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AbstractAn implementation of a parallel rational Krylov method for the generalised ma-trix eigenvalue problem is discussed. The implementation has been done on aMIMD computer and a cluster of workstations. The Rational Krylov algorithmis an extension of the shifted and inverted Arnoldi method where several shiftsare used to compute basis vectors for one subspace. In this parallel implemen-tation, the di�erent shifted matrices are factorised each on one processor andthen the iteration vectors are generated in parallel.Keywords: eigenvalues, eigenvectors, sparse, parallel, rational, Krylov, shift,invert, ArnoldiAMS 1980 subject classi�cation 65F15, 65F50, 65W05
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Chapter 1IntroductionEigenproblems occur frequently in science and engineering. Examples of every-day eigenproblems are vibrations in a car and in a stretched string on a piano.Other areas where eigenproblems occur are hydrodynamic stability, magnetohy-drodynamics, Ising spin model, modes in a waveguide, economics and operationresearch, just to name a few. For an overview of eigenproblems see the paperby Bai, Day, Demmel and Dongarra [4].Example 1. The modelling of di�erent modes of a Transverse Magnetic wave(TM) travelling in the z-direction in a hollow-waveguide with arbitrary cross-section is done by the di�erential equation�r2ez = k2cez ; ez = 0 on the boundaryr2 = @2@x2 + @2@y2where the eigenfunction ez is related to the electric �eld in the z-direction byEz = ezej�z, � is the propagation constant. The eigenvalue kc is related to thecuto� frequency fc by the relationfc = c � kc2�where c is the speed of light. The cuto� frequency fc is the lowest frequencythe mode corresponding to kc propagates. 2The solution of a practical eigenproblem can be composed into three sub-tasks, modelling of the problem, discretisation of the model and solving thediscrete problem. This report deals with the last subtask.ModellingMathematical modelling deals with how to describe reality in mathematicalterms, for example setting up the di�erential equations for the waveguide.3



DiscretisationThe discretisation process consists of reducing the continuous problem into amatrix problem by approximating the required unknown function by a vectorrepresenting the value of the function at a discrete set of points. Commondiscretisation processes are the �nite di�erence and the �nite element methods.They are used to discretise di�erential equations and can be used to discretisethe waveguide problem. The matrices that the �nite di�erence and the �niteelement methods generate are sparse i.e most elements are zero. The matricesoften become large when they approximate complicated continuous problems inorder to make a good approximation.Solving the Discrete ProblemWhen we have obtained a discrete problem, we need to put it into a matrixproblem that can be solved with a computer and �nd an algorithm that solvesit. This report deals with an algorithm, the parallel rational Krylov algorithm,that solves the matrix eigenproblem with a parallel computer. The algorithm isnot dependent of the origin of the matrices. They can come from a discretisationof a continuous problem, be random numbers or model a discrete problem likean electric power network. However the algorithm is more or less suitable fordi�erent types of problems.Parallel ComputersA parallel computer is a computer that can use several processors to work to-gether on the same problem. The main reasons to use a parallel computerinstead of a sequential computer are to solve existing problems faster or tosolve larger problems. The type of parallel computer that we have used is acomputer where each processor has its own memory and the processors commu-nicate through a network. The processors are relatively fast and have relativelylarge memory.EigenproblemsThe kind of eigenproblems that can be solved with the parallel rational Krylovalgorithm discussed in this report isAu = �Bu; A;B 2 Cn�n; u 2 Cn; � 2 C (1.1)The algorithm is suitable for eigenproblems where several eigenvalues in a spe-ci�c region in the complex plane are desired, together with the correspondingeigenvectors, and where the matrices are large and sparse.The rational Krylov algorithm is an extension to the shift and invert Arnoldialgorithm. A good introduction to large eigenvalue computation and to theArnoldi method is given in the book by Saad [17]. An implementation of theshift and invert Arnoldi is given in the paper by Kooper, Van Der Vorst andGoedbloed [10]. A parallel Arnoldi method is implemented by Booten, Meijer,te Riele and Van Der Vorst [5]. 4



The Parallel Rational Krylov AlgorithmLet p shifts �1; : : : ; �p be given in a region in the complex plane, where we wanteigenvalues and corresponding eigenvectors. Construct an orthonormal basisv1; : : : ;vm for the spaceKm � spanfv1;(A� �1B)�1Bv1; : : : ; ((A� �1B)�1B)m1v1;(A� �2B)�1Bv1; : : : ; ((A� �2B)�1B)m2v1;: : :(A� �sB)�1Bv1; : : : ; ((A� �sB)�1B)msv1g;where mi are positive integers, m = m1+m2+ : : :+ms+1 and Dim(Km) � m.Approximate eigenvalues and eigenvectors are computed from the restriction ofthe matrix pencil (1.1) to the subspace Km.There are two di�erent major ways to parallelise the rational Krylov algo-rithm. The �rst one is to parallelise the matrix operation r = (A � �iB)�1Bvjand the process of orthogonalising r against the basis. This has been done forthe Arnoldi process. This report deals with a second way that uses di�erentshifts in the matrix operator r = (A � �iB)�1Bvj on di�erent processors asfollows.Perform p factorisations in parallel, one on each processor i.LiU i = (A � �iB); i = 1; : : : ; pThen let processor number i perform the multiplicationsri+1 = U�1i L�1i Bv1and later rj+p = U�1i L�1i Bvj; j = qp+ i+ 1; q = 0; 1; : : :rj+p is orthogonalised against all previous basis vectors v1; : : : ;vj+p�1 either onthe same processor or on a master processor. The remaining part is normalisedand put into vj+p. In the orthogonalisation process, the di�erent processorsneed to exchange data with each other.The rational Krylov algorithm is suited for medium sized problems and thealgorithm discussed is intended for problems where speed is more importantthan to solve the largest possible problem that can �t onto a parallel computer.SummaryThe objective of this work is to implement a parallel rational Krylov method,as described in the second way above, and to analyse speedup and convergenceperformance. In order to solve very large problems with the algorithm, weneed to combine the two di�erent ways above of parallelisation the algorithm.However this is outside the scope of this report.The implementation is experimental, and is not yet intended for distribution.More work needs to be done in analysing the numerical stability and in the areaof parallel sparse general LU factorisation. Shift strategies are an importantpart of a commercial or public domain software of the (parallel) rational Krylovmethod. However this report does not deal with shift strategies.5



With the best implementation of the algorithmwe got a speedup of 5.0 using6 processors, see chapter 5.The parallel rational Krylov method as implemented in this report has somenumerical problems that the sequential version does not have, these numericalproblems need to be investigated further, see the tests.The (parallel) rational Krylov method is likely to perform better than theshifted and inverted Arnoldi method when the region with the desired eigenval-ues di�ers to a great extent from the typical circular convergence region of theshift and invert Arnoldi method.OutlineIn chapter 2 we introduce basic concepts about parallel computers and paral-lel algorithms that we need for the discussion of the parallel rational Krylovmethod. In chapter 3 we �rst discuss subspace methods for eigenvalue compu-tations and then we go on to the Arnoldi method. The Arnoldi method is asubspace method that gives the basic idea for the rational Krylov method. Inthe rest of the chapter we discuss the rational Krylov method and the parallelrational Krylov method. In chapter 4 we give two di�erent major idea programsof the parallel rational Krylov algorithm and discuss some implementation de-tails. In chapter 5 we give the test results of the aspects speed performance andnumerical behaviour. We also compare the (parallel) rational Krylov methodto the shift and invert Arnoldi method. At the end of the chapter we discusssome possible shift strategies.NotationMatrices are written with upper case bold letters like A, vectors are writtenwith lower case bold letters like v and scalars are written with lower case italicletters like �. With hi;j we mean the elementH(i; j) and with hj we mean thej:th column of H. With V j we mean the �rst j columns of the matrix V .AcknowledgementsFirst, I would like to thank my supervisor Axel Ruhe for introducing me toeigenvalue computation and the fruitful discussion behind this report. I wouldalso like to thank my assistant adviser Thomas Ericsson for helping me witheverything from �nding bugs in my programs to discussion of the numericalbehaviour of the algorithms in this report.Other people have also in�uenced this report and I would like to thank them.Richard B. Lehoucq read an early version of the manuscript during a visit tothe department and made some suggestions, Magnus Bondesson helped me withsome issues in the chapter Parallel Computing and Setta Svensson corrected theEnglish.This work was partly supported by Swedish National Board for Industrialand Technical Development, grant 8902538-5.I am grateful to the Center for Parallel Computers, Royal Institute of Tech-nology, Stockholm, Sweden for making the parallel computer IBM-SP2 availablefor computations. 6



Chapter 2Parallel ComputingBefore we discuss the parallel eigenvalue algorithms, we need some basic under-standing of parallel computers and algorithms.2.1 IntroductionThe need to solve larger problems or decrease the execution time for existingones will always demand more powerful computers. One way to satisfy theneeds is to build faster one-processor machines. Since the �rst computer wasbuilt there has been a tremendous increase in computing power, however we willsooner or later reach the physical limit of how fast one-processor can run. If wewish to increase the performance with existing processor technology, one wayto do it is to use several processors at the same time i.e. parallel computers. Ina parallel computer several processors are put together in such a way that theycan work independently and exchange data with each other. In this report weare mainly interested in parallel algorithms. With a parallel algorithm we meanan algorithm that can be divided into several sub-parts that can be treated inparallel. The sub-parts may have to exchange information with each other atcertain points of time.In order to discuss parallel algorithms we need some basic knowledge ofparallel computers. We look at three di�erent ways of classifying computers;instruction and data streams, granularity of the operations and memory locali-sation.2.1.1 Instruction and Data StreamsThe most common way to describe computer architectures is Flynn's taxonomysee [7, 6]. The classi�cation is based on the number of instructions and datastreams that can be processed simultaneously.� (SISD) Single Instruction stream -Single Data stream� (SIMD) Single Instruction stream -Multiple Data stream� (MISD) Multiple Instruction stream -Single Data stream� (MIMD) Multiple Instruction stream -Multiple Data stream7



SIMD and MIMD are the existing parallel computer types.SISDSISD is the usual one-processor computer.SIMDSIMD computers have only one instruction stream. The di�erent processorsexecute the same operation at every moment of time, but each of them withdi�erent data. Not all parallel algorithms can be implemented on an SIMD suc-cessfully. An SIMD computer usually has several thousands of processors. Oneexample of a problem that can use an SIMD is matrix addition, C = A+B.First A and B are distributed over the processors in a such a way that foreach index pair i; j ai;j and bi;j are located on the same processor, then a par-ticular processor just adds the part of A and B that belongs to its domain,ci;j = ai;j + bi;j. Examples of SIMD computers are the Connection Machines,CM-1 and CM-2. Another SIMD computer is the Maspar MP-1. For informa-tion about these computers see [18].MISDNo computer has ever been build after this model according to [18].MIMDMIMD is the most �exible computer type. Each processor runs its own pro-cess/processes and communicates with the other processors when needed. Anexample of an MIMD computer is the IBM-SP2. An MIMD computer usuallyhas fewer processors than an SIMD machine but each of them is most oftenmuch faster.2.1.2 GranularityA categorisation of the inherent parallelism of an algorithm is the grain size.Typically the grain size can be divided into �ne grain, medium grain and coarsegrain parallelism according to if units, tens or hundreds and more operations areperformed between each communicationpoint. SIMD computers are most suitedfor �ne grain parallelism, while MIMD computers are most suited for coarsegrain parallelism. The level of granularity a computer is suited for depends onhow much time each operation takes compared with how much time it takes toexchange data with other processors.The algorithms discussed in this report are relatively coarse grain and theyare implemented on an MIMD computer (IBM-SP2), so we will concentrate onMIMD computers.2.1.3 Memory LocalisationMIMD computers (and SIMD) can be divided into two major subclasses� Shared memory computers 8



� Message passing computersShared MemoryThe processors share the main memory, but usually each processor has its owncache. The communication is done through the shared main memory.Message PassingEach processor has its own memory. Communication is done through messagesthat are sent on an interconnecting network. This is the subclass on which wewill concentrate.2.1.4 Parallel Virtual MachineSeveral heterogeneous computers can be connected through a network and actas a parallel computer. PVM (parallel virtual machine) is a software packagethat makes this possible, see [8]. PVM uses messages to exchange data betweenprocesses, and the two programming languages C and Fortran are supportedby PVM. Several Parallel MIMD computers also support PVM as a way toexchange data between processors.The main di�erence, between a parallel MIMD computer with distributedmemory and a cluster of workstations connected through a standard networkacting as a parallel computer, is the speed of communication between the pro-cessors. A parallel computer has a fast dedicated network with much higherperformance than a standard network.The algorithms in this report are implemented using PVM and Fortran.The programs run on an IBM-SP2, a MIMD parallel computer with distributedmemory and a cluster of SUN workstations connected through an Ethernet.2.2 Measuring Program PerformanceIf we implement a parallel algorithm using p processors, the best we can hopefor is a program that runs p times faster than if it was to run on a singleprocessor. However this is seldom reached in practice. Below we will discusssome performance measures and why the optimum speed is rarely reached.SpeedupThe speedup Sp on p processors, is given bySp = T1=Tp;where T1 is the execution time for the sequential program on one processorand Tp is the execution time for the parallel program on p processors. Thetheoretical peak performance is Sp = p.9



E�ciencyThe E�ciency Ep is given by Ep = 100Spp %The theoretical peak performance is Ep = 100%.The main reasons why Ep and Sp rarely reach their peak values are� it takes time to transfer data between processors� all processors do not have the same load� parts of the program have no natural parallelism in themCommunication TimeThe total time it takes to transfer b bytes from one processor to another ist = L + b=B;where L is the latency, that is the time it takes to set up the communicationlink. The bandwidth B is the rate of transfer in byte per seconds after a com-munication link has been established.Example 2. The process of sending a message with PVM is composed into thesub-parts of initiating a sending bu�er, packing data into the bu�er and sendingthe bu�er. An arriving message is �rst stored into a temporary bu�er and islater unpacked by the program that receives the message.To estimate the communication speed we note that on the IBM-SP2 thewhole process of sending a double precision number from processor A to pro-cessor B and back to A again with PVMe (IBMs version of PVM) takes 400�s,just the send operation takes 42�s. The same procedure with a double precisionarray of length 10000 takes 12ms and 3.3ms respectively.The computation speed on the other hand can be seen from that the calcula-tion of the inner product between two vectors of length 10000 takes 870�s on oneprocessor. The computation speed varies depending on how data is transferredbetween di�erent memory hierarchy.The latency L can be approximated by 42�s, that is the time for the sendoperation for one double precision number. The bandwidth B for a doubleprecision vector of length n = 10000 is 8 � 10000=6 � 10�3 = 13:3M byte persecond, or di�erently expressed 13:3=8 = 1:7 M double precision numbers persecond. The number of �oating point operations per second (�ops) for thescalar product is 2 � 10000=870 � 10�6 = 23M �ops. In this case the computecommunicate ratio is 23=1:7 = 13:5The above example shows that in order to write e�cient parallel programson the IBM-SP2 and similar computers, the number of �oating point numberssent from one processor to another should be much smaller than the number of�oating point operations. 10



Load BalancingIn order to achieve high e�ciency in a parallel program, it is important to keepthe time spent waiting for data from other processors to a minimum and thetime spent doing useful work to a maximum. The process of allocating work toprocessors in such a way as to keep the processors' idle time as short as possible,is called load balancing.Sequential Parts of a ProgramNot all algorithms can be successfully implemented on a parallel computer be-cause a large portion of the algorithm has no parallelism in it. Even parallelprograms may have parts in them that are not parallel, for example controlsequences. Some parallel parts in a parallel algorithm may be more e�cientlyimplemented sequentially due to communication time. Amdahl's law gives arelation between the speedup Sp, the parallel part r i.e execution time of theprogram and the sequential part s of the program as followsSp � 1s + rp ; s+ r = 1where p is the number of processors.Example 3. If the sequential part s = 0:5, the parallel part r = 0:5 and thethe number of processors p = 5 thenS5 � 10:5 + 0:55 = 1:67The same procedure with s = 0:1, r = 0:9 and p = 5 givesS5 � 10:1 + 0:95 = 3:57In order for an algorithm to be successfully implemented on a parallel com-puter the sequential part s needs to be much smaller than the parallel partr. For a more complete discussion on Parallel computers and parallel algorithmsthan given above, see for example [7, 6].
11



Chapter 3Krylov Subspace Methods3.1 Subspace MethodsIn a subspace method for the eigenproblem,Au = �u; (3.1)we seek an approximate eigenpair (~�; ~u) in such a way that the approximateeigenvector belongs to a subspace S and the di�erence between the approximateeigenpair (~�; ~u) and the correct eigenpair (�;u) is small by some measure.Let A 2 Cn�n, S be a subspace of Cn, S � Cn and xi; i = 1; : : : ;m be abasis of S. Now let S be invariant under A,x 2 S ) Ax 2 S:We seek an eigenvector, eigenvalue pair such thatAu = �u;u 2 S; � 2 C:Especially if we let A operate on the vectors that build up the basis of SAxj = mXi=1 xihij ;and if we take X = [x1; : : : ;xm];H = [hij];we will get AX = XH : (3.2)If (�;y) is an eigenpair of H then (�;Xy) is an eigenpair of A. Multiply (3.2)by y A(Xy) = XHy= �(Xy):12



In general, in a numerical subspace method we do not have invariant sub-spaces. So the relation (3.2 ) does not hold. Instead we getW = AX �XH ; (3.3)where W is the residual matrix. Thus if (~�; ~y ) is an eigenpair of Hthen(~�;X~y ) is usually not an eigenpair of A. In designing a subspace method wewant both the error in the eigenvalue k �� ~� k and the angle to the eigenvectorminu2 S� (k u � ~u k = k u k) to be small. Here S� denotes the eigenspacecorresponding to �. Usually we can not measure these quantities in a good way.On the other hand we can take ~u = X ~y as the approximate eigenvector, andget the residual vector w w = A~u� ~�~u= AX~y �XH~y=W ~y;and see if we can get its scaled length k w k = k u k to be small.3.1.1 ProjectionA projection matrix P 2 Cn�n onto a subspace S � Cn satis�esP 2 = P ; Px 2 S 8x 2 Cn; (3.4)Every vector x 2 Cn can be composed into one part in S and one in its com-plement. x = Px + (I �P )xAn orthogonal projection P satis�es in addition to (3.4) the following condition(I �P )x 2 S?Proposition 1. A projector is orthogonal if and only if it is hermitian.For proof see [17]. Assume that m = Dim( S), m � n and that v1; : : :vmare orthonormal vectors such that vi 2 Cn andS = spanfv1; : : : ;vmg;then P can be written as P = V mV �m;where V m = [v1; : : : ;vm].Proposition 2. Let P be an orthogonal projector onto the subspace S, x 2 Cnand y 2 S, then k x� Px k2= miny2 S k x � y k2Projections are often used to measure how close an eigenvector u is to thesubspace S. 13



3.1.2 Subspace MethodsWe will now give a basic subspace method. Consider the eigenproblem (3.1 )and a subspace S of dimension m. We want to �nd approximate eigenvec-tors ~u(m)i 2 S; i = 1; : : : ;m and corresponding eigenvalues ~�(m)i ; i = 1; : : : ;m,usually m� n where n is the dimension of the matrix A.Let v1; : : : ;vm be an orthonormal basis for S and V m = [v1; : : : ;vm]. Nowwe want the approximate eigenpairs (~u(m)i ; ~�(m)i ); i = 1; : : : ;m to satisfy(A � ~�(m)i I)~u(m)i ? S; ~u(m)i 2 S; i = 1; : : : ;m;or with matrix notation, V �m(A� ~�(m)i I)~u(m)i = 0: (3.5)This can also be expressed with a projection Pm = V mV �m asPm(A� ~�(m)i I)~u(m)i = 0:Now ~u(m)i 2 S so ~u(m)i can be written as a linear combination of the basisvectors vi ~u(m)i = V m~y(m)i (3.6)Put (3.6) in (3.5) and getV �m(AV m~y(m)i � ~�(m)i V m~y(m)i ) = 0or V �mAV m~y(m)i = ~�(m)i ~y(m)i :or H~y(m)i = ~�(m)i ~y(m)i ;where H = V �mAV m:This leads up to the simple algorithmAlgorithm 1. (basic idea)1. Compute the orthonormal basis v1; : : : ;vm2. Compute H= V �mAV m3. Compute eigenpairs (~y(m)i ; ~�(m)i ); i = 1; : : : ;m to H4. Take ~�(m)i as approximate eigenvalue and ~u(m)i = V m~y(m)i as approximateeigenvector to A.The above algorithm should only be considered as a basic idea, not for numericalcomputation. 14



3.2 Krylov SubspacesKrylov subspace methods are built around the sequence of subspaces,Km � spanfv;Av;A2v; : : : ;Am�1vg (3.7)The Krylov methods calculate approximate eigenvectors ~ui 2 Km; i = 1; : : : ;mand corresponding approximate eigenvalues ~�i; i = 1; : : : ;m, to the eigenvalueproblem Au = �u;A 2 Cn�n;u 2 Cn; � 2 C (3.8)Some of the Krylov subspace methods are1. The Arnoldi method2. The Hermitian Lanczos methodThe rational Krylov method uses a variation of the subspace (3.7). We willdiscuss this later.In the following we state some properties about the Krylov subspaces. Amore complete discussion can be found in Saad [17].Proposition 3. A vector x 2 Km can be written as x = p(A)v, where p is apolynomial of degree not exceeding m-1.Proposition 4. Let � be the lowest degree of a polynomial p such that p(A)v = 0.Then K� is invariant under A and Km = K� for all m � �.This means that K� is the largest possible Krylov subspace starting with v.The vectors v;Av;A2v; : : : ;A��1v are linearly independent, but v;Av;A2v;: : : ;Am�1v will be dependent for any m > �. The subspace K� is invariant andall approximations to eigenvectors from K� will be exact. Any Krylov algorithmwill have to stop before linear dependence is reached among the basis vectors.3.3 Arnoldi's MethodKrylov proposed his method already in 1931, but the most notable works weredone by Lanczos [11] and Arnoldi [3] around 1950. Their methods build up anorthonormal basis V m = [v1; : : : ;vm] for the subspace Km one vector at a time.In each step the matrix is applied to the most recent basis vector, and then theresult is orthogonalised to those vectors that have already been computed.Algorithm 2. ArnoldiI Start. Choose a vector v1 of norm 1.II for j = 1; 2; : : : ;m do1. r := Avj Operate2. hij := v�i r, i = 1; 2; : : : ; j3. r := r �Pji=1 hijvi , Orthogonalise4. hj+1;j :=k r k2 Normalise5. if hj+1;j = 0 stop6. vj+1 := r=hj+1;j Get new vector7. Compute approximate solution and test for convergence15



By construction, the vectors vj are orthonormal. They also span Km.Let V m = [v1; : : : ;vm] and Hm;m = [hij]; i; j = 1; : : : ;m be computed bythis algorithm. Then the relationAV m = V mHm;m + hm+1;mvm+1e�m (3.9)holds. If hm+1;m = 0 then the vectors vj span an invariant subspace under A.Thus if (�;y) is an eigenpair of Hthen (�;V my) is an eigenpair of A.In general, we stop before we get an invariant subspace. In step II.7 them �m eigenproblem Hm;m~y(m)i = ~�(m)i ~y(m)iis solved and we take ~u(m)i = V m~y(m)i (3.10)as the approximate eigenvector. Now we get the residuals(A � ~�(m)i I)~u(m)i = AV m~y(m)i � ~�(m)i V m~y(m)i= V mHm;m~y(m)i + hm+1;me�m~y(m)i vm+1� ~�(m)i V m~y(m)i= hm+1;me�m~y(m)i vm+1:The �rst equality follows from (3.10), the second from (3.9), and the thirdis a consequence of that ~y(m)i is an eigenvector of Hm;m.3.3.1 Invariant SubspaceUnder what condition is the subspace Km invariant? Assume that the matrixA is diagonalisable, then v = mXi=1 �iui; k v k2= 1where the vectors ui; i = 1; : : : ;m are eigenvectors to the matrixA. The Krylovsubspace Km can be written asKm � spanf mXi=1 �iui; mXi=1 �i�iui; mXi=1 �i�2iui; : : : ; mXi=1 �i�m�1i uigSuppose �rst that the eigenvalues �i; i = 1 : : : ;m to the corresponding eigen-vectors ui; i = 1; : : : ;m are all distinct. Then the eigenvectors ui; i = 1; : : : ;mspan the Krylov subspace Km of dimension m and the subspace Km is invariantunder A.Suppose now that we have two eigenvectors um�1 and um to the sameeigenvalue �m�1 = �m then�m�1�km�1um�1 + �m�kmum = �km�1(�m�1um�1 + �mum)16



and �m�1um�1 +�mum is also an eigenvector to the matrix A with the eigen-value �m�1 = �m. In this case the subspaces Km�1 and Km are equal andthe dimension of the subspace Km�1 is m � 1. Furthermore the eigenvectorsui; i = 1; : : : ;m� 2 and the eigenvector �m�1um�1+�mum span the subspaceKm�1 and Km�1 is invariant under A. This shows that it is only possible to ob-tain one eigenvector to a eigenvalue with the Arnoldi method. This is also truefor the related methods rational Krylov method and shift and invert Arnoldimethod discussed later.In the non diagonalisable case we may get principal vectors of higher grade,but we will only get one eigenvector.3.3.2 Convergence of ArnoldiIn the following subsection we use projection operators as means to measurethe distance between an eigenvector ui and the Krylov subspace Km. In thehermitian case these bound the errors in the eigenvalues and eigenvectors, butalso in the general case they are used to measure convergence see [17].Proposition 5. Let Pm be the orthogonal projector onto Km i.e. Pm = V mV �m.Assume that A is diagonalisable and that the vector v1 in Arnoldi's method canbe written as v1 =Pk=mk=1 �kuk , where uk are normalised eigenvectors of A inwhich �i 6= 0. Then the following inequality holdsk (I �Pm)ui k2� �i�(m)iwhere �i = nXk=1;k 6=i j�kjj�ijand �(m)i � minp2P�m�1 max�2�(A)��i jp(�)j:where P�m�1 is the set of all polynomials with a degree less than or equal tom � 1 such that p(�i) = 1. For proof see [17].An estimate for �(m)1 is given below.Proposition 6. Let m < n. Then there exist m eigenvalues of A which can belabelled �2; �3; : : : ; �m+1 such that�(m)1 = 0@m+1Xj=2 m+1Yk=2;k 6=j j�k � �1jj�k � �j j1A�1For proof see [17].If �1 is in the outer part of the spectrum then j�k � �1j will generally belarger than j�k � �j j. Thus �(m)1 will be small compared to the average of �(m)iand ~�(m)i will converge faster than most eigenvalues.17



3.3.3 Shift And Invert ArnoldiIf we substitute the matrixA by the shifted and inverted matrix (A � �I)�1 inthe Arnoldi algorithm, the eigenvalues of A which are closest to � will convergefastest. Ax = �x(A� �I)x = (�� �)x1(�� �)x = (A� �I)�1 xThus if � is an eigenvalue of A then 1��� is an eigenvalue of (A� �I)�1. If� is close to � then 1��� will be an eigenvalue in the outer part of the spectrumof (A � �I)�1 and thus converge fast.3.4 Rational Krylov AlgorithmThe rational Krylov method is a generalisation of the shift and invert Arnoldimethod. In the shift and invert Arnoldi we choose one shift � in the complexplane where we want the eigenvalues to converge fast, while in the rationalKrylov we choose several shifts �1; : : : ; �s. The rational Krylov method wasdeveloped by Ruhe see [13, 14, 15, 16] . The space Km in the rational Krylovmethod is Km � spanfv1;(A � �1I)�1v1; : : : ; (A� �1I)�m1v1;(A � �2I)�1v1; : : : ; (A� �2I)�m2v1;: : :(A � �sI)�1v1; : : : ; (A� �sI)�msv1g; (3.11)where m = m1 +m2 + : : :+ms + 1 and Dim(Km) � m.In Arnoldi's method every vector x 2 Km can be expressed asx = pj(A)v1 ; j � m� 1;where pj is a polynomial of degree j. But in the rational Krylov method everyvector x 2 Km can be written as x = r(A)v1where r(�) = pj(�)(�� �1)j1(� � �2)j2 : : : (�� �s)js=c0 + j1Xk=1 c1;k(� � �1)k + j2Xk=1 c2;k(� � �2)k+ : : :+ jsXk=1 cs;k(�� �s)k ;18



j = j1 + j2 + : : :+ js, j1 � m1; j2 � m2; : : : ; js � ms.In matrix analyses in general we haveBA 6= AB; A;B 2 Cn�n;but for di�erent functions of the same matrix, note that(A� �iI)�1(A� �jI)�1 = (A� �jI)�1(A � �iI)�1and p(A)(A� �iI)�1 = (A� �iI)�1p(A):Example 4. r(�) = �2 � 3�+ 1(�� 2)(�� 3)= 1(�� 2) + 1(� � 3) + 1r(A) = (A2 � 3A+ I)(A � 2I)�1(A � 3I)�1= (A� 2I)�1(A� 3I)�1(A2 � 3A+ I)= (A� 2I)�1 + (A � 3I)�1 + IIn creating a basis for Km (3.11) it does not matter in which order theoperators (A � �1I)�1; : : : ; (A � �s)�1 are applied. This is the key to theparallel algorithm, but �rst we will discuss the sequential algorithm.We will discuss the rational Krylov method for the generalised eigenproblemAu = �Bu (3.12)In the case, B is invertible. We substitute A with B�1A in (3.11) and theoperators become (B�1A � �iI)�1 = (A � �iB)�1B. Below we describe thesequential version of rational Krylov method for the generalised eigenproblem.Algorithm 3. RKS 1I Start. Choose a vector v1 of norm 1II for j = 1; 2; : : : ;m do1. r := V jtj Choose starting combination2. r := (A� �jB)�1Br Choose �j and Operate3. hij := v�i r; i = 1; 2; : : : ; j4. r := r �Pji=1 hijvi Orthogonalise5. hj+1;j :=k r k2 Normalise6. if hj+1;j = 0 stop7. vj+1 := r=hj+1;j Get new vector8. Compute approximate solution and test for convergenceWe will now derive relations between A;B;V j and hi;j. Later on we willdescribe how to calculate approximate eigensolutions and residuals.Put II.1 and II.2 together and we getr = (A � �jB)�1BV jtj:19



From II.4 we rewritejXi=1 hijvi = V jhj ; hj = � h1;j:hj;j �; V j = [v1;v2; : : : ;vj ]Use step II.4 and II.7 together with the relations above we getvj+1hj+1;j = (A� �jB)�1BV jtj � V jhjsubstitute hj = � hjhj+1;j �V j+1hj = (A� �jB)�1BV jtjmultiply with (A� �jB)(A � �jB)V j+1hj = BV jtjSeparate terms with A and B, substitute also tj with � tj0 � to get the relationat the j:th step, AV j+1hj = BV j+1(hj�j + tj):Put Hm+1;m = [h1; : : : ;hm], Tm+1;m = [t1; : : : ; tm] with appropriate zerosadded to the bottom of each hj , tj . Introduce the new matrixKm+1;m =Hm+1;mdiag(�i) + Tm+1;m: (3.13)Note that both Hm+1;m and Km+1;m are Hessenberg matrices. We �nally getthe relation AV m+1Hm+1;m = BV m+1Km+1;m: (3.14)3.4.1 Approximate EigensolutionWewill �rst show that ifKm is invariant under (A��iB)�1B andA is invertiblethen, Km is invariant under A�1B.If x 2 Km, and (A � �iB)�1B is invariant under Km, thenz = (A� �iB)�1Bx; z 2 Kmmultiply with (A� �iB) and separate A and BAz = B(x + �iz)and thus if A is invertible then Km is invariant under A�1B.If Km is invariant under (A � �iB)�1B then vm+1 = 0 and the relation( 3.14 ) becomes, AV mHm;m = BV mKm;m (3.15)If Km;my = �Hm;my (3.16)20



then put it in (3.15) and we getAV mHm;my = �BV mHm;my:Thus if (�;y) is an eigenpair to (3.16) thenAu = �Bu; u = V mHm;myNow assume that Km is not invariant, which will be the most usual case.Let (~�(m)i ; ~y(m)i ) be an eigenpair of (3.16) and take~u(m)i = V m+1Hm+1;m~y(m)i (3.17)as the approximate eigenvector and ~�(m)i as the approximate eigenvalue to(3.12). The residual will be(A � ~�(m)i B)~u(m)i = (A � ~�(m)i B)V m+1Hm+1;m~y(m)i= BV m+1(Km+1;m � ~�(m)i Hm+1;m)~y(m)i= Bvm+1(km+1;m � ~�(m)i hm+1;m)e�m~y(m)i= Bvm+1(�m � ~�(m)i )hm+1;me�m~y(m)i : (3.18)The �rst equality comes from (3.17), the second from (3.14 ), the third from(3.16) and the fourth from ( 3.13 ). Note that the residual is B�1 orthogonalagainst V m.3.4.2 ShiftsAssume that we use s di�erent shifts, �1; : : : ; �s and that i:th shift is used jitimes. For memory reasons we can usually have only one LU-factorisation ofeach shifted matrix (A��iB) inmemory at a certain time. The LU-factorisationusually costs more than to solve Lx = v;Ur = x. So in step II.2 we want� Factor LiU i = (A� �iB) one time.� Keep the same factor for ji steps.If we use iterative solvers this may not apply.3.5 Parallel Rational Krylov AlgorithmThe key to the parallel algorithm is that it does not matter in exact arithmeticin which order the operators (A � �iB)�1B are applied in building a basis forthe subspace Km (3.11). 21



Algorithm 4. RKS ParallelI Start. Choose a vector v1 of norm 1 and set j := 1II do while j � m1. rk := V j+k�1tj+k�1, k = 1; 2 : : : ; p Choose starting combinations2. rk := (A� �kB)�1Brk, k = 1; 2 : : : ; p Choose �k,k = 1; 2 : : : ; p3. Orthogonalise and get new vectorsfor k = 1; 2; : : : ; p do(a) hij := v�i rk; i = 1; 2; : : : ; j(b) rk := rk �Pji=1 hijvi(c) hj+1;j :=k rk k2(d) if hj+1;j = 0 stop(e) vj+1 := rk=hj+1;j(f) j := j + 1end4. Compute approximate solution and test for convergenceendIn step II.1 note that vj+k�1, k > 1 has not yet been computed so all startingcombinations in the vector tj+k�1 are not available.The algorithm above leaves some choices on how to implement it. We havechosen two di�erent ways. They di�er in the way orthogonalisation is done.Both programs use p di�erent processors to compute rk := (A� �kB)�1Brk,k = 1; : : : ; p. The �rst program uses an additional processor to do the orthogo-nalisation. The second program lets each processor orthogonalise its own vector.In the implementations of the algorithm we have used direct solvers. So instep II.2 on each processor, we factorise once for each shift and keep the shiftsthe same number of iterations on all processors.The choice of starting combinations in step II.1 is as follows: in the �rstparallel iteration each processor uses v1. Then in the following parallel iterationseach processor starts with its own orthogonalised rk. With a parallel iterationwe mean an iteration of the while loop in step II.
22



Chapter 4Implementation Details4.1 Parallel Program 1This program has been implemented in a Master/Slave way. The Master pro-gram does all program control and all orthogonalisation. The Slave programsdo all operations rk := (A� �kB)�1Brk; k = 1; : : : ; pprogram MasterChooseNo of slave processors pThe p �rst shifts �i; i = 1; : : : ; pThe start vector v1Start p Slave programsInitialise the matrices A and BSend(A;B;v1) to all slavesSend �i to slave No i,i = 1; : : : ; pj := 0do until convergence( Decide the status for all slavesall slaves have the same statusstatus ={ New Shift, Same Shift , STOP })if status = New Shift thenChoose p new shifts �i; i = 1; : : : ; pend ifdo i = 1; pj := j + 1Receive vector r from slave no iOrthogonalise r against all previous vi i = 1; : : : ; jif k r k2= 0 thenstatus := STOPelsevj+1 := r= k r k2end ifSend status to slave no i 23



if status = STOP thenCompute approximate solution and convergenceSTOPend ifSend vj+1 and �i to slave no iend doCompute approximate solution and check convergenceend untilend program Masterprogram SlaveReceive(A;B; �; r) from Masterstatus := New shiftdo while status 6= STOPif status = New Shift thenfactor LU := (A� �B)end ifr := U�1L�1Brsend r to masterreceive status from masterif status = STOP thenSTOPend ifreceive r; � from masterend whileend program SlaveThe time the master program spends in communication in each iteration istM = Cnp+ Lpwhere C is a constant which depends on the network and which precision isused in the program ( single precision, double precision, complex ,...). p is thenumber of slave processors, L is the latency and n is the dimension of A. Thetime each slave program spends in communication in each iteration istS = Cn+ L:The main problem with this implementation is that the slave processors becameidle while orthogonalisation is done in the Master program. The time the Masterprocessor spends in each orthogonalisation grows linearly with j. The Masterprocessor is idle while the slaves do the factorisation. We will comment moreon this in the tests.The advantage of this implementation is that the communication grows lin-early with the number of processors and the total communication time is smallerthan in the second implementation. This will be an advantage on a slow net-work. If the operations rk := (A � �kB)�1Brk; k = 1; : : : ; p takes relativelylong time, so that the Master processor has time to orthogonalise while theslaves work, this implementation will work relatively well.24



4.2 Parallel Program 2AThe second implementation can be described as same program multiple data(SPMD). The same programs are started on p di�erent processors. Processornumber k; 1 � k � p operate rk := (A � �kB)�1Brk and orthogonalises rkagainst vi; i = 1; : : : ; j. For this to be possible, the processors exchange theorthogonalised vectors with each other. Note also that the orthogonalisation issplit up in two parts.program SPMDget the number of started programs: pdetermine which program I am: me (1 � me � p)ChooseThe p �rst shifts �i; i = 1; : : : ; pThe start vector v1status := New shiftj:= 1r := v1do until convergenceif status = New Shift thenfactor LU := (A� �meB)end ifr := U�1L�1BrOrthogonalise r against vi; i = 1; : : : ; jdo i = 1;me� 1j := j + 1receive vj from program iend doorthogonalise r against vi; i = j �me + 2; jif k r k2= 0 thensignal to other processors to STOPCompute approximate solution and STOPelsevj+1 := r= k r k2end ifj := j + 1send vj to all other programsdo i = me+ 1; pj := j + 1receive vj from program iend doCompute approximate solution and check convergencedecide status for next iterationif status = STOP thenSTOPelse if status = New Shift thenChoose p new shifts �i; i = 1; : : : ; pend ifend untilend program SPMD 25



Every processor sends and receives p � 1 vectors of length n. A particularprocessor waits while the others send and receive. So every processor slowsdown with the system communication time,tc = Cp(p� 1)n+ Lp(p� 1):Besides the communication time, every processor has to wait while the othersdo the second orthogonalisation, this istortho = (1 + 2 + : : :+ p� 1)Dwhere D is the time it takes to orthogonalise against one vector of length n.This implementation works well up to around 6 processors on the IBM-SP2,see the test results. Because of the quadratic growth in communication time asp increases this algorithm will never work on too many processors.4.3 Parallel Program 2BWith a reorder of receive and send in the algorithm above it should be possiblethat each processor has a linear growth in communication, as the number ofprocessors increases, while the system of processors has quadratic growth.program SPMD Bget the number of started programs: pdetermine which program I am:me (1 � me � p)ChooseThe p �rst shifts �i; i = 1; : : : ; pThe start vector v1status := New shiftj:= 1r := v1do while status 6= STOPif status = New Shift thenfactor LU := (A� �meB)end ifr := U�1L�1BrOrthogonalise r against vi; i = 1; : : : ; jif j > 1 thendo i = me+ 1; pj := j + 1receive vj from program iend doend ifdo i = 1;me� 1j := j + 1receive vj from program iend doorthogonalise r against vi; i = j � p+ 2; jif k r k2= 0 thensignal to other processors to STOP26



Compute approximate solution and STOPelsevj+1 := r= k r k2end ifj := j + 1send vj to all other programsCompute approximate solution and check convergencedecide status for next iterationif status = New Shift thenChoose p new shifts �i; i = 1; : : : ; pend ifend whiledo i = me + 1; pj := j + 1receive vj from program iend doend program SPMD BEvery processor sends and receives p � 1 vectors of length n. So everyprocessor slows down with communication timetc = C(p� 1)n+ L(p� 1):on the other hand, the system has a communication time of,tc = Cp(p� 1)n+ Lp(p� 1):The idea behind this version is to receive the data �rst when you need it,and work while the other processors communicate.The process of sending a message with PVM is composed into (1) initiatinga sending bu�er, (2) packing data into the bu�er and (3) sending the bu�er. Anarriving message �rst is stored into a temporary bu�er and later is unpacked bythe program that receives the message.That the sending process is blocking means that it returns �rst when thereceiving process has unpacked the data. In order for the above program to workproperly the send operation should be non-blocking, so the sending process cando useful work and do not have to wait until the receiving process unpacks thedata. However, in this particular implementation on the IBM-SP2 with Fortranand PVMe, it has seemed like that the send operation is blocking, even thoughit should not be blocking according to the manual, see [9].4.4 Implementation Details4.4.1 SolversWe have used direct band solvers from LAPACK [2]. Other solvers are possiblelike iterative solvers and general sparse solvers. However there is a problem withusing general sparse solvers. The factorisation on many general sparse solverscan be split into analysing the nonzero structure and numeric factorisation.The analysing phase needs to be done only once for factorisation of di�erentmatrices with the same structure, like them we have in this report (A � �iB).27



The analysing phase can take for example 3 to 10 times as much time as thenumerical factorisation. In order for the algorithm to give good speedup resultswhen using direct general sparse solvers, the analysing phase needs to be donein parallel on all processors, and then be distributed to the di�erent processors.To the author's knowledge this has not yet been done by anybody.4.4.2 Subroutines in Linear AlgebraIt is a nontrivial task to write e�cient and accurate subroutines for solving equa-tions and doing vector and matrix operations. These subroutines are needed inorder to implement the parallel rational Krylov algorithm. Whenever appropri-ate we have used LAPACK and BLAS routines, see [2].The BLAS routines is a collection of subroutines in basic matrix opera-tions like matrixmatrixmultiplications, matrix vector multiplications and scalarproducts. Many computer manufactories have their own optimised BLAS rou-tines. The speed of these optimised routines can be signi�cantly higher thanmatrix operations implemented in the naive way, due to that modern computersuse memory with di�erent access time in a hierarchy.The LAPACK routines is a collection of linear algebra routines like equationsolvers and eigenvalue solvers. LAPACK uses the BLAS routines. The mainwork in this implementation is done in the factorisation, solving and multipli-cation routines, see the table below for the speci�c routines used.Subroutines in Linear Algebradouble complex double precision libraryMatrix vector product zgemv dgemv BLASscalar product zdotc ddot BLASNorm dznrm2 BLASScaling zdscal dscal BLASgeneral band factorise zgbtrf dgbtrf LAPACKgeneral band solve zgbtrs dgbtrs LAPACKgeneralised eigenvalue solver zgegv dgegv LAPACK4.4.3 OrthogonalisationTo ensure that the basis is orthonormal to working precision every vector rj isorthogonalised twice against the basis, as suggested by Kahan, see [12].4.4.4 Program CodeThe code is experimental and is only intended for research purposes.The code for the IBM-SP2 and the cluster of SUN workstations is basicallythe same. The di�erent versions used by the di�erent computer con�gurationsare made by the preprocessor cpp from a generic program.On the cluster of SUN workstations, the programs are written in Fortran77together with the libraries BLAS, LAPACK and PVM. The nonstandard For-tran77 statements malloc and pointer are used for memory management.28



On the IBM-SP2 the xlf fortran compiler is used. The xlf compiler pro-vide maximum compatibility with existing Fortran77 programs and uses manyfeatures in Fortran90. The Fortran90 feature allocate is used for memoryman-agement in the code. The libraries used are LAPACK, BLAS from the ESSLlibrary and PVMe, the IBM version of PVM.All programs have a double complex version. Program 1 is the only programwith a double precision version.MATLAB is used to process the data from the tests and to draw the graphs.A semi-parallel code for convergence tests is implemented in MATLAB.
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Chapter 5Test ResultsThe algorithms described in the previous chapter have been tested on IBM-SP2, and on a cluster of SUN workstations. The main aspects tested aree�ciency, speedup and convergence. E�ciency and speedup are related to thespeed performance of the algorithm. In chapter 3 of this report we predictedthat it should not matter in which order the operations rk := (A� �kB)�1Brk,k = 1; : : : ; p are applied, we should get the same approximation if we do it inparallel or sequentially, thus we should get similar convergence behaviour. Isthis true on a computer with �oating point arithmetic ? We will discuss thisissue later.5.1 Test SitesThe IBM-SP2 was chosen because it was the best available MIMD computer inSweden for research purposes. The SUN con�guration was chosen because itwas available at the department.The IBM-SP2 is a distributed memory MIMD computer. The machine usedat the Center for Parallel Computers, Royal Institute of Technology, Stockholm,Sweden, had 55 nodes(the con�guration is now upgraded). Each node containsa processor and memory. The nodes share data via message passing over a highperformance switch. There are two types of nodes, thin nodes with 128Mbytememory and wide nodes with 512Mbyte memory. We have only used thin nodesin our tests.The SUN con�guration contains SUN ELC workstations connected throughan Ethernet network.In the table below we give some information about the nodes and networkused.
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IBM-SP2 SUNProcessor RS/6000 SPARCArchitecture POWER2 SPARCClock frequency 66.7MHZ 33MHZFloating pointoperations per cycle 4Peak performance 266M�ops 10M�opsMain memory 128Mbyte 24MbyteData Cache 64KbyteInstruction Cache 32KbyteBandwidth network 35Mbyte/s 1Mbyte/sLatency 40�s 2msThe table above gives peak performance, in the table below we give measuredperformance. For the test of the communication bandwidth we have used PVMon the SUN workstations and PVMe on IBM-SP2 (PVMe is IBM version ofPVM). The data transferred in the tests are double precision vectors of length10000. The number of �ops is measured for a scalar product (ddot in the BLAS).IBM-SP2 SUNPerformance 23M�ops 2.4M�opsBandwidth network 13.3Mbyte/s 0.27Mbyte/s5.2 Test ProblemThe test matrices consist of a �nite di�erence discretisation of the di�erentialequation @2u@x2 + @2u@y2 + qyh @u@y = �uThe test problem is arti�cial but related to a convection di�usion problem, itis intended for testing convergence and e�ciency. This problem has been cho-sen for the following reasons; it is easy to vary the size of the problem, theeigenvalues are known and the eigenvalues can be arbitrary ill or well condi-tioned. The matrix A, generated from the discretisation is a sparse matrixwith 5 diagonals and the matrix B is the identity matrix. The matrix A isreal and non-symmetric. Some facts about the test problems for the di�erentcon�gurations are given in the table below.
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IBM-SP2 SUNUpper and lower bandwidth 100 100Dimension 10000 1000Number of nonzero diagonals 5 5Amount of memoryfor the LU factor 48M byte 4.8M byteAmount of memoryfor the basis (m=150) 24M byte 2.4M bytePrecision double complex double complexThe larger test problem chosen for the IBM-SP2 would not �t on the clusterof SUN workstations due to less amount of memory on the SUN workstations.The bandwidth of the matrixA on the SUN workstations is chosen so that thesame time ratio for orthogonalise / solving the equations as in the IBM-SP2 isobtained.
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The exact eigenvalue distribution for the larger test problem is given in thegraph above.
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The nonzero elements from the larger test matrix.5.3 Test of The Sequential AlgorithmThe tests of the sequential algorithmare done in order to obtain data to comparethe sequential and parallel algorithms.ShiftsWe use every shift the same number of iterations in each test, this is becausewe want to compare these tests with the tests on the parallel algorithms whereit is unpractical to have di�erent numbers of iterations with di�erent shifts.TimingWe have kept time on the di�erent parts of the algorithm. In these tests we havenot timed the computation of the approximate solution step. The algorithmscan roughly be divided into factorisation of LU = (A � �B), multiplicationr = U�1L�1Bv, and orthogonalisation. The time it takes to orthogonalise avector against the basis grows linearly with the number of iterations.Test ResultsCon�guration IBM-SP2 IBM-SP2 SUN SUNTest No 1 2 3 4Shifts 6 3 6 3Iterations witheach shifts 25 30 25 30Total no ofIterations 150 90 150 90Timing Results (in seconds)One factorisation 16.6 17.0 22.8 24.3One multiplication 0.483 0.485 0.656 0.648Factorisation total 99.6 51.0 136.8 73.0Multiplication total 72.45 43.65 98.4 58.3Orthogonalisation total 103.5 38.42 113 40.9Other 0 0 3.6 3.6Total program 275.6 133.1 351.8 175.8ConvergenceThe convergence is measured by the norm of the residual see (3.18). In theplot below the norm of the residuals are plotted in each iteration with a plus+. Lines are drawn between residuals corresponding to the same eigenvalue indi�erent iterations. The plot is for test number 1.33
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In the �gure below the exact eigenvalues are plotted with a dot �, the ap-proximate eigenvalues with a residual less than 10�5 are plotted with circle �and the shifts are plotted with a plus +. The plot is for test number 1.
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5.4 Parallel Program 1How well this implementation works, depends on how much time it spends inorthogonalisation, compared to factorisation and multiplication. The problemwith this algorithm is that the processors became idle. The communication timeis negligible in the test compered to the idle time.The advantage of this implementation is that the basis is only located on oneprocessor and the slaves only have to keep the matrices and the factorisation.The communication grows linearly with the number of processors so the totalcommunication time is short compered to the other parallel algorithms.Test Results Parallel Program 1Con�guration IBM-SP2 SUNTest No 5 6Slaves 3 3Master 1 1Shifts 3 3Iterations witheach shifts 30 30Total no ofIterations 90 90Timing Results On One Slave (in seconds)One factorisation 17.0 24.2One multiplication 0.485 0.66Factorisation total 17.0 24.2Multiplication total 14.5 19.8Communication estimated 0.72 3.6Idle time 29.18 27.7Total time 61.4 75.3Timing Results On Master (in seconds)Orthogonalisation total 38.4 39.3Communication estimated 2.16 10.8Idle time 20.84 25.2Total time 61.4 75.3Timing Results Total (in seconds)Parallel Program 61.4 75.3Sequential Program 133 176Speedup 2.2 2.3E�ciency 54% 58%The graph below shows idle time, working time and communication for theSUN con�guration. For this particular test we have used 15 iterations (3�15 = 45total iterations ), 3 shifts, 1 master and 3 slaves. The white area in the barscorresponds to idle time and the black to working time. The lines betweenthe bars symbolise communication. In the �rst iteration the master is idlewhile the slaves do the factorisations, only part of the factorisation time isshown in the �gure. In the second iteration a particular slave is idle whilethe master orthogonalise its vector and the master is idle while it is waiting35



for the next slave. After a number of iterations the master has no idle time.Orthogonalisation grows linearly with the number of iterations and so do theslaves idle time. The speedup and e�ciency will depend on the total number ofiterations.The �rst iterationsThe last iterations
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The graph above shows the average e�ciency in each iteration for test no 5.The tests shows low e�ciency for this algorithm. The algorithm can workrather well if the time spent in factorisation and multiplication is large comparedto the orthogonalisation time. If the opposite is true this algorithm will achievepoor results. 36



5.5 Parallel Program 2AThis algorithm gives much better performance than the previous one. Thealgorithm communicates more and the idle time is considerable less. It was theidle time that gave the previous algorithm poor performance.Test Results Parallel Program 2ACon�guration IBM IBM IBM IBMTest No 7 8 9 10No of Processors 3 6 3 2Shifts 3 6 6 6Iterations witheach shifts 30 25 25 25Total no ofIterations 90 150 150 150Timing Results On One Processor (in seconds)One factorisation 18.6 18.65 17.44 17.05One multiplication 0.4933 0.4908 0.486 0.485Factorisation total 18.6 18.65 34.88 51.15Multiplication total 14.8 12.27 24.3 36.37Orthogonalisation total 12.4 16.8 34.41 51.55Communication + idle time 3.43 11.07 5.48 3.56Total time 49.23 58.79 99.07 142.6Sequential Program 133 275.6 275.6 275.6Speedup 2.7 4.7 2.8 1.9E�ciency 90% 78% 93% 97%The plot below shows speedup for the tests using 6 shifts on the IBM-SP2.The straight line is the ideal speedup, the + is the speedup from the test.
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Test Results Parallel Program 2ACon�guration SUN SUN SUN SUNTest No 11 12 13 14No of Processors 3 6 3 2Shifts 3 6 6 6Iterations witheach shifts 30 25 25 25Total no ofIterations 90 150 150 150Timing Results On One Processor (in seconds)One factorisation 26.4 24.3 24.2 22.8One multiplication 0.675 0.658 0.661 0.662Factorisation total 26.4 24.3 48.4 68.4Multiplication total 20.3 16.5 33.1 49.7Orthogonalisation total 13.1 17.8 36.6 54.8Communication + idle time 10.9 33.2 18.9 16.7Other 1.0 1.0 1.8 2.6Total time 71.7 92.8 138.8 192.2Sequential Program 176 351.8 351.8 351.8Speedup 2.45 3.79 2.53 1.86E�ciency 81.8% 63.2% 84.5% 92.8%The graph below shows idle time, working time and communication for theSUN con�guration. First every processor factorises, only part of the factorisa-tion time is shown in the �gure. Then at each iteration each processor mul-tiplies, orthogonalises its own vector and exchanges the vector with the otherprocessors. Every processor has to wait while the others communicate.The graph below shows the average e�ciency at each iteration for test 7. Inthe �rst iteration most time is spent in factorisation, then in the second iterationthe e�ciency drops. In the following iterations the e�ciency grows due to theorthogonalisation time grows in each iteration. Note that the scaling for thee�ciency axis is di�erent from the corresponding graph in the tests for parallelprogram 1.
38
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The convergence is measured by the norm of the residual see (3.18). In theplot below, the norms of the residuals are plotted in each iteration with a plus+. Lines are drawn between residuals corresponding to the same eigenvaluein di�erent iterations. Note that the residuals come down together becausewe use di�erent shifts on di�erent processors at the same time compared tothe sequential algorithm where they come down at each shift. The levels of theresiduals are not so good as in the sequential algorithm. The parallel algorithmshave some problems with the numerical computations that the sequential doesnot have. We will discuss the di�erence in numerical computation between theparallel and sequential algorithm later.
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This algorithm gives much better results than the previous one even thoughthe total communication time is longer in this one. The next program obtainseven better results.5.6 Parallel Program 2BThe di�erence between the parallel program 2A and 2B is how the vectors areexchanged. In 2A the processors waited for each other while the data wereexchanged. In 2B a arriving vector is stored in a temporary bu�er and the pro-cessor unpacks it �rst when it is needed. The communication measured in thetable below is the sending and receiving operations. However there are hiddencommunication, when a vector arrives to a processor it is stored in a tempo-rary bu�er, this takes processor time. The multiplication and orthogonalisationseems to take longer time as the operations are measured by a real clock. Thisalgorithm did not work on the IBM-SP2. It looks like that it is due to a bug inthe PVMe, the implementation of PVM on the IBM-SP2.Test Results Parallel Program 2BCon�guration SUN SUN SUN SUNTest No 11 12 13 14No of Processors 3 6 3 2Shifts 3 6 6 6Iterations witheach shifts 30 25 25 25Total no ofIterations 90 150 150 150Timing Results On One Processor (in seconds)One factorisation 23.6 23.8 22.7 23.1One multiplication 0.73 0.808 0.712 0.691Factorisation total 23.6 23.8 45.4 69.2Multiplication total 22.1 20.2 35.6 51.8Orthogonalisation total 13.1 19.4 37.2 55.2Communication measured 3.1 5.2 5.6 6.7Other 1.5 1.6 2.5 3.5Total time 63.4 70.2 126.3 186.4Sequential Program 175.8 351.8 351.8 351.8Speedup 2.77 5.01 2.79 1.89E�ciency 92.4% 83.5% 92.9% 94.4%The plot below shows speedup from the tests using 6 shifts on the SUN work-stations. The straight line is the ideal speedup, the pluses + are the speedupfrom the tests on program 2A and the circles � are the speedup from the testson program 2B. 40
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The graph below shows idle time, working time and communication for theSUN con�guration. First every processor factorises, only part of the factorisa-tion time is shown in the �gure. Then at each iteration each processor multiplies,orthogonalises its own vector and exchanges the vector with the other proces-sors. A particular processor unpacks a vector �rst when it is needed, The idletime is reduced by this procedure compared to the parallel program 2A.In comparing the timing results with parallel program 2A this implemen-tation get considerably better results due to the di�erent way to exchange thevectors as discussed before.5.7 ConvergenceIn this section we will discuss the convergence aspects of the algorithms. Thedi�erent parallel algorithms di�er mainly in the communication aspects. Theonly di�erence in the numerical aspects is in the orthogonalisation process. Thedi�erent parallel algorithms get almost the same numerical behaviour. Thebig di�erence is between the sequential algorithm and the parallel algorithms.Here we will discuss the di�erence in the numerical aspects between the parallelalgorithms and the sequential algorithm.Test MatricesIn these tests we have chosen A = diag(1 : 500), B = I .41



TestsThe tests shows that the matrices K and H are more unstable numerically inthe parallel algorithm than in the sequential algorithm.As the �rst two tests we choose 2 shifts, one sequential test and one paralleltest. TestsTest No 15 16No of Processors 2 1Shifts 2 2Iterations witheach shifts 30 30Total no ofIterations 60 60�1 100.5 100.5�2 110.5 110.5The graph below shows the normalised singular values for the matrices Hand K as the number of iterations progresses for test 15, the parallel test. Thepluses + are the singular values of the matrixH and the circles � are the singularvalues of the matrixK .
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The test shows that the matrices H and K get a null space of dimensionone in this case. A singular value decomposition of the matrices shows that theyget the same null space in this case.However if we take into consideration the null space when the approximateeigenvalues are calculated we get the same convergence as in the sequential case,see appendix how this is done. 42



The graph below shows the convergence for the parallel case.
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The graph below shows the normalised singular values for the H and the Kmatrices as the number of iterations progresses for test 16, the sequential test.The + sign are the singular values of H and � are the singular values of K.
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Note in the graph above that we do not get a null-space in the matrices H43



and K.The graph below shows the convergence for the sequential case.
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From the convergence graphs for the sequential and parallel algorithms wecan conclude that we get almost the same convergence. The null-space in theH and K matrices in the parallel algorithm does not a�ect the convergence ifdealt with properly in this case.Distance Between the ShiftsHow does the distance between the shifts a�ect the singular values of the ma-trices if the number of iterations is kept constant? If the distance is zero we getthe same shifts and linear dependence between the basis vectors.In the graph below we have tested how the singular values in the H matrixfor the parallel algorithm depends on the distance between the shifts. Theshifts are �1 = 100:5 and �2 = 100:5 + 5 � j; j = 1; : : : ; 6. The total number ofiterations is 60, 30 iterations on each processor.
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As we can see in the above graph, if we �x the number of iterations and in-crease the distance between the shifts, the smallest singular value ofH increasesin the parallel algorithm.How large is the null space ofH andK as the number of processors increases.In the graph below we have used 3 processors, 3 shifts and 20 iterations on eachprocessor. The shifts are �1 = 100:5, �2 = 110:5 and �3 = 120:5. The + signare the singular values of H and � are the singular values of K.
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From the above test we get a null space of dimension two for the matricesH and K. A singular value decomposition shows that the null space of H and45



K are the same for this case.If we use 6 processors, how large is the null space for H and K? In thegraph below we have used 6 processors 6 shifts and 25 iterations with each shift.The shifts are �i = 100:5 + 10 � (j � 1); j = 1; : : : ; 6.
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Note that the graph above that the nullspace is of dimension 5 for the test.The graph below shows the convergence for the above test.
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The graph below shows the convergence for the corresponding sequentialalgorithm.
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If we compare the residuals from the tests we get 57 residuals with a normless than 10�10 for the parallel algorithm and 78 for the sequential algorithm.Below we give a summary and conclusions for the convergence tests. Thereremains work to done before theorems and proofs can be stated from theseconclusions.1. If �1; : : : ; �p, �i 6= �j shifts are chosen and applied in parallel with theparallel rational Krylov method with the same number of iterations witheach shift then the matrices H and K get p � 1 singular values thatare signi�cantly smaller than the others. As the number of iterationsprogresses, these singular values can be considered zero and the matricesH and K have the same null space of dimension p� 1.2. If �1; : : : ; �p, �i 6= �j shifts are chosen initially and applied in parallelwith the parallel rational Krylov method and the number of iterations are�xed and equal on each processor. Then the matricesH and K will havep � 1 singular values that are signi�cantly smaller than the others whenthe shifts are close enough. As the distance between the shifts increasesthe smallest singular value increases.5.7.1 Some Possible Explanations of the Convergence ofthe Parallel AlgorithmWhy do the parallel and the sequential algorithm behave di�erently? Accordingto the theory, in exact arithmetic they build up the same space. Somehow the�oating point arithmetic make them behave di�erently.47



One possible explanation is in the way the basis is built up. In the parallelversion di�erent Krylov spaces are intermixed to build up a larger space, whilein the sequential version one Krylov space at a time is added to build up alarger space. If the shifts are the same, then the parallel version stops in theorthogonalisation step in the �rst iteration because the di�erent processors pro-duce identical vectors. But for the sequential version if the shifts are the samethe algorithm becomes the shifted and inverted Arnoldi algorithm and does notbreak down. What happens when the shifts are close but not the same? Wehave some idea from the tests.Another explanation lies in the orthogonalisation process. The sequentialalgorithm builds up the basis one vector at a time, while the parallel versionbuilds up the basis with p vectors at a time. The parallel version operate onone processor ri+p = (A� �iB)�1Bviri+p is orthogonalised against v1; : : : ;vi+p�1. The vectors vi+1; : : : ;vi+p�1cannot be included in the the starting combinations because they are not calcu-lated when the processor needs them. This process could cause numerical instability.Semi Parallel AlgorithmThese tests were done after a suggestion by R.B. Lehoucq [1]. Here we use thesame intermixing of the spaces as the parallel algorithm and the same startingcombination as the sequential algorithm. We operateri+1 = (A� �iB)�1Bviand diag(�)= diag(�1; : : : ; �p; �1; : : : ; �p; : : : ). In the tests below we have used6 semi processors and 6 shifts �i = 100:5 + 10 � (j � 1); j = 1; : : : ; 6. in thesemi parallel algorithm
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If we compare the plots above with the corresponding plots for the sequentialalgorithm and the parallel algorithm we can see that the semi parallel programhas the largest residuals and the H matrix for the semi parallel algorithm donot have the p�1 small singular values as theH matrix for the parallel programhas.5.8 The Rational Krylov Method Compared tothe Shift and Invert Arnoldi MethodIn this section we compare the rational Krylov method with the shift and invertArnoldi method. We compare the number of converged eigenvalues and theshape of the convergence region in the complex plane with respect to the totalnumber of iterations. We compare the methods in two di�erent ways. First wecompare the rational Krylov method with s shifts to shift and invert Arnoldimethod with one shift. Second we compare the rational Krylov method with sshifts to applying shifted and inverted Arnoldi method s times with the sameshifts. The algorithms are run the same number of steps with all the shifts. Inmost tests the total number of steps is 160.In these tests, we have used a diagonal matrixA and unitB with eigenvaluesin the complex integers.
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The graph below shows the converged eigenvalues for one shift and invertArnoldi method with 160 iterations. Approximate eigenvalues with a relativeerror between 10�5 and 10�8 are plotted with a circle �. Approximate eigen-values with a relative error between 10�8 and 10�11 are plotted with a plus +.Approximate eigenvalues with a relative error below 10�11 are plotted with across �. The shift is plotted with a star �. The exact eigenvalues are plottedwith a dot �.
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The graph below shows converged eigenvalues for the parallel rational Krylovmethod.
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The graph below shows converged eigenvalues for the sequential rationalKrylov method.
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If we compare the three graphs above we note that the Arnoldi method andthe sequential rational Krylov method obtains almost the same number of con-verged eigenvalues. The parallel rational Krylov method obtains considerablefewer converged eigenvalues in this case.51



Next we run the parallel rational Krylov method with a larger separationbetween the shifts than above.
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In this case the parallel rational Krylov method obtains similar convergenceas the Arnoldi method and the sequential rational Krylov method (graph notshown).Now let us compare the rational Krylov method with 4 shifts to 4 separateruns of shifted and inverted Arnoldi with the same shifts. The convergence isas plotted below.
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What happens with the rational Krylov method if we increase the distancebetween the shifts further? The graph below shows convergence for the parallelrational Krylov method. Note that the convergence is not so good in the centeras before (the sequential version obtains similar convergence in this case).
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If we increase the distance between the shifts further in the parallel rationalKrylov method we get 4 di�erent regions with converged eigenvalues, see thegraph below (the sequential version obtains similar convergence in this case).
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If we compare the graph above for the parallel rational Krylov method with4 shift and invert Arnoldi methods in the graph below,
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we note that now the rational Krylov method and the Arnoldi method getsimilar convergence.One advantage with the (parallel) rational Krylov method is that the shiftscan be chosen to mark up other regions than circles.
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The corresponding convergence test for the 5 shift and invert Arnoldi meth-ods to the test above is shown in the graph below.
10 15 20 25 30

−4

−2

0

2

4

6

8

10

12

14

16

real part

im
ag

in
ar

y 
pa

rt

5 arnoldi 5 shifts 32 iterations

If we increase the number of iterations on each processor to 50 for the 5 shiftand invert Arnoldi methods we get similar convergence as in the rational Krylovtest with 5 shifts and 32 iterations, see the graph below.55
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We need 400 iterations with one shift and invert Arnolid method in order toobtain a convergence region that encloses the above 5 shift convergence regionfor the rational Krylov method. In this case with the shift and invert Arnoldimethod we get many more eigenvalues than we need in order to obtain them wewant, see the graph below.
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We can make some conclusions from the tests above.1. It is possible to obtain similar convergence with several shifts in (parallel)rational Krylov method as with one shift and invert Arnoldi method if the56



total number of iterations are the same in both methods.2. The choice of the shifts is crucial for the convergence of the rational Krylovmethod. The parallel version is more sensitive to the choice of the shiftsthan the sequential version. The shifts should be close enough so thatthey help each other to build a common space and in the parallel versionthey should not be too close so that the method degenerates.3. The rational Krylov method has more freedom of choice for obtaining theconvergence region than shift and invert Arnoldi.4. The rational Krylov method with s shifts converges better than the sshift and invert Arnoldi methods with corresponding shifts, if the shiftsare close enough that the convergence region is continuous in the rationalKrylov method. If the shifts are so far apart so that the convergence regionform islands with converged eigenvalues around the shifts in the rationalKrylov method, then the rational Krylov method with s shifts and s shiftand invert Arnoldi have similar convergence behaviour.In the tests above, we have compared the convergence with respect to thetotal number of iterations. Which method is most suitable for a given problemdepends on the region where the eigenvalues are desired, which solvers are usedand the relation between the orthogonalisation time and multiplication time.The type of problem where the rational Krylov method is likely to performbetter than a standard shift and invert Arnoldi, is where the desired eigenvalueregion di�er to great extent from the typical circular convergence region to theshift and invert Arnoldi. If a standard shift and invert Arnoldi is applied to sucha problem, then a larger convergence region that includes the desired eigenvaluesis obtained and thus a larger basis is built than in the rational Krylov method.A large basis takes memory, and it takes time to add a new vector to the basisthrough the orthogonalisation process. If the rational Krylov method with sshifts performs better than s shift and invert Arnoldi methods depends on thetime for multiplications and orthogonalisation. Another advantage is that therational Krylov method does not need any post sorting of the eigenvalues thatthe s shift and invert Arnoldi methods need.5.9 Shift StrategiesThe rational Krylov method is suited for problems where we want to computethe eigenvalues and corresponding eigenvectors in a speci�c region in the com-plex plane. Shift strategies is an important part of an implementation of therational Krylov method. With a shift strategy, we want to place the shifts in aspeci�c region in the complex plane in a such a way that the eigenvalues withcorresponding eigenvectors are computed in the region to su�cient accuracy.Another important issue with a shift strategy is to avoid to compute too manyeigenvalues because this takes time and build up a unnecessarily large basis.A shift strategy for the sequential rational Krylov method could be likeplace the �rst shift close but not to close to the border in the region where theeigenvalues are wanted. After n�1 eigenvalues with corresponding eigenvectorshave converged a new shift could be placed close to the region where we have57



converged eigenvalues with corresponding eigenvectors. We keep the second shiftuntil n�2 additional eigenvalues have converged. The placement of new shift goeson until all eigenvalues with corresponding eigenvectors have converged in theregion where we want them. How long one should keep a shift depends on howmuch time it takes to change the shift compared to the gain with a new shift. Ifiterative solvers are used the time it takes to change the shift is negligible. Butif direct solvers are used the factorisation can take a lot of time. There is noguarantee that all eigenpairs have converged and we get only one eigenvector toeigenvalues with several eigenvectors. See Ruhe [16] for a implementation of ashift strategy.An implementation of a shift strategy in parallel rational Krylov method ismuch more di�cult. In the sequential version the knowledge about where wehave converged eigenvalues and nearly converged eigenvalues is valuable infor-mation, when the decision where the new shift should be placed is made. Whatwe want to do in the parallel version is to place them in such a way in the re-gion where the eigenvalues are wanted, that when the convergence region of thedi�erent shifts have grown together, all eigenvalues in the region where we wantthem have converged. But this strategy needs a knowledge of the eigenvaluedistribution that we are going to compute. For most cases we do not know theeigenvalue distribution before we compute them, but any information about theeigenvalue distribution could be useful in placing the shifts in a good way. Apossible strategy is to place them evenly spread out in the region where we wantthe eigenvalues and iterate until the convergence regions around the shifts havegrown together. Shift strategies has not been emphasised in the implementa-tion discussed in this report. But for a commercial or public domain softwareof parallel rational Krylov method, shift strategies are important.
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Appendix AHandling the Null Space ofthe Matrices K and HFrom numerical investigations we have that Km;m and Hm;m have a commonnull space of dimension p�1, where p is the number of processors. The singularvalue decomposition of the matrixH is as followsU�Hm;mW = � = diag(�1; �2; : : : ; �m) (A.1)where �1 > �2 > : : : > �m�p+1 > �m�p+2 = : : : = �m = 0The nullspace is spaned by wm�p+2; : : : ;wm. Now consider the eigenvalueproblem Km;mx = �Hm;mx (A.2)Km;mWW �x = �Hm;mWW �xmultiply with U� U�Km;mWW �x = �U�Hm;mWW �xset K̂ = U�Km;mW and x̂ =W �x and use (A.1) to get the eigenproblemK̂x̂ = ��x̂whereK̂ = �K̂1;1 0K̂2;1 0� ; K̂1;1 2 C(m�p+1)�(m�p+1) ; K̂2;1 2 C(p�1)�(m�p+1)and � = ��1;1 00 0� ; �1;1 = diag(�1; : : : ; �m�(p�1))We solve the standard eigenproblem��11;1K̂1;1x̂1 = �x̂1If (x̂1; �) is an eigenpair of ��11;1K̂1;1 then (W 1x̂1; �) is an eigenpair to (A.2),where W = [W 1;W 2],W 1 2 Cm�(m�p+1).59
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