parallel parts in a parallel algorithm may be more efficiently
implemented sequentially due to communication time. Amdahl’s law gives a
relation between the speedup S,, the parallel part r i.e execution time of the
program and the sequential part s of the program as follows

1
SPS—T’ 5—1—7“:1
S+Z_7

where p is the number of processors.

Example 3. If the sequential part s = 0.5, the parallel part » = 0.5 and the
the number of processors p = 5 then

1
Sy < ———— = 1.67
P 05452
The same procedure with s = 0.1, » = 0.9 and p = 5 gives

1
Sy < ———5 = 3.57
0.1+ ==

In order for an algorithm to be successfully implemented on a parallel com-
puter the sequential part s needs to be much smaller than the parallel part
7.

For a more complete discussion on Parallel computers and parallel algorithms
than given above, see for example [7, 6].
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Chapter 3

Krylov Subspace Methods

3.1 Subspace Methods

In a subspace method for the eigenproblem,
Au = du, (3.1)

we seek an approximate eigenpair (:\,11) in such a way that the approximate
eigenvector belongs to a subspace S and the difference between the approximate
eigenpair (:\, @) and the correct eigenpair (A, w) is small by some measure.

Let A € C"*" S be a subspace of C*, S C C" and #;,i = 1,...,m be a
basis of S. Now let S be invariant under A,

re S=Axec S.
We seek an eigenvector, eigenvalue pair such that
Au= ) u,u e S, el

Especially if we let A operate on the vectors that build up the basis of S

A:Bj = Zwihij,
i=1
and if we take
X = [331, s ,Zlim],H = [hlj]a
we will get
AX =XH. (3.2)

If (A, y) is an eigenpair of H then (A, Xy) is an eigenpair of A. Multiply (3.2)
by y

A(Xy)=XHy
= MXy).

12



In general, in a numerical subspace method we do not have invariant sub-
spaces. So the relation (3.2 ) does not hold. Instead we get

W =AX - XH, (3.3)

where W is the residual matrix. Thus if (:\,ij) is an eigenpair of Hthen
(:\, Xy ) is usually not an eigenpair of A. In designing a subspace method we
want both the error in the eigenvalue || A— X || and the angle to the eigenvector
min,. g (| w—a || /|| w||) to be small. Here S, denotes the eigenspace
corresponding to A. Usually we can not measure these quantities in a good way.
On the other hand we can take u = Xy as the approximate eigenvector, and
get the residual vector w

w= A — \ut
—AXg— XHy
=Wy,

and see if we can get its scaled length || w || / || u || to be small.

3.1.1 Projection

A projection matrix P € C"*"

onto a subspace S C C” satisfies

P’=P, Pxc SVYxec(", (3.4)

Every vector & € C" can be composed into one part in S and one in its com-
plement.

x=Px+(I-P)x
An orthogonal projection P satisfies in addition to (3.4) the following condition
(I-P)ze S™
Proposition 1. A projector is orthogonal if and only if it is hermilian.

For proof see [17]. Assume that m = Dim( S), m < n and that vy,... v
are orthonormal vectors such that v; € C" and

S = span{vy,... ,vm},
then P can be written as
rP=v,Vv,.
where V,,, = [v1, ..., 0]

Proposition 2. Let P be an orthogonal projector onto the subspace S, x € C”
and y € S, then

| = Pz ||>= min ||z —y [
ye S

Projections are often used to measure how close an eigenvector u is to the
subspace S.

13



3.1.2 Subspace Methods

We will now give a basic subspace method. Consider the eigenproblem (3.1)
and a subspace S of dimension m. We want to find approximate eigenvec-

(m) (m)

torsu;, ~ € S,i=1,...,m and corresponding eigenvalues /N\Z ,di=1,...,m,
usually m < n where n 1s the dimension of the matrix A.
Let ©1,...,v,, be an orthonormal basis for S and V,,, = [v1,... ,v,,]. Now
we want the approximate eigenpairs (ﬁgm), /N\Em)),i =1,...,m to satisfy
A-\"na™ - 5 a™e si=1,... m,
or with matrix notation,
vi(Aa-X"naim™ =o. (3.5)

This can also be expressed with a projection P, = V,, V. as
P.(A-\"1na™ =0
(m)

Now u;
vectors wv;

(m)

€ S so u; 'can be written as a linear combination of the basis

W™ = V5™ (3.6)
Put (3.6) in (3.5) and get

Vi (AV, g™ =AMy, g™y = o

or
VoAV = X g
or
=™ = A,
where

H-=-V AV,
This leads up to the simple algorithm
Algorithm 1. (basic idea)
1. Compute the orthonormal basis vy,... v,
2. Compute H= V) AV,
3. Compute eigenpairs (g}gm), /N\Z(»m)), i=1,..., mto H
(m)

i

(m)

4. Take /N\Z(m) as approximate eigenvalue and =Vn,y, ~ asapproximate

eigenvector to A.

The above algorithm should only be considered as a basic idea, not for numerical
computation.

14



3.2 Krylov Subspaces

Krylov subspace methods are built around the sequence of subspaces,

Ko = span{v, Av, A%v,... A" o} (3.7)

The Krylov methods calculate approximate eigenvectors ; € Ky, i = 1,...,m

and corresponding approximate eigenvalues A;;2 = 1,...,m, to the eigenvalue
problem

Au=du, Ac(C" " ueclC" el (3.8)

Some of the Krylov subspace methods are

1. The Arnoldi method
2. The Hermitian Lanczos method

The rational Krylov method uses a variation of the subspace (3.7). We will
discuss this later.

In the following we state some properties about the Krylov subspaces. A
more complete discussion can be found in Saad [17].

Proposition 3. A vector ® € K, can be written as ® = p(A)v, where p is a
polynomaial of degree not exceeding m-1.

Proposition 4. Let y be the lowest degree of a polynomial p such that p(A)v = 0.
Then K, 1s invariant under A and K, = Ky for allm > p.

This means that K, is the largest possible Krylov subspace starting with v.
The vectors v, Av, A%v,..., A* v are linearly independent, but v, Av, A%v,
..., A" ' will be dependent for any m > . The subspace K, is invariant and
all approximations to eigenvectors from K, will be exact. Any Krylov algorithm
will have to stop before linear dependence is reached among the basis vectors.

3.3 Arnoldi’s Method

Krylov proposed his method already in 1931, but the most notable works were
done by Lanczos [11] and Arnoldi [3] around 1950. Their methods build up an
orthonormal basis V,;, = [v1, ... ,v,,] for the subspace K, one vector at a time.
In each step the matrix is applied to the most recent basis vector, and then the
result is orthogonalised to those vectors that have already been computed.

Algorithm 2. Arnoldi
I Start. Choose a vector v; of norm 1.

II forj=1,2,...,m do

1 r = Av; Operate

2 hij::vfr,izl,Q,...,j

3. r:=r—> "1 hyv;, Orthogonalise

4o hipry =] 7 |2 Normalise

5. if hj11,;, =0 stop

6. V41 :=7/hj11, Get new vector

7. Compute approximate solution and test for convergence

15



By construction, the vectors v; are orthonormal. They also span K.
Let Vi, = [v1, ..., 0] and Hp, o = [hij], 4,5 = 1,...,m be computed by
this algorithm. Then the relation

AV, = VmHm,m + hm+1,mvm+1ern (39)

holds. If Ap41,m = 0 then the vectors v; span an invariant subspace under A.
Thus if (A, y) is an eigenpair of Hthen (A, V,y) is an eigenpair of A.

In general, we stop before we get an invariant subspace. In step I1.7 the
m x m eigenproblem

Hop o i™ = 307 50

m,myi
1s solved and we take
@™ = Vg™ (3.10)

as the approximate eigenvector. Now we get the residuals

(A - X" nal™ = av, 5™ - My, g

= Vo Hp 3™ + byt el 9™ 0m 1

_ :\Z(m) Vm,gz(m)

)

.,(m
= hm+1,mernyi Um+1-

The first equality follows from (3.10), the second from (3.9), and the third
)

. ~(m). .
is a consequence of that yl( is an eigenvector of H,, .

3.3.1 Invariant Subspace

Under what condition is the subspace K, invariant? Assume that the matrix
A is diagonalisable, then

m
v= Zaiui, [|v]2=1
i=1

where the vectors u;, 2 = 1, ... m are eigenvectors to the matrix A. The Krylov
subspace K,, can be written as

m m m m
— 2 m—1
K = span{ E a;u;, E a; A, E GAUG, E A Ty}
i=1 i=1 i=1 i=1

Suppose first that the eigenvalues A;;2 = 1... m to the corresponding eigen-
vectors u;,¢ = 1,... ,m are all distinct. Then the eigenvectors u;,i =1,... ,m
span the Krylov subspace K, of dimension m and the subspace K, is invariant
under A.

Suppose now that we have two eigenvectors u,—; and u,, to the same
eigenvalue A,,_1 = A, then

k k k
am—lAm_lum—l + amAmum = Am_l(Ofm—lum—l + amum)
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and au,—1%pm—1 4+ @y Uy, 18 also an eigenvector to the matrix A with the eigen-

value A\j,,_1 = Ap,. In this case the subspaces K,,_1 and K,, are equal and
the dimension of the subspace K,,—1 18 m — 1. Furthermore the eigenvectors
u;, e =1,...,m—2 and the eigenvector a,,_1Um—1 + @y, span the subspace

K.n—1 and K,,_1 is invariant under A. This shows that it is only possible to ob-
tain one eigenvector to a eigenvalue with the Arnoldi method. This is also true
for the related methods rational Krylov method and shift and invert Arnoldi
method discussed later.

In the non diagonalisable case we may get principal vectors of higher grade,
but we will only get one eigenvector.

3.3.2 Convergence of Arnoldi

In the following subsection we use projection operators as means to measure
the distance between an eigenvector u; and the Krylov subspace K,,. In the
hermitian case these bound the errors in the eigenvalues and eigenvectors, but
also in the general case they are used to measure convergence see [17].

Proposition 5. Let Py, be the orthogonal projector onto Ky i.6. Py =V, Vo,
Assume that A is diagonalisable and that the vector vy in Arnoldi’s method can
be written as vy = Zzzn aguy , where uy are normalised eigenvectors of A in
which a; 0. Then the following inequality holds

(L= Py [lo< €™

where

n
6= Y
-
|il

k=1kzi

and

egm)z min max  |p(A)].

PEPy _, XEa(A)=X;

where P _; is the set of all polynomials with a degree less than or equal to

m — 1 such that p(A;) = 1. For proof see [17].
(m)

An estimate for ¢; 7 is given below.

Proposition 6. Let m < n. Then there exist m eigenvalues of A which can be

labelled Ao, A3, ..., Amg1 such that

-1
m+1 m+1

(m) _ A = A
a”=1> 1I
=2 k=2k%j |/\k_/\|

For proof see [17].
If Ay is in the outer part of the spectrum then |Agx — Ay| will generally be

larger than |Az — A;|. Thus e(lm) will be small compared to the average of el(»m

and /N\Z(m) will converge faster than most eigenvalues.
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3.3.3 Shift And Invert Arnoldi

If we substitute the matrix A by the shifted and inverted matrix (A — /,LI)_l n
the Arnoldi algorithm, the eigenvalues of A which are closest to p will converge
fastest.

(A-—plhw=A-p)=

ﬁaz =(A- /,LI)_l x

Thus if A is an eigenvalue of A then ﬁ is an eigenvalue of (A — uI)_l. If
A is close to u then )\i—u will be an eigenvalue in the outer part of the spectrum

of (A — /,LI)_l and thus converge fast.

3.4 Rational Krylov Algorithm

The rational Krylov method is a generalisation of the shift and invert Arnoldi
method. In the shift and invert Arnoldi we choose one shift x4 in the complex
plane where we want the eigenvalues to converge fast, while in the rational
Krylov we choose several shifts p1,..., ;. The rational Krylov method was
developed by Ruhe see [13, 14, 15, 16] . The space K,, in the rational Krylov
method is

K = span{vyi,(A — /JlI)_lvl, ey (A= )™My,
A— D)7 o, (A= ) ey,
(A—pI)" 0y (A — po1) 1 (3.11)

(A_/'LSI)_lvla”~a(A_/'LSI)_mSvl}a

where m=my +ma+...+ms+ 1 and Dim(K,,) < m.
In Arnoldi’s method every vector @ € K,,, can be expressed as

T :p](A)vl aj S m— 1a

where p; is a polynomial of degree j. But in the rational Krylov method every
vector ® € K,, can be written as

x=r(A)v,
where
W= —pZLSJ) (A= )
J1 J2
W



J=ntge+ .+, <maja <moy o Js S
In matrix analyses in general we have

BA+£AB, A/ Bec(C"",
but for different functions of the same matrix, note that

(A= D)™ (A= )™ = (A— D)~ A= )"

and
PA)(A— D)~ = (A — )" 'p(A).
Example 4.
A2 3 +1
r(/\)_(/\—Q)(/\ 3)
1 1 .
T 0-y -y
r(A) = (A —3A4+ I)(A-2I)"'(A-3I)"!
=(A-2)""A-3)"HA*-3A+ 1)

=(A-20)"'+(A-30)""+1

In creating a basis for K, (3.11) it does not matter in which order the
operators (A — puyI)~t ... (A — ps)~! are applied. This is the key to the
parallel algorithm, but first we will discuss the sequential algorithm.

We will discuss the rational Krylov method for the generalised eigenproblem

Au = ABu (3.12)

In the case, B is invertible. We substitute A with B~'A in (3.11) and the
operators become (B™'A — y;I)™' = (A — y; B)"'B. Below we describe the
sequential version of rational Krylov method for the generalised eigenproblem.

Algorithm 3. RKS 1
I Start. Choose a vector v; of norm 1
IT forj=1,2,...,m do
1. r =Vt Choose starting combination
2. r:=(A—u;B)"'Br Choose yx; and Operate
3. hij 2:U?T,i:1,2,...,j
4. ro=r—>"1_ hjvu Orthogonalise

5. hjr1j =] 7 ||2 Normalise
6. if hj11;, =0 stop
7. vjp1:=7r/hj1, Get new vector

8. Compute approximate solution and test for convergence

We will now derive relations between A, B,V ; and h; ;. Later on we will
describe how to calculate approximate eigensolutions and residuals.
Put II.1 and I1.2 together and we get

r=(A—u;B)"'BV;t;.
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From I1.4 we rewrite

i .
Y hivi=Vhy, hy=1,"
i=1

])j], Vi =[v1,v9,...,0;]
Use step I1.4 and I1.7 together with the relations above we get
vj41hjs1; = (A~ 1 B)T BV jt; — Vh;
substitute h; = I:hj’-:i,j]
Visih; = (A~ p;B)"'BVt;
multiply with (A — pu;B)
(A—piB)Vjih; = BVt

Separate terms with A and B, substitute also ¢; with [toj] to get the relation
at the j:th step,

AV jih; = BV j(hjp; + t5).

Put Hpp1,m = [h1, ... ], Tog1,m = [t1, ..., ts] with appropriate zeros
added to the bottom of each h;, t;. Introduce the new matrix

Km+1,m = Hm+17mdiag(ui) + Tm+1,m~ (313)

Note that both H,, 1 » and K11, are Hessenberg matrices. We finally get
the relation

AVm-|—1Hm-|—1,m == BVm-|—1Km+1,m~ (314)

3.4.1 Approximate Eigensolution

We will first show that if K, is invariant under (A—/JZ'B)_lB and A 1s invertible
then, K,, is invariant under A~'B.
If # € K, and (A — p; B)™! B is invariant under K, then

z2=(A—u;B)"'Bx, z€K,,
multiply with (A — p;B) and separate A and B
Az = B(x + pt;z)

and thus if A is invertible then K, is invariant under A'B.
If K, is invariant under (A — p; B)™'B then v,41 = 0 and the relation
( 3.14 ) becomes,

AV, H,, =BV, Ky, (3.15)
If

Koy = Hy 0y (3.16)
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then put it in (3.15) and we get
AV H oy = ABV  H ooy
Thus if (A, y) is an eigenpair to (3.16) then
Au=ABu, u=V,H, ,y

Now assume that K,, is not invariant, which will be the most usual case.
Let (/\Z(»m),fjfm)) be an eigenpair of (3.16) and take

@™ =V H o1 g™ (3.17)

(m)

as the approximate eigenvector and :\Zm

(3.12). The residual will be

as the approximate eigenvalue to

(A= A" B)a™ = (A=A B)V 1 Hygr G

+1( +1, i +1,m)Y; (3.18)

= va+1 (km+1,m - XZ('m)h'ﬂ’b-l-1,77’b)errb ~£m)
= Bouns (o = N hgr el 3™

The first equality comes from (3.17), the second from (3.14 ), the third from
(3.16) and the fourth from ( 3.13 ). Note that the residual is B~' orthogonal
against V.

3.4.2 Shifts

Assume that we use s different shifts, pq,..., ps and that i:th shift is used j;
times. For memory reasons we can usually have only one LU-factorisation of
each shifted matrix (A—yu; B) in memory at a certain time. The LU-factorisation
usually costs more than to solve L&z = v,Ur = &. So in step 1.2 we want

e Factor L;U; = (A — y; B) one time.
e Keep the same factor for j; steps.

If we use iterative solvers this may not apply.

3.5 Parallel Rational Krylov Algorithm

The key to the parallel algorithm is that it does not matter in exact arithmetic
in which order the operators (A — y; B)~1 B are applied in building a basis for
the subspace Kp, (3.11).
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Algorithm 4. RKS Parallel
I Start. Choose a vector v; of norm 1 and set j :=1
II do while j <m
Lory =Viatiw, k=1,2...p Choose starting combinations
2.7, :=(A—puB)"'Bry, k=1,2... ,p Choose ug,k=1,2....p
3. Orthogonalise and get new vectors
for k=1,2,...,p do
(EL) hij 3:'0?1"]“@':1,2,...,]'
b) T =T — 2521 hijvi
c) hjr =l vy [l
d)if hjp,; =0 stop
) vy =rr/hjt

(
(
(
(

() ji=4+1
end
4. Compute approximate solution and test for convergence
end

In step I1.1 note that v;4,_1, K > 1 has not yet been computed so all starting
combinations in the vector ¢;4,_; are not available.

The algorithm above leaves some choices on how to implement it. We have
chosen two different ways. They differ in the way orthogonalisation is done.
Both programs use p different processors to compute r4 := (A — . B) ™! Bry,
k=1,...,p. The first program uses an additional processor to do the orthogo-
nalisation. The second program lets each processor orthogonalise its own vector.

In the implementations of the algorithm we have used direct solvers. So in
step 1.2 on each processor, we factorise once for each shift and keep the shifts
the same number of iterations on all processors.

The choice of starting combinations in step II.1 is as follows: in the first
parallel iteration each processor uses v1. Then in the following parallel iterations
each processor starts with its own orthogonalised r;. With a parallel iteration
we mean an iteration of the while loop in step II.
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Chapter 4

Implementation Details

4.1 Parallel Program 1

This program has been implemented in a Master/Slave way. The Master pro-
gram does all program control and all orthogonalisation. The Slave programs

do all operations 7y := (A — uxB)"'Brg, k=1,...,p

program Master
Choose
No of slave processors p
The p first shifts p;, ¢ =1,...,p
The start vector v
Start p Slave programs
Initialise the matrices A and B
Send(A, B, v;) to all slaves
Send p; to slave No ¢, =1,...,p
j:=0
do until convergence
( Decide the status for all slaves
all slaves have the same status
status ={ New Shift, Same Shift , STOP })
if status = New Shift then
Choose p new shifts p;, e =1,...,p
end if
doi=1,p
Jji=j+1
Receive vector = from slave no 1

Orthogonalise r against all previous v; ¢ =1,...

if || # ||]2= 0 then
status := STOP
else
vjp=r/ |2
end if

Send status to slave no 1
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if status = STOP then
Compute approximate solution and convergence
STOP
end if
Send v;4; and p; to slave no i
end do
Compute approximate solution and check convergence
end until
end program Master

program Slave
Receive(A, B, i, r) from Master
status := New shift
do while status # STOP
if status = New Shift then
factor LU := (A — uB)
end if
r:=U"'L™'Br
send 7 to master
receive status from master
if status = STOP then
STOP
end if
receive 7, u from master
end while
end program Slave

The time the master program spends in communication in each iteration is
tyy =Cnp+ Lp

where (' 18 a constant which depends on the network and which precision is
used in the program ( single precision, double precision, complex ,...). p is the
number of slave processors, L is the latency and n is the dimension of A. The
time each slave program spends in communication in each iteration is

ts=Cn-+ L.

The main problem with this implementation 1s that the slave processors became
idle while orthogonalisation is done in the Master program. The time the Master
processor spends in each orthogonalisation grows linearly with j. The Master
processor is idle while the slaves do the factorisation. We will comment more
on this in the tests.

The advantage of this implementation is that the communication grows lin-
early with the number of processors and the total communication time is smaller
than in the second implementation. This will be an advantage on a slow net-
work. If the operations vy := (A — pxB) "' Brg, k = 1,...,p takes relatively
long time, so that the Master processor has time to orthogonalise while the
slaves work, this implementation will work relatively well.
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4.2 Parallel Program 2A

The second implementation can be described as same program multiple data
(SPMD). The same programs are started on p different processors. Processor
number k, 1 < k < p operate 7 := (A — i B)"'Br;, and orthogonalises 7
against v;,2 = 1,...,j. For this to be possible, the processors exchange the
orthogonalised vectors with each other. Note also that the orthogonalisation is
split up 1n two parts.

program SPMD
get the number of started programs: p
determine which program T am: me (1 < me < p)
Choose
The p first shifts p;, ¢ =1,...,p
The start vector v
status := New shift
=1
=0
do until convergence
if status = New Shift then
factor LU := (A — jimeB)
end if
r=U'L'Br
Orthogonalise r against v;, e =1,... 7
doi=1,me—1
Jji=j+1
receive v; from program i
end do
orthogonalise r against v;,¢1 = j — me + 2,j
if || # ||]2= 0 then
signal to other processors to STOP
Compute approximate solution and STOP
else
vipr = v/ |l
end if
Jji=j+1
send v; to all other programs
doi=me+1,p
Jji=j+1
receive v; from program i
end do
Compute approximate solution and check convergence
decide status for next iteration
if status = STOP then
STOP
else if status = New Shift then
Choose p new shifts p;, e =1,...,p
end if
end until
end program SPMD
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Every processor sends and receives p — 1 vectors of length n. A particular
processor waits while the others send and receive. So every processor slows
down with the system communication time,

te=Cplp—1)n+ Lp(p - 1).

Besides the communication time, every processor has to wait while the others
do the second orthogonalisation, this is

tortho:(1+2+~~~+p_1)D

where D is the time it takes to orthogonalise against one vector of length n.

This implementation works well up to around 6 processors on the IBM-SP2,
see the test results. Because of the quadratic growth in communication time as
p increases this algorithm will never work on too many processors.

4.3 Parallel Program 2B

With a reorder of receive and send in the algorithm above it should be possible
that each processor has a linear growth in communication, as the number of
processors increases, while the system of processors has quadratic growth.

program SPMD B
get the number of started programs: p
determine which program T am:me (1 < me < p)
Choose
The p first shifts p;, ¢ =1,...,p
The start vector v
status := New shift
=1
=0
do while status # STOP
if status = New Shift then
factor LU := (A — jimeB)
end if
r=U'L'Br
Orthogonalise r against v;, e =1,... 7
if j > 1 then
doi=me+1,p
Jji=j+1
receive v; from program i
end do
end if
doi=1,me—1
Jji=j+1
receive v; from program i
end do
orthogonalise r against v;, i =j —p+ 2,7
if || # ||]2= 0 then
signal to other processors to STOP
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Compute approximate solution and STOP
else
vjpr =1/l 7 |
end if
Jji=j+1
send v; to all other programs
Compute approximate solution and check convergence
decide status for next iteration
if status = New Shift then
Choose p new shifts p;, e =1,...,p
end if
end while
doi=me+1,p
Jji=j+1
receive v; from program i
end do
end program SPMD B

Every processor sends and receives p — 1 vectors of length n. So every
processor slows down with communication time

te=Clp—1)n+ L(p—1).
on the other hand, the system has a communication time of,
te=Cplp—1)n+ Lp(p - 1).

The idea behind this version is to receive the data first when you need it,
and work while the other processors communicate.

The process of sending a message with PVM is composed into (1) initiating
a sending buffer, (2) packing data into the buffer and (3) sending the buffer. An
arriving message first is stored into a temporary buffer and later is unpacked by
the program that receives the message.

That the sending process is blocking means that it returns first when the
receiving process has unpacked the data. In order for the above program to work
properly the send operation should be non-blocking, so the sending process can
do useful work and do not have to wait until the receiving process unpacks the
data. However, in this particular implementation on the IBM-SP2 with Fortran
and PVMe, it has seemed like that the send operation is blocking, even though
it should not be blocking according to the manual, see [9].

4.4 Implementation Details

4.4.1 Solvers

We have used direct band solvers from LAPACK [2]. Other solvers are possible
like iterative solvers and general sparse solvers. However there is a problem with
using general sparse solvers. The factorisation on many general sparse solvers
can be split into analysing the nonzero structure and numeric factorisation.
The analysing phase needs to be done only once for factorisation of different
matrices with the same structure, like them we have in this report (A — y; B).
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The analysing phase can take for example 3 to 10 times as much time as the
numerical factorisation. In order for the algorithm to give good speedup results
when using direct general sparse solvers, the analysing phase needs to be done
in parallel on all processors, and then be distributed to the different processors.
To the author’s knowledge this has not yet been done by anybody.

4.4.2 Subroutines in Linear Algebra

It 1s a nontrivial task to write efficient and accurate subroutines for solving equa-
tions and doing vector and matrix operations. These subroutines are needed in
order to implement the parallel rational Krylov algorithm. Whenever appropri-
ate we have used LAPACK and BLAS routines, see [2].

The BLAS routines is a collection of subroutines in basic matrix opera-
tions like matrix matrix multiplications, matrix vector multiplications and scalar
products. Many computer manufactories have their own optimised BLAS rou-
tines. The speed of these optimised routines can be significantly higher than
matrix operations implemented in the naive way, due to that modern computers
use memory with different access time in a hierarchy.

The LAPACK routines is a collection of linear algebra routines like equation
solvers and eigenvalue solvers. LAPACK uses the BLAS routines. The main
work in this implementation is done in the factorisation, solving and multipli-
cation routines, see the table below for the specific routines used.

Subroutines in Linear Algebra

double complex | double precision | library
Matrix vector product zgemv dgemv BLAS
scalar product zdote ddot BLAS
Norm dznrm?2 BLAS
Scaling zdscal dscal BLAS
general band factorise zgbtrf dgbtrf LAPACK
general band solve zgbtrs dgbtrs LAPACK
generalised eigenvalue solver | zgegv dgegv LAPACK

4.4.3 Orthogonalisation

To ensure that the basis is orthonormal to working precision every vector r; is
orthogonalised twice against the basis, as suggested by Kahan, see [12].

4.4.4 Program Code

The code is experimental and is only intended for research purposes.

The code for the IBM-SP2 and the cluster of SUN workstations is basically
the same. The different versions used by the different computer configurations
are made by the preprocessor cpp from a generic program.

On the cluster of SUN workstations, the programs are written in Fortran77
together with the libraries BLAS, LAPACK and PVM. The nonstandard For-
tran77 statements malloc and pointer are used for memory management.

28



On the IBM-SP2 the xIf fortran compiler is used. The xIf compiler pro-
vide maximum compatibility with existing Fortran77 programs and uses many
features in Fortran90. The Fortran90 feature allocate is used for memory man-
agement in the code. The libraries used are LAPACK, BLAS from the ESSL
library and PVMe, the IBM version of PVM.

All programs have a double complex version. Program 1 is the only program
with a double precision version.

MATLAB is used to process the data from the tests and to draw the graphs.
A semi-parallel code for convergence tests 1s implemented in MATLAB.
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Chapter 5

Test Results

The algorithms described in the previous chapter have been tested on IBM-
SP2, and on a cluster of SUN workstations. The main aspects tested are
efficiency, speedup and convergence. Efficiency and speedup are related to the
speed performance of the algorithm. In chapter 3 of this report we predicted
that it should not matter in which order the operations r; := (A — /JkB)_lB'r'k,
k=1,...,p are applied, we should get the same approximation if we do it in
parallel or sequentially, thus we should get similar convergence behaviour. Is
this true on a computer with floating point arithmetic 7 We will discuss this
issue later.

5.1 Test Sites

The IBM-SP2 was chosen because it was the best available MIMD computer in
Sweden for research purposes. The SUN configuration was chosen because it
was available at the department.

The IBM-SP2 is a distributed memory MIMD computer. The machine used
at the Center for Parallel Computers, Royal Institute of Technology, Stockholm,
Sweden, had 55 nodes(the configuration is now upgraded). Each node contains
a processor and memory. The nodes share data via message passing over a high
performance switch. There are two types of nodes, thin nodes with 128Mbyte
memory and wide nodes with 512Mbyte memory. We have only used thin nodes
in our tests.

The SUN configuration contains SUN ELC workstations connected through
an Ethernet network.

In the table below we give some information about the nodes and network
used.
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IBM-SP2 SUN

Processor RS/6000 SPARC
Architecture POWER2 | SPARC
Clock frequency 66.7TMHZ 33MHZ

Floating point
operations per cycle | 4
Peak performance 266Mflops | 10Mflops
Main memory 128Mbyte | 24Mbyte
Data Cache 64Kbyte
Instruction Cache 32Kbyte
Bandwidth network | 35Mbyte/s | 1Mbyte/s
Latency 40pus 2ms

The table above gives peak performance, in the table below we give measured
performance. For the test of the communication bandwidth we have used PVM
on the SUN workstations and PVMe on IBM-SP2 (PVMe is IBM version of
PVM). The data transferred in the tests are double precision vectors of length
10000. The number of flops is measured for a scalar product (ddot in the BLAS).

IBM-SP2 SUN
Performance 23Mflops 2.4Mflops
Bandwidth network | 13.3Mbyte/s | 0.27Mbyte/s

5.2 Test Problem

The test matrices consist of a finite difference discretisation of the differential
equation

8w 0%u  qyou
927 + w + 7@ = Au

The test problem is artificial but related to a convection diffusion problem, it
is intended for testing convergence and efficiency. This problem has been cho-
sen for the following reasons; it is easy to vary the size of the problem, the
eigenvalues are known and the eigenvalues can be arbitrary ill or well condi-
tioned. The matrix A, generated from the discretisation is a sparse matrix
with b diagonals and the matrix B is the identity matrix. The matrix A is
real and non-symmetric. Some facts about the test problems for the different
configurations are given in the table below.
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IBM-SP2 SUN
Upper and lower bandwidth 100 100
Dimension 10000 1000
Number of nonzero diagonals | b 5
Amount of memory
for the LU factor 48M byte 4.8M byte
Amount of memory
for the basis (m=150) 24M byte 2.4M byte
Precision double complex | double complex

The larger test problem chosen for the IBM-SP2 would not fit on the cluster
of SUN workstations due to less amount of memory on the SUN workstations.
The bandwidth of the matrix A on the SUN workstations is chosen so that the
same time ratio for orthogonalise / solving the equations as in the IBM-SP2 is
obtained.

eigenvalues

30
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iy
(=]

imaginary
(=]

-10

-20

The exact eigenvalue distribution for the larger test problem is given in the
graph above.
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The nonzero elements from the larger test matrix.

5.3 Test of The Sequential Algorithm

The tests of the sequential algorithm are done in order to obtain data to compare
the sequential and parallel algorithms.

Shifts

We use every shift the same number of iterations in each test, this is because
we want to compare these tests with the tests on the parallel algorithms where
it 1s unpractical to have different numbers of iterations with different shifts.

Timing

We have kept time on the different parts of the algorithm. In these tests we have
not timed the computation of the approximate solution step. The algorithms
can roughly be divided into factorisation of LU = (A — uB), multiplication
r = U'L™'Bw, and orthogonalisation. The time it takes to orthogonalise a
vector against the basis grows linearly with the number of iterations.

Test Results

Configuration IBM-SP2 | IBM-SP2 | SUN | SUN
Test No 1 2 3 4
Shifts 6 3 6 3
Iterations with
each shifts 25 30 25 30
Total no of
Iterations 150 90 150 90

Timing Results (in seconds)
One factorisation 16.6 17.0 22.8 24.3
One multiplication 0.483 0.485 0.656 | 0.648
Factorisation total 99.6 51.0 136.8 | 73.0
Multiplication total 72.45 43.65 98.4 | H8.3
Orthogonalisation total | 103.5 38.42 113 40.9
Other 0 0 3.6 3.6
Total program 275.6 133.1 351.8 | 175.8

Convergence

The convergence is measured by the norm of the residual see (3.18). In the
plot below the norm of the residuals are plotted in each iteration with a plus
+. Lines are drawn between residuals corresponding to the same eigenvalue in
different iterations. The plot is for test number 1.
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In the figure below the exact eigenvalues are plotted with a dot -, the ap-
proximate eigenvalues with a residual less than 10° are plotted with circle o
and the shifts are plotted with a plus +. The plot is for test number 1.
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5.4 Parallel Program 1

How well this implementation works, depends on how much time it spends in
orthogonalisation, compared to factorisation and multiplication. The problem
with this algorithm is that the processors became idle. The communication time
is negligible in the test compered to the idle time.

The advantage of this implementation is that the basis is only located on one
processor and the slaves only have to keep the matrices and the factorisation.
The communication grows linearly with the number of processors so the total
communication time is short compered to the other parallel algorithms.

Test Results Parallel Program 1
Configuration IBM-SP2 | SUN
Test No 5 6
Slaves 3 3
Master 1 1
Shifts 3 3
Iterations with
each shifts 30 30
Total no of
Iterations 90 90

Timing Results On One Slave (in seconds)
One factorisation 17.0 24.2
One multiplication 0.485 0.66
Factorisation total 17.0 24.2
Multiplication total 14.5 19.8
Communication estimated | 0.72 3.6
Idle time 29.18 27.7
Total time 61.4 75.3

Timing Results On Master (in seconds)
Orthogonalisation total 38.4 39.3
Communication estimated | 2.16 10.8
Idle time 20.84 25.2
Total time 61.4 75.3
Timing Results Total (in seconds)

Parallel Program 61.4 75.3
Sequential Program 133 176
Speedup 2.2 2.3

Efficiency 54% 58%

The graph below shows idle time, working time and communication for the
SUN configuration. For this particular test we have used 15 iterations (3-15 = 45
total iterations ), 3 shifts, 1 master and 3 slaves. The white area in the bars
corresponds to idle time and the black to working time. The lines between
the bars symbolise communication. In the first iteration the master 1s idle
while the slaves do the factorisations, only part of the factorisation time is
shown in the figure. In the second iteration a particular slave is idle while
the master orthogonalise its vector and the master is idle while it is waiting
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for the next slave. After a number of iterations the master has no idle time.
Orthogonalisation grows linearly with the number of iterations and so do the
slaves idle time. The speedup and efficiency will depend on the total number of
iterations.

The first iterations

| . [ — -

; iil-ﬁlilI-!l'l-i‘ll-!ll.gllIl=1l'-|=1l'..
IS TN 1 T I T I O N I T O O I I ¢
Fa— 1] ] ] ] ] ] ]

average efficiency in each iteration

0.9r

o
(o]
T

efficiency
© © o o o
w N (6} [ep} ~
T T T T T
|
|
|
\
|

o
N
T

0.1r

O 1 1 1 1 1 1 |
0 10 20 30 40 50 60 70

time

The graph above shows the average efficiency in each iteration for test no 5.

The tests shows low efficiency for this algorithm. The algorithm can work
rather well if the time spent in factorisation and multiplication is large compared
to the orthogonalisation time. If the opposite 1s true this algorithm will achieve
poor results.
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5.5 Parallel Program 2A

This algorithm gives much better performance than the previous one. The
algorithm communicates more and the idle time is considerable less. It was the
idle time that gave the previous algorithm poor performance.

Test Results Parallel Program 2A
Configuration IBM IBM IBM | IBM
Test No 7 8 9 10
No of Processors 3 6 3 2
Shifts 3 6 6 6
Iterations with
each shifts 30 25 25 25
Total no of
Iterations 90 150 150 150

Timing Results On One Processor (in seconds)

One factorisation 18.6 18.65 17.44 | 17.05
One multiplication 0.4933 | 0.4908 | 0.486 | 0.485
Factorisation total 18.6 18.65 | 34.88 | 51.15
Multiplication total 14.8 12.27 | 24.3 36.37
Orthogonalisation total 12.4 16.8 34.41 | 51.55
Communication + idle time | 3.43 11.07 | 5.48 3.56
Total time 49.23 | 58.79 | 99.07 | 142.6
Sequential Program 133 275.6 | 275.6 | 275.6
Speedup 2.7 4.7 2.8 1.9
Efficiency 90% 78% 93% | 97%

The plot below shows speedup for the tests using 6 shifts on the IBM-SP2.
The straight line is the ideal speedup, the 4 is the speedup from the test.

IBM-SP2, Program 2A, 6 Shifts
7 ‘

1 Il Il Il Il
1 2 3 4 5 6 7

number of processors
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Test Results Parallel Program 2A
Configuration SUN | SUN | SUN SUN
Test No 11 12 13 14
No of Processors 3 6 3 2
Shifts 3 6 6 6
Iterations with
each shifts 30 25 25 25
Total no of
Iterations 90 150 150 150

Timing Results On One Processor (in seconds)

One factorisation 26.4 24.3 24.2 22.8
One multiplication 0.675 | 0.658 | 0.661 | 0.662
Factorisation total 26.4 24.3 48.4 68.4
Multiplication total 20.3 16.5 33.1 49.7
Orthogonalisation total 13.1 17.8 36.6 54.8
Communication + idle time | 10.9 33.2 18.9 16.7
Other 1.0 1.0 1.8 2.6
Total time 71.7 92.8 138.8 | 192.2
Sequential Program 176 351.8 | 351.8 | 351.8
Speedup 2.45 3.79 2.53 1.86
Efficiency 81.8% | 63.2% | 84.5% | 92.8%

The graph below shows idle time, working time and communication for the
SUN configuration. First every processor factorises, only part of the factorisa-
tion time is shown in the figure. Then at each iteration each processor mul-
tiplies, orthogonalises its own vector and exchanges the vector with the other
processors. Every processor has to wait while the others communicate.

The graph below shows the average efficiency at each iteration for test 7. In
the first iteration most time is spent in factorisation, then in the second iteration
the efficiency drops. In the following iterations the efficiency grows due to the
orthogonalisation time grows in each iteration. Note that the scaling for the
efficiency axis is different from the corresponding graph in the tests for parallel
program 1.
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The convergence is measured by the norm of the residual see (3.18). In the
plot below, the norms of the residuals are plotted in each iteration with a plus
+. Lines are drawn between residuals corresponding to the same eigenvalue
in different iterations. Note that the residuals come down together because
we use different shifts on different processors at the same time compared to
the sequential algorithm where they come down at each shift. The levels of the
residuals are not so good as in the sequential algorithm. The parallel algorithms
have some problems with the numerical computations that the sequential does
not have. We will discuss the difference in numerical computation between the
parallel and sequential algorithm later.

6 shifts 6 processors, 25 iterations on each processor
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This algorithm gives much better results than the previous one even though
the total communication time 1s longer in this one. The next program obtains
even better results.

5.6 Parallel Program 2B

The difference between the parallel program 2A and 2B is how the vectors are
exchanged. In 2A the processors waited for each other while the data were
exchanged. In 2B a arriving vector is stored in a temporary buffer and the pro-
cessor unpacks it first when it is needed. The communication measured in the
table below is the sending and receiving operations. However there are hidden
communication, when a vector arrives to a processor it is stored in a tempo-
rary buffer; this takes processor time. The multiplication and orthogonalisation
seems to take longer time as the operations are measured by a real clock. This
algorithm did not work on the IBM-SP2. Tt looks like that it is due to a bug in
the PVMe, the implementation of PVM on the IBM-SP2.

Test Results Parallel Program 2B
Configuration SUN | SUN | SUN | SUN
Test No 11 12 13 14
No of Processors 3 6 3 2
Shifts 3 6 6 6
Iterations with
each shifts 30 25 25 25
Total no of
Iterations 90 150 150 150

Timing Results On One Processor (in seconds)

One factorisation 23.6 23.8 22.7 23.1
One multiplication 0.73 0.808 | 0.712 | 0.691
Factorisation total 23.6 23.8 45.4 69.2
Multiplication total 22.1 20.2 35.6 51.8
Orthogonalisation total 13.1 19.4 37.2 55.2
Communication measured | 3.1 5.2 5.6 6.7
Other 1.5 1.6 2.5 3.5
Total time 63.4 70.2 126.3 | 186.4
Sequential Program 175.8 | 351.8 | 351.8 | 351.8
Speedup 2.77 5.01 2.79 1.89
Efficiency 92.4% | 83.5% | 92.9% | 94.4%

The plot below shows speedup from the tests using 6 shifts on the SUN work-
stations. The straight line is the ideal speedup, the pluses 4+ are the speedup
from the tests on program 2A and the circles o are the speedup from the tests
on program 2B.
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SUN, Program 2A and 2B, 6 Shifts
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The graph below shows idle time, working time and communication for the
SUN configuration. First every processor factorises, only part of the factorisa-
tion time is shown in the figure. Then at each iteration each processor multiplies,
orthogonalises its own vector and exchanges the vector with the other proces-
sors. A particular processor unpacks a vector first when it is needed, The idle
time is reduced by this procedure compared to the parallel program 2A.
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In comparing the timing results with parallel program 2A this implemen-
tation get considerably better results due to the different way to exchange the
vectors as discussed before.

5.7 Convergence

In this section we will discuss the convergence aspects of the algorithms. The
different parallel algorithms differ mainly in the communication aspects. The
only difference in the numerical aspects 1s in the orthogonalisation process. The
different parallel algorithms get almost the same numerical behaviour. The
big difference is between the sequential algorithm and the parallel algorithms.
Here we will discuss the difference in the numerical aspects between the parallel
algorithms and the sequential algorithm.

Test Matrices
In these tests we have chosen A = diag(1 : 500), B = I.
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Tests

The tests shows that the matrices K and H are more unstable numerically in
the parallel algorithm than in the sequential algorithm.

As the first two tests we choose 2 shifts, one sequential test and one parallel
test.

Tests
Test No 15 16
No of Processors | 2 1
Shifts 2
Iterations with
each shifts 30 30
Total no of
Iterations 60 60
T 100.5 | 100.5
I 110.5 | 110.5

The graph below shows the normalised singular values for the matrices H
and K as the number of iterations progresses for test 15, the parallel test. The
pluses + are the singular values of the matrix H and the circles o are the singular
values of the matrix K.

singular values in the H and K matrices
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The test shows that the matrices H and K get a null space of dimension
one in this case. A singular value decomposition of the matrices shows that they
get the same null space in this case.

However if we take into consideration the null space when the approximate
eigenvalues are calculated we get the same convergence as in the sequential case,
see appendix how this is done.
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The graph below shows the convergence for the parallel case.

2 processors, 2 shifts
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The graph below shows the normalised singular values for the H and the K
matrices as the number of iterations progresses for test 16, the sequential test.
The + sign are the singular values of H and o are the singular values of K.
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Note in the graph above that we do not get a null-space in the matrices H
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and K.
The graph below shows the convergence for the sequential case.
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From the convergence graphs for the sequential and parallel algorithms we
can conclude that we get almost the same convergence. The null-space in the
H and K matrices in the parallel algorithm does not affect the convergence if
dealt with properly in this case.

Distance Between the Shifts

How does the distance between the shifts affect the singular values of the ma-
trices if the number of iterations is kept constant? If the distance is zero we get
the same shifts and linear dependence between the basis vectors.

In the graph below we have tested how the singular values in the H matrix
for the parallel algorithm depends on the distance between the shifts. The
shifts are g1 = 100.5 and g2 = 1005+ 5% j,7 = 1,...,6. The total number of
iterations is 60, 30 iterations on each processor.
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As we can see in the above graph, if we fix the number of iterations and in-
crease the distance between the shifts, the smallest singular value of H increases

distance between shifts

in the parallel algorithm.

How large is the null space of H and K as the number of processors increases.
In the graph below we have used 3 processors, 3 shifts and 20 iterations on each

processor. The shifts are p; = 100.5, o = 110.5 and pz = 120.5. The + sign

are the singular values of H and o are the singular values of K.
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From the above test we get a null space of dimension two for the matrices
H and K. A singular value decomposition shows that the null space of H and
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K are the same for this case.

If we use 6 processors, how large is the null space for H and K7 In the
graph below we have used 6 processors 6 shifts and 25 iterations with each shift.
The shifts are g; = 100.54+10% (j— 1), j=1,...,6.
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Note that the graph above that the nullspace is of dimension 5 for the test.
The graph below shows the convergence for the above test.
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The graph below shows the convergence for the corresponding sequential

algorithm.

log10(residual)

1 processor, 6 shifts
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If we compare the residuals from the tests we get 57 residuals with a norm

less than 1071 for the parallel algorithm and 78 for the sequential algorithm.

Below we give a summary and conclusions for the convergence tests. There

remains work to done before theorems and proofs can be stated from these

conclusions.

1. IF pa, oo pp, s # py shifts are chosen and applied in parallel with the

parallel rational Krylov method with the same number of iterations with
each shift then the matrices H and K get p — 1 singular values that
are significantly smaller than the others. As the number of iterations
progresses, these singular values can be considered zero and the matrices
H and K have the same null space of dimension p — 1.

IE g, oo pp, ps # pyoshifts are chosen initially and applied in parallel

with the parallel rational Krylov method and the number of iterations are
fixed and equal on each processor. Then the matrices H and K will have
p — 1 singular values that are significantly smaller than the others when
the shifts are close enough. As the distance between the shifts increases
the smallest singular value increases.

5.7.1 Some Possible Explanations of the Convergence of

the Parallel Algorithm

Why do the parallel and the sequential algorithm behave differently? According
to the theory, in exact arithmetic they build up the same space. Somehow the
floating point arithmetic make them behave differently.
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One possible explanation is in the way the basis is built up. In the parallel
version different Krylov spaces are intermixed to build up a larger space, while
in the sequential version one Krylov space at a time is added to build up a
larger space. If the shifts are the same, then the parallel version stops in the
orthogonalisation step in the first iteration because the different processors pro-
duce 1dentical vectors. But for the sequential version if the shifts are the same
the algorithm becomes the shifted and inverted Arnoldi algorithm and does not
break down. What happens when the shifts are close but not the same? We
have some idea from the tests.

Another explanation lies in the orthogonalisation process. The sequential
algorithm builds up the basis one vector at a time, while the parallel version
builds up the basis with p vectors at a time. The parallel version operate on
one Processor

7itp = (A— piB)"'Bu;

Ti4p is orthogonalised against vi,...,viyp—1. The vectors viy1,...,viyp—1
cannot be included in the the starting combinations because they are not calcu-
lated when the processor needs them. This process could cause numerical instability.

Semi Parallel Algorithm

These tests were done after a suggestion by R.B. Lehoucq [1]. Here we use the
same intermixing of the spaces as the parallel algorithm and the same starting
combination as the sequential algorithm. We operate

Tip1 = (A - /JZ'B)_lBUZ'

and diag(p)= diag(pt1, ..., fp, i1, ..., Hp, - .. ). In the tests below we have used
6 semi processors and 6 shifts g; = 1005+ 10 (j — 1), j = 1,...,6. in the
semi parallel algorithm

semi-parallel 6 shifts, 25 iterations with each shift
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singular values in the H matrix
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If we compare the plots above with the corresponding plots for the sequential
algorithm and the parallel algorithm we can see that the semi parallel program
has the largest residuals and the H matrix for the semi parallel algorithm do
not have the p—1 small singular values as the H matrix for the parallel program

has.

5.8 The Rational Krylov Method Compared to
the Shift and Invert Arnoldi Method

In this section we compare the rational Krylov method with the shift and invert
Arnoldi method. We compare the number of converged eigenvalues and the
shape of the convergence region in the complex plane with respect to the total
number of iterations. We compare the methods in two different ways. First we
compare the rational Krylov method with s shifts to shift and invert Arnoldi
method with one shift. Second we compare the rational Krylov method with s
shifts to applying shifted and inverted Arnoldi method s times with the same
shifts. The algorithms are run the same number of steps with all the shifts. In
most tests the total number of steps is 160.

In these tests, we have used a diagonal matrix A and unit B with eigenvalues

in the complex integers.
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The graph below shows the converged eigenvalues for one shift and invert

Arnoldi method with 160 iterations. Approximate eigenvalues with a relative
error between 107° and 1073 are plotted with a circle o. Approximate eigen-
with a relative error between 1078 and 10~ are plotted with a plus +.
Approximate eigenvalues with a relative error below 107! are plotted with a
cross X. The shift is plotted with a star *x. The exact eigenvalues are plotted
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The graph below shows converged eigenvalues for the parallel rational Krylov
method.

rational Krylov 4 processors 4 shifts 40 iterations
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The graph below shows converged eigenvalues for the sequential rational
Krylov method.

rational Krylov 1 processor 4 shifts 160 iterations
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If we compare the three graphs above we note that the Arnoldi method and
the sequential rational Krylov method obtains almost the same number of con-
verged eigenvalues. The parallel rational Krylov method obtains considerable
fewer converged eigenvalues in this case.
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Next we run the parallel rational Krylov method with a larger separation
between the shifts than above.

rational Krylov 4 processors 4 shifts 40 iterations
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In this case the parallel rational Krylov method obtains similar convergence
as the Arnoldi method and the sequential rational Krylov method (graph not
shown).

Now let us compare the rational Krylov method with 4 shifts to 4 separate
runs of shifted and inverted Arnoldi with the same shifts. The convergence is
as plotted below.

4 Arnoldi 4 shifts 40 iterations
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What happens with the rational Krylov method if we increase the distance
between the shifts further? The graph below shows convergence for the parallel
rational Krylov method. Note that the convergence is not so good in the center
as before (the sequential version obtains similar convergence in this case).

rational Krylov 4 processors 4 shifts 40 iterations
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If we increase the distance between the shifts further in the parallel rational
Krylov method we get 4 different regions with converged eigenvalues, see the
graph below (the sequential version obtains similar convergence in this case).

rational Krylov 4 processors 4 shifts 40 iterations
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If we compare the graph above for the parallel rational Krylov method with

4 shift and invert Arnoldi methods in the graph below,

4 Arnoldi 4 shifts 40 iterations
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we note that now the rational Krylov method and the Arnoldi method get
similar convergence.

One advantage with the (parallel) rational Krylov method is that the shifts
can be chosen to mark up other regions than circles.

rational Krylov 10 processors 10 shifts 16 iterations
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rational Krylov 5 processors 5 shifts 32 iterations
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The corresponding convergence test for the b shift and invert Arnoldi meth-
ods to the test above is shown in the graph below.

5 arnoldi 5 shifts 32 iterations
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If we increase the number of iterations on each processor to 50 for the 5 shift
and invert Arnoldi methods we get similar convergence as in the rational Krylov
test with 5 shifts and 32 iterations, see the graph below.
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5 arnoldi 5 shifts 50 iterations
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We need 400 iterations with one shift and invert Arnolid method in order to
obtain a convergence region that encloses the above 5 shift convergence region
for the rational Krylov method. In this case with the shift and invert Arnoldi
method we get many more eigenvalues than we need in order to obtain them we
want, see the graph below.

1 Arnoldi 1 shift 400 iterations
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We can make some conclusions from the tests above.

1. Tt is possible to obtain similar convergence with several shifts in (parallel)
rational Krylov method as with one shift and invert Arnoldi method if the
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total number of iterations are the same in both methods.

2. The choice of the shifts is crucial for the convergence of the rational Krylov
method. The parallel version is more sensitive to the choice of the shifts
than the sequential version. The shifts should be close enough so that
they help each other to build a common space and in the parallel version
they should not be too close so that the method degenerates.

3. The rational Krylov method has more freedom of choice for obtaining the
convergence region than shift and invert Arnoldi.

4. The rational Krylov method with s shifts converges better than the s
shift and invert Arnoldi methods with corresponding shifts, if the shifts
are close enough that the convergence region is continuous in the rational
Krylov method. If the shifts are so far apart so that the convergence region
form islands with converged eigenvalues around the shifts in the rational
Krylov method, then the rational Krylov method with s shifts and s shift
and invert Arnoldi have similar convergence behaviour.

In the tests above, we have compared the convergence with respect to the
total number of iterations. Which method is most suitable for a given problem
depends on the region where the eigenvalues are desired, which solvers are used
and the relation between the orthogonalisation time and multiplication time.

The type of problem where the rational Krylov method is likely to perform
better than a standard shift and invert Arnoldi, is where the desired eigenvalue
region differ to great extent from the typical circular convergence region to the
shift and invert Arnoldi. If a standard shift and invert Arnoldi is applied to such
a problem, then a larger convergence region that includes the desired eigenvalues
is obtained and thus a larger basis is built than in the rational Krylov method.
A large basis takes memory, and it takes time to add a new vector to the basis
through the orthogonalisation process. If the rational Krylov method with s
shifts performs better than s shift and invert Arnoldi methods depends on the
time for multiplications and orthogonalisation. Another advantage is that the
rational Krylov method does not need any post sorting of the eigenvalues that
the s shift and invert Arnoldi methods need.

5.9 Shift Strategies

The rational Krylov method is suited for problems where we want to compute
the eigenvalues and corresponding eigenvectors in a specific region in the com-
plex plane. Shift strategies is an important part of an implementation of the
rational Krylov method. With a shift strategy, we want to place the shifts in a
specific region in the complex plane in a such a way that the eigenvalues with
corresponding eigenvectors are computed in the region to sufficient accuracy.
Another important issue with a shift strategy is to avoid to compute too many
eigenvalues because this takes time and build up a unnecessarily large basis.

A shift strategy for the sequential rational Krylov method could be like
place the first shift close but not to close to the border in the region where the
eigenvalues are wanted. After n,, eigenvalues with corresponding eigenvectors
have converged a new shift could be placed close to the region where we have
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converged eigenvalues with corresponding eigenvectors. We keep the second shift
until n,, additional eigenvalues have converged. The placement of new shift goes
on until all eigenvalues with corresponding eigenvectors have converged in the
region where we want them. How long one should keep a shift depends on how
much time it takes to change the shift compared to the gain with a new shift. If
iterative solvers are used the time it takes to change the shift is negligible. But
if direct solvers are used the factorisation can take a lot of time. There is no
guarantee that all eigenpairs have converged and we get only one eigenvector to
eigenvalues with several eigenvectors. See Ruhe [16] for a implementation of a
shift strategy.

An implementation of a shift strategy in parallel rational Krylov method is
much more difficult. In the sequential version the knowledge about where we
have converged eigenvalues and nearly converged eigenvalues is valuable infor-
mation, when the decision where the new shift should be placed is made. What
we want to do in the parallel version is to place them in such a way in the re-
gion where the eigenvalues are wanted, that when the convergence region of the
different shifts have grown together, all eigenvalues in the region where we want
them have converged. But this strategy needs a knowledge of the eigenvalue
distribution that we are going to compute. For most cases we do not know the
eigenvalue distribution before we compute them, but any information about the
eigenvalue distribution could be useful in placing the shifts in a good way. A
possible strategy is to place them evenly spread out in the region where we want
the eigenvalues and iterate until the convergence regions around the shifts have
grown together. Shift strategies has not been emphasised in the implementa-
tion discussed in this report. But for a commercial or public domain software
of parallel rational Krylov method, shift strategies are important.
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Appendix A

Handling the Null Space of
the Matrices K and H

From numerical investigations we have that K, ,, and H,, ,, have a common
null space of dimension p— 1, where p is the number of processors. The singular
value decomposition of the matrix H is as follows

U H,,,W =X =diag(o1,09,...,0m) (A1)
where
01 >02>...>0m_py1 > Ompy2=... =05 =10
The nullspace is spaned by wp,_pt2,...,w,. Now consider the eigenvalue
problem
K, e =AH,, nx (A.2)

KWWz = \H, s WW "z
multiply with U~
U K s WW*z = \U H,, s WW"
set K = U'K,, »W and ® = W"z and use (A.1) to get the eigenproblem
K& =)\S#%
where

K= [I?M O] LKy € Cmrtximept) | e, | g ep=x(mpt)
K2,1 0

and
Y= [2(1),1 8] , Y1 = diag(oy, ..., Om_(p-1))
We solve the standard eigenproblem
7K@ = Ay
If (@1, A) is an eigenpair of Ef&f(lyl then (W21, ) is an eigenpair to (A.2),
where W = [W  W,], W, € cmx(m=p+1)
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