
AI	Fundamentals:	Uncertain	reasoning
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Quantifying	uncertainty	
(AIMA	chapter	13)
LESSON	1: 	 INTRODUCTION	– BASIC	PROBABILITY	NOTATION	–INFERENCE	

WITH	FULL	JOINT	DISTRIBUTION	=	BAYES	RULE	=	 INDEPENDENCE



Acting	under	uncertainty
In	problem	solving	we	make	restrictive	assumptions:	the	world	is	completely	
known	(accessible)	and	the	actions	have	a	predictable	effect	(deterministic).
Agents	need	a	way	to	handle	uncertainty	deriving	from:
1. partial	observability
2. nondeterminism
A	partial	answer	is	to	consider,	instead	of	a	single	world,	a	set	of	possible	worlds	
(those	that	the	agent	considers	possible	– a	belief	set)	but	planning	by	
anticipating	all	the	possible	contingencies	can	be	really	complex.
Probability	theory	offers	a	clean	way	to	quantify	uncertainty.
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Motivating	example	1
Suppose	the	goal	for	a	taxi-driver	agent	is	“delivering	a	passenger	to	the	airport	on	time	
for	the	flight”
Consider	action	At =	leave	for	airport	tminutes	before	flight.
How	can	we	be	sure	that	A90 will	succeed?	You	can’t.
There	are	too	many	sources	of	uncertainty:	
1. partial	observability:	road	state,	other	drivers'	plans,	etc.
2. noisy	sensors	(traffic	reports)
3. uncertainty	in	action	outcomes	(flat	tire,	bad	weather	etc.)
With	a	logic	approach	it	is	difficult	to	anticipate	everything	that	can	go	wrong	
(qualification	problem).	A90may	be	the	most	rational	action,	given	that	the	airport	is	5	
miles	away	and	you	want	to	avoid	long	waits	at	the	airport.
The	rational decision	depends	on	both	the	relative	importance	of	various	goals and	the	
likelihood that,	and	degree	to	which,	they	will	be	achieved.
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Motivating	example	2
A	medical	diagnosis	example:	given	the	symptoms	(toothache)	infer	the	cause	(cavity).	
How	to	encode	the	relation	in	logic?
§ Toothache ⇒	Cavity (diagnostic	rule)

Toothache ⇒	Cavity ∨	GumProblem ∨	Abscess .	.	. there	are	many	possible	causes
§ Cavity ⇒	Toothache (causal	rule)
§ Cavity ∧		C1 … ∧		Ck ⇒	Toothache not	always!

Problems	in	specifying	the	correct	logical	rules:
• Laziness:	too	much	work	to	list	the	complete	set	of	antecedents	or	consequents
• Theoretical	ignorance:	no	complete	theory	for	the	domain
• Practical	ignorance:	no	complete	knowledge	of	the	patient

Probability	provides	a	way	of	summarizing	the	uncertainty	that	comes	from	our	laziness	
and	ignorance,	thereby	solving	the	qualification	problem.
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Probabilities:	a	very	gentle	AI-sh introduction
Probabilistic	assertions	are	assertions	about	possible	worlds	stating	how	
probable a	world	is.	
The	set	of	possible	worlds,	also	called	the	sample	space,	Ω
The	possible	worlds	are	mutually	exclusive	and	exhaustive.
A	fully	specified	probability	model associates	a	probability	P (	a	real	number	
between	0	and	1)	to	each	possible	world	𝑤 in Ω.
Basic	axiom	of	probability

0	≤	P(𝑤)	≤	1	for	every	𝑤 and		∑ 𝑃(𝑤)K∈	Ω =	1	 (1)
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Events
Usually	we	deal	with	subsets	of	possible	worlds	(events)	which	are	described	by	an	
expression	(a	proposition)	in	a	formal	language.
Events are	the	possible	worlds	where	the	proposition	holds.

For	any	event	Φ,	P(Φ)	=	∑ 𝑃(𝑤)K∈	Φ (2)

Example	1: when	rolling	two	fair dice	the	probability	of	the	event	“total	is	11”,	is	the	
probability	of	all	the	possible	worlds	where	the	sum	of	the	dice	is	11.
P(Total=11)	=	P(Dice1=5,	Dice2=6)	+	P(Dice1=6,	Dice2=5)	=	1/36	+	1/36	=	1/18
Example	2:	Double is	the	proposition	for	the	event	of	both	dice	giving	the	same	number
P(double)	=	?		
P(Total=11)	and	P(double)	are	called	unconditional or	prior probabilities or	priors.
They	refer	to	degrees	of	belief	in	propositions	in	the	absence	of	any	other	information.
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Conditional	probabilities
Most	often	we	have	some	evidence restricting	the	number	of	possible	worlds	and	
conditioning	the	probability	of	an	event.
Example	1:	we	can	talk	of	the	probability	of	a	double given	that	we	know	that	Dice1=5.

P(Double	|Dice1=	5)	
Example	2:	P(Cavity)	=	0.2	compared	to	P(Cavity |Toothache)	=	0.6
These	probabilities	are	called	conditional or	posterior probabilities.
Definition	of	conditional	probability:

P(a |b)	=	Z([,	\)	
Z(\)

with	𝑃(𝑏) >	0 (Conditional	probability)

Note:	observing	b restricts	the	number	of	possible	worlds	to	those	where	b is	true.
Very	often,	the	definition	is	used	in	the	following	equivalent	form:

P(a,	b)	=	P(a	|b)	P(b) (Product rule)
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Basic	probability	notation
We	will	assume	that	a	world	is	represented	by	a	set	of	variable/value	pair	(a	factored	
representation	as	in	CSP).	Includes	the	propositional	case.
X:	a	[random]	variable	(uppercase)
dom(X):	domain	of	a	variable,	the	values	X can	take	{v1,	v2 … vk}		(values	are	lowercase)

P (X=v):	the	probability	that	X=v where	v	∈ dom(X)
P (v):	the	probability	that	X=v when	there	is	no	ambiguity
e.g.	P(Weather	=	sunny)	=	P(sunny)

If	A is	a	boolean variable,	dom(A)	=	{true,	false	},	we	can	also	write																					
P	(A=true)	=	P (a) and	 P	(A=false)	=	P (¬a)	
e.g.	P(Double	= true)	=	P(double)	
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The	language	for	propositions
To	express	complex	propositions	we	can	use	the	connectives	of	classical	
propositional	logic:
P(X	=	a ∧	Y	=	b) =	P(X =	a,	Y =	b) joint	probability
P(X =	a	∨	Y	=	b)
P(¬X =	a)
Examples:	
§ P(cavity	|	¬Toothache ∧	Teen) =	

=	P(cavity	|	(Toothache	= false)	∧	(Teen	=	true))	=
=	P(cavity	|	(Toothache	= false,		Teen	=	true))
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Probability	distribution:	discrete
A	full	specification	of	the	probability	for	all	values	of	X is	a	probability	distribution
Example	1:	if	C is	a	random	variable	with	values	{head,	tail}

§ P(C	=	head)	=	0.5		P(C	=	tails)	=	0.5	 is	a	probability	distribution

Example	2:	dom(Weather)	=	{sunny,	rain,	cloudy,	snow}.	Probability	distribution:
§ P(Weather =	sunny)	=	0.6
§ P(Weather =	rain)	=	0.1
§ P(Weather =	cloudy)	=	0.29
§ P(Weather =	snow)	=	0.01

We	use	a	vector	P to	denote	the	distribution	of	the	random	variables	C (coin)	and	Weather:
§ P(C)	=	⟨0.5,	0.5〉					P(Weather)	=	⟨0.6,	0.1,	0.29,	0.01〉	 P(sunny)	=	⟨0.6〉	⇔P(sunny)	=	0.6

§ Similarly P(X |	Y)	is		the	table	ov values	P(X =	xi |	Y =	yj ),	one	value	for	each	pair	i,	j

The	vectorial notation	assumes	that	the	values	are	ordered.
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Probability	distribution:	continuous
For	continuous	variables	we	can	define	the	probability	that	a	random	variable	takes	
some	value	𝑥 as	a	function	of	𝑥,	called	probability	density	function or	pdf.
Example:	we	can	assert	that		the	temperature	at	noon	is	distributed	uniformly	between	
18	and	26	degrees	Celsius:

𝑓 𝑁𝑜𝑜𝑛𝑇𝑒𝑚𝑝 = 𝑥 = 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[18C,	26C](
𝑥)

Then
𝑃 18 ≤ 𝑁𝑜𝑜𝑛𝑇𝑒𝑚𝑝 ≤ 19 = 1/8
𝑃 18 ≤ 𝑁𝑜𝑜𝑛𝑇𝑒𝑚𝑝 ≤ 22 =	1/2

In	general,	if	𝑓 is	the	density	function

𝑃 𝑎 ≤ 𝑥 ≤ 𝑏 = { 𝑓 𝑥 𝑑𝑥
\

[
																					

∫ 𝑓 𝑥 	𝑑𝑥 = 1								for	𝑓 𝑥 ≥ 0��
��
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Joint	probability	distribution
A	joint	probability	distribution	is	a	distribution	over	a	set	of	variables.	With
P(Weather	,	Cavity)	

we	denote	the	probabilities	of	all	combinations	of	the	values	for	Weather and	Cavity: A	
4	x	2	table	of	probabilities	in	this	case	(|dom(Weather)|	x |dom(Cavity)|)
If	we	have	a	joint	probability	distribution	of	all	the	variables	(a	full	joint	probability	
distribution),	we	can	do	any	inference.	Given	that:
1. Any	proposition	identifies	a	set	of	possible	worlds
2. Any	entry	in	the	table	gives	the	probability	of	a	possible	world

3. For	any	event	Φ,	P(Φ)	=	∑ 𝑃(𝑤)K∈	Φ
we	can	compute	the	probability	of	any	proposition	by	taking	the	sum	of	the	
probabilities	of	the	relevant	possible	worlds	in	the	distribution.
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Computing	marginals,	conditioning
Given	a	joint	distribution	P(x,	y)	the	distribution	of	a	single	variable	is	given	by:

P(x) =� P(x,	y)
�

�∈���(�)
=� P(x,	y)

�

�

This	operation	is	also	called	marginalization	or summing	out.	

P(x1, … , xi−1,	xi+1, … , xn) =� P(x1, … , xn)
�

��
In	general,	if	Y and	Z are	sets	of	variables:

P(Y)	=	∑ P(Y,	z)		�
z∈Z

A	variant	of	this	rule,	called	conditioning,	involves	conditional	probabilities	instead	of	
joint	probabilities,	using	the	product	rule:

P(Y)	=	∑ P(Y|z)	�
z∈Z P(z)
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Probability	axioms	(for	discrete	variables)
Given	the	basic	axioms:
1. 0	≤	P(w)	≤	1	for	every	w and		∑ 𝑃(𝑤)K∈	Ω =	1	 (1)					

The	summation	of	the	probabilities	over	all	possible	worlds	is	1

2. For	any	proposition	Φ,	P(Φ)	=	∑ 𝑃(𝑤)K∈	Φ (2)		
The	𝑃 of	a	proposition	is	the	sum	of	the	𝑃’s	of	all	the	worlds	satisfying	the	proposition

Other	properties	follow:
3. P(¬a)	=	1	−	P(a)

P(¬a)	= 	∑ 𝑃(𝑤)K∈	¬a =	(∑ 𝑃(𝑤)K∈	¬a +	∑ 𝑃(𝑤))K∈	a −	∑ 𝑃(𝑤)K∈	a
=	∑ 𝑃(𝑤)K∈	Ω − P(a)	=			1	−	P(a)

4. P(a	∨	b) =	P(a)	+	P(b) −	P(a	∧	b) (inclusion-exclusion	principle)

The	properties	1-4	are	called	Kolmogorov’s	axioms
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Example:	Classical	logical	inference	(Barber)
In	logic	“All	apples	are	fruit”	(A ⇒	F) and	“All	fruits	grow	on	trees”	(F ⇒	T) lead	to	the	
conclusion	that	“All	apples	grow	on	trees”	(A ⇒	T),	by	transitivity	of	⇒.
Using	Bayesian	reasoning.
1. P(Fruit |	Apple )	=	1	 “All	apples	are	fruit”
2. P(Tree |	Fruit)	=	1	 “All	fruit	grows	on	trees”	
We	then	want	to	show	that	1-2	imply:	

P(Tree	|	Apple	)	=	1	 P(¬Tree	|	Apple)	=	0
P(¬Tree,		Apple)	=	0 assuming	P(Apple	)	>	0,	by	definition	of	conditional	probability

Given	P(¬Tree,		Apple)	= P(¬Tree,	Apple,	Fruit)	+	P(¬Tree,	Apple,	¬Fruit)		 (Marginalization)
we	can	show	that	both	terms	on	the	right	are	zero.	
1. P(¬Tree,	Apple,	Fruit)	≤	P(¬Tree,	Fruit)	 =	[1	− P(Tree|Fruit)]	P(Fruit)	=	0		(Product	rule)
2. P(¬Tree,	Apple,	¬Fruit)	≤	P(¬Fruit,	Apple)	=	[1	−	P(Fruit|Apple)]	P(Apple)	=	0
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Discussion
Plausibility.	State	of	beliefs,	apparently	plausible,	violating	Kolmogorov’s	axioms:

P(a)	=	0.4	 P(a	∧	b)	=	0.0 P(b)	=	0.3	 P(a	∨	b)	=	0.8
De	Finetti proved	that	if	an	agent	holds	an	inconsistent	set	of	beliefs,	than	if	he	bets	
according	to	this	set	of	beliefs	against	another	agent,	then	he	will	always	loose	money.
De	Finetti’s theorem	implies	that	no	rational	agent	can	have	beliefs	that	violate	the	
axioms	of	 probability.
Origin	of	probability.	What	is	the	nature	and	source	of	probability	numbers?
§ Frequentist	view:	the	numbers	come	from	experiments
§ Objectivist	view:	probabilities	are	real	aspects	of	the	way	objects	behave	in	the	world
§ Subjectivist	view:	probabilities	as	a	way	of	characterizing	an	agent’s	beliefs	ascribing	values
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Probabilistic	inference



Probabilistic	inference
We	will	know	assume	to	have	a	full	joint	distribution	and	show	how	several	
inferences	can	be	done.
We	assume	to	use	the	full	joint	distribution	as	the	“knowledge	base”.
1. Compute	the	prior	probability	of	a	variable	by	marginalization;
2. Compute	and,	or,	not;
3. Compute	the	posterior	probability	for	a	propositions	given	observed	

evidence;
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Marginal	probability,	marginalization

Boolean	variables:	Toothache,	Cavity,	and	Catch (the	dentist’s	nasty	steel	probe	
catching	in	the	tooth).	The	full	joint	distribution	is	a	2	x	2	x	2	entry	table.
Unconditional or	marginal probability of	cavity:
§ P(cavity)	=	∑ P(�

z∈{Catch,	Toothache}	 𝐶𝑎𝑣𝑖𝑡𝑦, z)	=

=	0.108	+	0.012	+	0.072	+	0.008	=	0.2 summing out
§ P(Cavity)	=	⟨0.2,	0.8〉	
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Inference	with	full	joint	distribution:	∧

For	a	proposition	with	‘∧’ we	sum	the	numbers	of	the	entries	satisfying	both	conjuncts:
P(cavity ∧	toothache)	=	P(cavity,	toothache)	=	(0.108	+	0.012)	=	0.12
P(cavity ∧	catch)	=	(0.108	+	0.072)	=	0.18
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Inference	with	full	joint	distribution:	∨,	¬

P(cavity ∨	toothache)	=	(0.108	+	0.012	+	0.072	+	0.008)	+	
(0.108	+	0.012	+	0.016	+	0.064)	− (0.108	+	0.012)

=	0.28
P(¬cavity)	=	(0.016	+	0.064	+	0.144	+	0.576)	=	0.8
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Conditional	probability	and	normalization

Computing	conditionals:
P(cavity |	toothache)	=	P(cavity,	toothache)	/	P(toothache)	=	

(0.108	+	0.012)	/(0.108	+	0.012	+	0.016	+	0.064)	=	0.12/0.2 =	0.6
P(¬cavity |	toothache)	=	P(¬cavity, toothache)/P(toothache)	=

(0.016	+	0.064)	/(0.108	+	0.012	+	0.016	+	0.064)	=	0.08/0.2 =	0.4
The	term	1/0.2	=	α	is	a	normalization	costant that	doesn’t	need	to	be	computed.
P(Cavity |	toothache)	=	α P(Cavity,	toothache)	=	

α [P(Cavity,	toothache,	catch)	+	P	(Cavity, toothache,	¬catch)]	=
α [⟨0.108,	0.016〉	+	⟨0.012,	0.064〉]	=	α ⟨0.12,	0.08 〉 =	⟨0.6,	0.4〉				dividing	by	0.12+0.08	=	0.2
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A	general	inference	procedure
If	the	query	involves	a	single	variable	X (i.e.	Cavity),	e is	the	list	of	the	observed	values,	
the	evidence	(i.e.	Toothache),	and	Y the	rest	of	unobserved	variables	(i.e.	Catch):
𝑃(X|e)	=	α	𝑃(X,	e)	=	α	∑ 𝑃(X,	e,	y)�

𝒚

However	the	complexity	of	the	joint	distribution	table	is	impractical:	it	requires	an	input	
table	of	size	O(2n) and	takes	O(2n) time	to	process, if	n is	the	number	of	boolean variables.
Next	lesson	will	introduce	more	practical	reasoning	mechanisms,	leveraging	on	the	
notion	of	independence.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 24



Adding	an	independent	variable
Let’s	add	the	variable	Weather with	4	values	{cloudy,	sunny,	…}
P(Toothache,	Catch,	Cavity,	Weather)	is	the	new	full	distribution	with	32	entries.
P(toothache,	catch,	cavity,	cloudy)	=	

P(cloudy|toothache,	catch,	cavity)	P(toothache,	catch,	cavity)	
Since	“cloudiness”	(and	Weather in	general)	has	nothing	to	do	with	dental	problems:	
P(cloudy|toothache,	catch,	cavity)	=	P(cloudy)

Therefore:	
P(toothache,	catch,	cavity,	cloudy)	=	P(cloudy)	P(toothache,	catch,	cavity)	

This	property	is	called	independence.
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Independence
Independence	of	propositions	a and	b:
P(a	|b)	=	P(a) P(b	|a)	=	P(b)					 P(a, b)	=	P(a)	P(b)

Independence	of	variables	X and	Y:
P(X	|Y)	=	P(X)	 P(Y	|X)	=	P(Y)	 P(X, Y)	=	P(X)	P(Y)

Independence	assumptions	can	reduce	the	size	of	the	representation	and	the	
complexity	of	the	inference	problem.
For	the	Cavity	+	Weather	problem	the	full	distribution	is	actually	made	of	two	tables	
(an	8 entry	table	and	a	4	entry	table	instead	of	a	32	entry	table)
A	notation	for	independence:	X	⫫Y
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Examples

Weather
Toothache Catch

Cavity

decomposes
      into

WeatherToothache Catch
Cavity

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 27

decomposes
       into

Coin1 Coinn

Coin1 Coinn



Bayes	rule	
Given	the	product	rule:
1. P(a,	b)	=	P(a	|b)	P(b) P(a,	b)	=	P(b	|a)	P(a) (product rule)
2. P(a	|b)	P(b)	=	P(b	|a)	P(a) (equating the right-hand sides)

3. P(b	|a)	=	P(a	|b)	P(b)P(a) (Bayes theorem/rule/law)

Other more	general	forms:

P(Y	|X)	=	P(X	|Y)	P(Y)P(X) (Bayes theorem)

P(Y	|X,	e)	=	P(X	|Y,	e)	P(Y	|e)P(X	|e) (Bayes theorem)

where e is a	set	of evidence variables.
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Use	of	Bayes	rule:	the	simple	case
Why	is it useful?	Let’s give a	“diagnostic meaning”.

P(cause |effect)	=	P(effect	|cause)	P(cause)P(effect) 	

P(cause |effect)	goes	from	effect	to	cause,	i.e.	diagnosys
P(effect	|cause) goes	from	cause	to	effect,	an	expert	is	more	likely	to	have	causal	
knowledge,	by	knowing	how	things	work	and	statistics	from	experience.	They	compute	
P(desease |	symptoms)	from	P(symptoms |	desease).
Example:	s	=	stiff-neck ;	m	=	meningitis
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P(s	|m)	=	0.7

P(m)	=	1/50000
P(s)	=	0.01

P(m	|s)	= P(s	|m)P(m)P(s) = 0.7	×1/50000
0.01 =	0.0014

P(M	|s)	=	α	⟨P(s	|m)	× P(m), P(s	|¬m)	×P(¬m)〉



Using	Bayes	rule:	combining	evidence

P(Cavity |toothache,	catch)	=	α	⟨0.108,	0.016〉	≈	⟨0.871,	0.129〉
Using	Bayes’s rule:
P(Cavity |toothache,	catch)	=	α	P(toothache,	catch	|Cavity)	P(Cavity)
Toothache	and	Catch	are	not	independent	since	they	both	depend	on	the	presence	of	a	
cavity,	but	they	are	independent	given	the	presence	or	the	absence	of	a	cavity.	
Conceptually,	Cavity separates	Toothache and	Catch because	it	is	a	direct	cause	of	both	
of	them.	
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Using	Bayes	rule:	conditional	independence
We	need	a	refinement	of	the	independence	property,	called	conditional	independence:

P(toothache,	catch	|	Cavity)	=	P(toothache|Cavity)		P(catch|Cavity)
With	this	condition	we	have:

P(Cavity |Toothache,	Catch)	=	α	P(Toothache|Cavity)	P(Catch|Cavity)	P(Cavity)
In	general,	given	the	variables	X, Y	and	Z

P(X,	Y|Z)	=	P(X	|Z)		P(Y	|Z) (conditional	independence)

Alternative	formulation:	

P(X |Y,	Z)	=	P(X	|Z)	 P(Y |X,	Z)	=	P(Y	|Z)
Conditional	independence	assertions	can	allow	probabilistic	systems	to	scale	up;	
moreover,	they	are	much	more	commonly	available	than	absolute	independence	
assertions.
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Naïve	Bayes	model
This	example	corresponds	to	a	commonly	occurring	pattern	in	which	a	single	cause	
(Cavity)	directly	influences	a	number	of	effects	(Toothache,	Catch),	all	of	which	are	
conditionally	independent,	given	the	cause.	
Given	this	simplifying	assumption,	the	full	joint	distribution	can	be	computed	as:

P(Cause,	Effect1,	… ,	Effectn)	=	P(Cause)	∏ P(Effecti|Cause)�
�

This	is	called	the	Naïve	Bayes	model,	used	in	Naïve	Bayes	classifiers.
Naive	Bayes	distributions	can	be	learnied from	observations.
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Conclusions
ü We	reviewed	the	basics	of	propositional	calculus.
ü Probabilistic	inference	as	a	way	to	compute	queries	using	a	full	joint	

distribution	table	as	a	KB	to	be	queried.
ü Independence	assumptions	lead	to	smaller	tables	and	more	efficient	

computation.
ü Next	belief	networks:	a	way	to	encode	in	the	representation	of	a	domain	

these	simplifying	assumptions.
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Your	turn
ü If	you	don’t	feel	confident	with	these	computations,	do	some	of	the	exercises	

at	the	end	of	Barber	(Chapter	1).
ü Are	basic	axioms	of	probability	reasonable?
§ Discuss	the	meaning	of	the	basic	axioms	of	”classical	probability”	and	their	

implications.	Start	with	AIMA,	13.2.3
ü Where	do	probabilities	come	from?

§ Present	the	different	views	about	the	source	of	probabilities:	frequentist,	
objectivist,	subjectivist	… Start	with	AIMA	(3rd edition),	box	page	491	
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