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Summary

§ Definition	of	Bayesian	networks
§ Semantics	of	Bayesian	networks
§ Efficient	representation	of	conditional	distribution
§ Exact	inference	in	Bayesian	networks
§ Other	approaches	to	uncertainty
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Bayesian	networks/belief	networks
Bayesian	networks	(also	called	belief	networks)	are	graphs	for	representing	dependencies	
among	variables.
The	network	makes	explicit	conditional	dependencies:	the	intuitive	meaning	of	an	arc	from	X	toY
is	typically	that	X has	a	direct	influence	on	Y.	
Bayesian	networks	are	directed	acyclic	graphs	(DAG)	so	defined:

1. Each	node	corresponds	to	a	random	variable,	which	may	be	discrete	or	continuous.
2. A	set	of	directed	links	or	arcs	connects	pairs	of	nodes.	If	there	is	an	arrow	from	node	X to	node	

Y,	X is	said	to	be	a	parent	of	Y.	Parents(Y )	is	the	set	of	variables	directly	influencing	Y.
3. Each	node	X ihas	an	associated	conditional	probability	distribution	P(X i |Parents(X i))	that	

quantifies	the	effect	of	the	parents	on	the	node.

Easier	for	domain	experts	to	decide	what	direct	influences	exist	in	the	domain	than	actually	
specifying	the	probabilities	themselves.
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The	Cavity	&	Weather example

Weather Cavity

Toothache Catch

The	network	naturally	represents	
independence	and	conditional	
independence:
1. Weather is	independent from	the	

other	variables	(Cavity,	Toothache,	
Catch).

2. Toothache and	Catch are	
conditionally	independent,	given	
Cavity.

The	lack	of	an	arc	connection	between	two	
variables	is	interpreted	as	independence.
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The	alarm example
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A	typical	Bayesian	network,	showing	both	the	
topology	and	the	Conditional	Probability	
Tables	(CPTs).	
The	burglary	alarm	goes	off	very	likely	on	
burglary	and	occasionally	on	earthquakes.	John	
and	Mary	are	neighbors	who	agreed	to	call	
when	the	alarm	goes	off.	Their	reliability	is	
different.
In	the	CPTs	this	abbreviations	are	used:

§ B:	Burglary
§ E:	Earthquake
§ A:	Alarm
§ J:		JohnCalls
§ M:	MaryCalls
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Semantics	of	Bayesian	networks
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Semantics	of	Bayesian	networks
Two	equivalent	ways	to	look	at	the	semantics	of	Bayesian	networks:
1. Representation	of	the	full	joint	probability	distribution

§ Suggests	a	methodology	for	constructing	networks
2. An	encoding	of	a	collection	of	conditional	independence	statements

§ Helps	in	designing	inference	procedures
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Semantics	of	the	networks	- 1
We	explain	why	a	Bayesian	network	can	be	seen	as	a	representation	of	the	full	joint	
distribution.
A	joint	probability	distribution	can	be	expressed		in	terms	of	conditional	probabilities:
𝑃 𝑥1, … , 𝑥𝑛 = 	𝑃 𝑥𝑛|𝑥n−1	, … , 𝑥1 𝑃 𝑥n−1	…𝑥1 by	the	product	rule

By	iterating	the	process	we	get	the	so	called	chain	rule:
𝑃 𝑥1, … , 𝑥𝑛 = 	𝑃 𝑥𝑛|𝑥n−1	, … , 𝑥1 	

𝑃 𝑥n−1	|𝑥n−2	, … ,
𝑥1 	

𝑃 𝑥n−2…𝑥1 	
… 𝑃 𝑥2|𝑥1 	

𝑃 𝑥1 (chain	rule)

					= ∏ 𝑃 𝑥𝑖	 𝑥i−1, … , 𝑥1)	O
PQR

This	amounts	to:		
1. assuming		an	ordering	of	the	variables
2. computing	the	posterior	probabilities	of	each	variable,	given	all	previous	variables
3. Taking	the	product	of	these	posteriors.
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Semantics	of	the	networks	- 1
Given: 𝑃 𝑥1, … , 𝑥𝑛 = ∏ 𝑃 𝑥𝑖	 𝑥i−1, … , 𝑥1)	O

PQR
Computing	the	following	quantity	from	the	network
∏ 𝑃(𝑥𝑖	|	𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))	O
PQR

where	𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes	the	set	of	values	𝑥1, … , 𝑥𝑛	 for	P𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)
is	like	computing	𝑃 𝑥1, … , 𝑥𝑛 provided:
1. Each	variable	appears	after	its	parents	in	the	ordering,	i.e. 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)⊆ {𝑋i−1,	… , 𝑋1}	
2. We	condition	the	computation	only	to	values	of	the	parent	variables	(others	are	independent)
3. The	numbers	in	the	CPT’s	are	actually	conditional	probabilities.

Under	these	assumptions	each	entry	in	the	joint	distribution	can	be	computed	as	the	product	
of	the	appropriate	entries	in	the	conditional	probability	tables	(CPTs)	in	the	Bayesian	network.	
𝑃 𝑥1, … , 𝑥𝑛 = ∏ 𝑃(𝑥𝑖	|	𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))	O

PQR
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Representing	the	joint	probability	distribution
A	Bayesian	network	is	a	distributed	representation	of	the	full	joint	distribution.
								𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃(𝑥𝑖	|	𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))	O

PQR

where	𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes	the	values	of	P𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) that	appear	in	𝑥1, … , 𝑥𝑛.

Example.	Given	the	Alarm network	we	can	compute:
𝑃(j,	m,	a,	¬b,	¬e)	=	
P(j |a)	P(m|a)	P(a	|¬b, ¬e)	P(¬b)	P(¬e)	=
0.90	× 0.70	× 0.001	× 0.999	× 0.998	=	0.000628
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Procedure	for	building	the	network
A	procedure	for	building	a	Bayesian	network	which	is	a	good	representation	of	a	domain:
1. Nodes:	Determine	the	set	of	variables	required	to	model	the	domain.	Order	them:	{X1,	… ,	X𝑛}

Ordering	influences	the	result:	the	resulting	network	will	be	more	compact	if	the	variables	are	
ordered	such	that	causes	precede	effects.

2. Links:	For	i =	1	to	n do:	
◦ Choose,	from X1,	… , Xi−1,	a	minimal	set	of	parents	for	X𝑖,	such	that	equation
P 𝑋𝑖	 Xi−1, … , 𝑋1) =	P(𝑋𝑖	|	𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) is	satisfied

◦ For	each	parent	insert	a	link	from	the	parent	to	𝑋𝑖.	
◦ CPTs:	Write	down	the	conditional	probability	table,	P(𝑋𝑖	|	𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

Note:	the	parents	of	node	𝑋𝑖 should	contain	all	those	nodes	in	𝑋1,	.	.	.	,Xi−1 that directly influence	
Xi.	Example:	 P(M |	J,	A,	E,	B)	= P(M |	A)
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Node	ordering	and	compactness
Ordering	influences	the	result:
a. MaryCalls,	JohnCalls,	Alarm,	Burglary,	

Earthquake
b. MaryCalls,	JohnCalls,	Earthquake,	

Burglary,	Alarm
If	we	use	a	causal	model	(with	links	from	
causes	to	effect)	we	obtain	a	better	network,	
with	less	connections	(more	compact),	fewer	
probabilities	to	specify	and	the	numbers	will	
often	be	easier	to	obtain.
In	locally	structured	systems,	each	
subcomponent	interacts	directly	with	only	a	
bounded	number	of	other	components.
Huge	savings	wrt full	joint	distribution	tables

JohnCalls

MaryCalls

Alarm

Burglary

Earthquake

MaryCalls

Alarm

Earthquake

Burglary

JohnCalls

(a) (b)
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Reduction	in	complexity
§ Local	structure	is	usually	associated	with	linear	rather	than	exponential	growth	in	

complexity.	

§ In	the	case	of	Bayesian	networks,	it	is	reasonable	to	suppose	that	in	most	domains	
each	random	variable	is	directly	influenced	by	at	most	k others,	for	some	constant	k.	

§ If	we	assume	n Boolean	variables,	then	each	conditional	probability	table	will	have	at	
most	2k numbers,	and	the	complete	network	can	be	specified	by	n 2k numbers.	In	
contrast,	the	joint	distribution	contains	2n numbers.	

§ Concrete	example:	n	=30	nodes,	each	with	five	parents	(k=5).	The	Bayesian	network	
requires	960	numbers,	but	the	full	joint	distribution	requires	over	a	billion.

09/11/17 AI	FUNDAMENTALS	- M.	SIMI 14



Conditional	independence	- 1
We	can	also	extract	the	independence	
assumptions	encoded	in	the	graph	
structure	to	do	inference.
The	topological	semantics	specifies	that	
each	variable	is	conditionally	independent	
of	its	non-descendants,	given	its	parents.
In	our	examples	example,	JohnCalls is	
independent	of	Burglary,	Earthquake, and	
MaryCalls given	the	value	of	Alarm.
In	general	see	figure.
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A	node	X is	conditionally	independent	of	its	
non-descendants	(e.g.,	the	Zij s)	given	its	
parents	(the	Ui s	shown	in	the	gray	area).	



Conditional	independence	- 2
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A	node	X is	conditionally	independent	of	all	
other	nodes	in	the	network	given its	parents,	
children,	and	children’s	parents,	i.e.	its	Markov	
blanket (the	gray	area).	

Burglary	is	conditionally	independent	of	
JohnCalls and	MaryCalls,	given	Alarm and	
Earthquake.
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Efficient	representation	of	CPTs
The	idea:	Instead	of	filling	CPT’s	use	“canonical”	distributions.
Two	examples:

1. Deterministic	nodes:	nodes	whose	value	is	specified	exactly	by	the	values	of	their	parents
Canadian,	US,	Mexican	(the	parents)	determine	NorthAmerican (the	child)
Price1,	Price1,	…,	Pricek (the	parents)	determine	min(Price1,	Price1,	…,	Pricek)

2. Noisy-OR	relations:	a	generalization	of	the	logical	OR
Cold	∨Flu	∨Malaria	⇔ Fever in	logic				but	not	always	…
The	causal	relationship	between	parent	and	child	may	be	inhibited,	with	a	given	P.	
Example:	A	patient	could	have	a	cold,	but	not	a	fever	with	probability	P=0.6
Two	assumptions:
§ We	assume	all	the	possible	causes	are	listed;	if	not,	we	can	add	a	leak condition/node.
§ We	assume	that	inhibition	factor	of	each	parent	is	independent	of	any	other	parent
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Example	of	noisy-or
Assume	the	following	inhibiting	P’s:
qcold =	P(¬fever |	cold,	¬flu,	¬malaria)	=	0.6
qflu =	P(¬fever |¬cold,	flu, ¬malaria)	=	0.2
qmalaria =	P(¬fever |	¬cold, ¬flu,	malaria) =	0.1

The	general	rule	is:
P(xi |	Parents(Xi))	=	
1	−	∏ qj�

{j:	Xj	=	true}	

The 8	probabilities in the CPT	
are	computed from 3	values.
O(k)	instead	of	O(2k)
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fever is	false iff all	its	true parents	are	
inhibited,	and	the	probability	of	this	is	the	
product	of	the	inhibition	probabilities
q for	each	true parent.



Continuous	variables
1. One	possible	way	to	handle	continuous	variables	(such	as	temperature)	is	to	avoid	

them	by	using	discretization.
Example	for	temperature:	(<0oC),	(0oC−100oC),	(>100oC).	

2. The	most	common	solution	is	to	define	standard	families	of	probability	density	
functions	that	are	specified	by	a	finite	number	of	parameters.
Example:	a	Gaussian	(or	normal)	distribution	N(µ,	σ2)(x)	with	parameters	the	mean	μ and
variance	σ2

A	network	with	both	discrete	and	continuous	variables	is	called	a	hybrid	Bayesian	
network.
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Mixing	continuous	and	discrete	variables	
Hybrid	Bayesian	networks	combine	discrete	
(Subsidy,	Buys)	and	continuous	variables	
(Harvest,	Cost).
Two	new	kinds	of	distributions:
1. the	conditional	distribution	for	a	

continuous	variable	given	discrete	or	
continuous	parents;

2. the	conditional	distribution	for	a	discrete	
variable	given	continuous	parents.
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HarvestSubsidy

Buys

Cost

A	customer	buys	some	fruit	depending	on	its	cost,	
which	depends	in	turn	on	the	size	of	the	harvest	and	
whether	the	government’s	subsidy	scheme	is	operating



Exact	inference	in	Bayesian	networks
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Exact	inference	in	Bayesian	networks
The	basic	task	of	probabilistic	inference.	Given:
X:	the	query	variable		(we	assume	one)
E:	the	set	of	evidence	variables	{E1,	…,	Em}
Y:	the	set	of	unknown	variables,	i.e.	the	hidden (non-evidence)	variables	{Y1,	…,	Yl}
Thus	X ={X } ∪ E ∪ Y

A	typical	query	asks	for	the	posterior	probability	distribution:	
P(X	|e)

In	the	Alarm example,	the	query	could	be:
P(Burglary	|	JohnCalls,	MaryCalls)

Evidence	variables:	E =	{JohnCalls,	MaryCalls}
Hidden	variables:	Y=	{Earthquake, Alarm}
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Inference	by	enumeration
We	defined	the	task	as:

P(X|e)	=	α	P(X,	e)	=	α	∑ P(X,	e,	y)�
v where	α is	a	normalization	factor

The	query	can	be	answered	using	a	Bayesian	network	by	computing	sums	of	products	of	
conditional	probabilities	from	the	network. In	the	example:

P(B	|j,	m)	=	α	P(B,	j,	m)	=	α∑ ∑ P(B,	j,	m,	e,	a)�
x

�
y summing	up	over		y

We	can	now	use	the	CPT’s	tables	for	computing	P(b	|j,	m),	the	case	of	Burglary =	true:

P(b	|j,	m)	=αzzP(b,	j	m,	e,	a)	
�

x

�

y

=	αzzP(b)	P(e)	P(a	|	b,	e)	P(j	|a)	P(m|a)	
�

x

�

y

We	can	simplify	by	factorization	to:

P(b	|j,	m)	=	α	P(b)zP(e)zP(a	|	b,	e)	P(j	|	a)	P(m|	a)	
�

x

�

y
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Computing	with	the	network

P(b	|j,	m)	=	α	P(b)zP(e)zP(a	|	b,	e)	P(j	|	a)	P(m|	a)	
�

x

�

y
																			=	α	× 0.00059224

P(¬b	|j,	m)	=	α	× 0.0014919

P(B	|j,	m)	= α	⟨0.00059224, 0.0014919〉
P(B	|j,	m)	≈	⟨0.284,	0.716〉

Time	complexity	is	O(2n).
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Enumeration-Ask
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a	probability	value
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Improving	the	computation
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P(j|a)	P(m|a)	is	computed	twice
P(j| ¬	a)	P(m| ¬	a)	is	computed	twice



Variable	elimination:	the	idea
The	enumeration	algorithm	can	be	improved	substantially,	by	storing	and	reusing	the	
results	of	repeated		computations	(a	kind	of	dynamic	programming).
The	variable	elimination	algorithm,	proceeds	right-to-left	(bottom-up).
For	the	Alarm network:

P(B	|j,	m)	=	α	P(b)zP(e)zP(a	|	b,	e)		P(j	|	a)	P(m|	a)	
�

x

�

y

P(B	|j,	m)	=	α	f1(B)	×zf2(E)	×zf3(A,	B,	E)	×	f4(A)	×	f5(A)
�

x

�

y

Each	factor	f is	a	matrix	indexed	by	the	values	of	its	argument	variables
j and	m are	given,	thus	f4(A)	=	⟨P(j	|	a),	P(j	|¬a)〉 and	f5(A) =	⟨P(m	|	a),	P(m	|¬a)〉
We	need	now	to	define	two	operations	on	factors:	pointwise-product	(indicated	by	×)	and	
summing	out	variables.
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Pointwise	product	of	factors	
The	pointwise	product	of	two	factors	f1 and	f2 yields	a	new	factor	f3 such	that:
§ variables	are	the	union	of	the	variables	in	f1 and	f2 and
§ elements	are	given	by	the	product	of	the	corresponding	values	in	the	two	factors.
Computation	of	the	pointwise	product	f1(A,	B)	× f2(B,	C)	gives f3(A,	B,	C)
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Summing	out	variables
Summing	out	variable	A	in	factor	f3:	

z f3(A,	B,	C)
�

x

=	f3(a,	B,	C)	+	f3(¬a,	B,	C)	=
.06
.42

.24	

.28	
+

	.18
.06

.72	

.04	
=

	.24
.48

.96	

.32	

Computational	saving	comes	from	the	realization	that	any	factor	that	does	not	depend	
on	the	variable	to	be	summed out	can	be	moved	outside	the	summation.
For	example:

zf2(E)	×
�

y

f3(A,	B,	E)	×	f4(A)	×	f5(A) = f4(A)	×	f5(A)	×zf2(E)	×	f3(A,	B,	E)
�

y
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The	computation
Let’s	go	back	to	the	problem	of	computing:	

P(B	|j,	m)	=	α	f1(B)	×zf2(E)	×zf3(A,	B,	E)	×	f4(A)	×	f5(A)
�

x

�

y

1. We	sum	out	A	from	the	product	of	f3,	f4,	and	f5.	This	gives	us	a	new	2	x	2	factor	f6(B,	E)	whose	
indices	range	over	just	B		and	E	:
f6(B,	E) = 	(f3(a,	B,	E)	×	f4(a)	×	f5(a))	+ (f3(¬a,	B,	E)	×	f4(¬a)	×	f5(¬a))

P(B	|j,	m)	=	α	f1(B)	xzf2(E)	x	f6(B,	E)
�

y

2. Next,	we	sum	out	E from	the	product	of	f2 and	f6:
P(B	|j,	m)	=	α	f1(B)	x	f7(B)
Take	the	pointwise	product	and	normalize	the	result

09/11/17 AI	FUNDAMENTALS	- M.	SIMI 30



Variable	elimination:	the	algorithm
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Variable	ordering
Every	choice	of	ordering	yields	a	valid	algorithm,	but	different	orderings	of	variables	can	
produce	differences	in	efficiency.	For	example	we	could	have	decided	to	invert	summations.
Changing	the	order	in	which	A	and	E	are	eliminated:

P(b	|j,	m)	=	α	P(b)zzP(e)	P(a	|	b,	e)	P(j	|a)	P(m|a)	
�

y

�

x

P(b	|j,	m)	=	α	f1(B	)	×zzf2(E)	×f3(A,	B,	E)	×	
�

y

�

x

f4(A)	×	f5(A)

P(b	|j,	m)	=	α	f1(B	)	×zf4(A)	×	f5(A)	×f6(A,	B)	
�

x

Determining	the	optimal	ordering	is	intractable,	but	several	good	heuristics	are	available,	for	
example	eliminate	whichever	variable	minimizes	the	size	of	the	next	factor	to	be	constructed.
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Variable	relevance
Let’s	compute	the	probability	distribution	of	“John	calls”	given	that	there	was	a	burglary.

P(j|	b) = α	P(b)	=	α	P(b)z 𝑃 𝑒 z 𝑃 𝑎 	𝑏, 𝑒)
�

x
P(𝑗|𝑎)z 𝑃(𝑚|𝑎)

�

�

�

y

Note:	∑ 𝑃 𝑚 𝑎 = 1�
� 						

In	fact	M is	irrelevant	to	the	query	and	we	can	remove	it.	
§ We	can	remove	any	leaf	node	that	is	not	a	query	variable	or	an	evidence variable.
§ Continuing	this	process,	we	can	remove	any	variable	that	is	not	an	ancestor	of	a	

query	variable	or	evidence	variable.
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The	complexity	of	exact	inference
Singly	connected	networks	or	polytrees are such	that	
there	is	at	most	one	undirected	path	between	any	two	
nodes	

The	Alarm network	is	a	polytree.

The	time	and	space	complexity	of	exact	inference	in	
polytrees is	linear	in	the	size	of	the	network	(the	number	of	
CPT	entries).

For	multiply	connected	networks	variable	elimination	can	
have	exponential	time	and	space	complexity	in	the	worst	
case.

Note:	Inference	in	Bayesian	networks	includes	as	a	special	
case	propositional	inference,	which	is	NP-complete.
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Clustering/joint	trees
P(C)=.5
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Mega-nodes	correspond	to	variables	(spr+Rain)	with	combined	
values	(tt,	tf,	ft,	ff)
Probability	values	are	obtained	this	way	from	the	S	&	R	CPT’s:	
1st row: P(S+R=xy|c)	=	P(S=x|c)	×	P(R=y|c)	 for	x,	y	∈	{t,	f}
2ndrow:	P(S+R=xy|¬c)	=	P(S=x|¬c)	×	P(R=y|¬c)
Caveat:	mega-nodes	may	share	variables	and	this	makes	the	
algorithms	more	complex.
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The	result	is	a	polytree



Other	approaches	to	
uncertain	reasoning
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An	overview	of	other	approaches
Probability	theory	and	Bayesian	networks	are	the	dominant	approaches	today,	despite	
the	disadvantage	of	having	to	specify	many	probability	values	(lots	of	numbers).
Humans	reason	with	numbers?	
Other	approaches	have	been	used:
1. Rule-based	methods	for	uncertain	reasoning
2. Representing	ignorance:	Dempster–Shafer	theory
3. Representing	vagueness:	fuzzy	sets	and	fuzzy	logic
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Rule-based	methods	for	uncertain	reasoning
Three	good	properties	of	classical	logic	based	rules:
1. Locality:	In	logical	systems,	from	A	and	A	⇒ B,	we	can	conclude	B,	without	worrying	about	

any	other	rules.	In	probabilistic	systems,	we	need	to	consider	all	the	evidence.
2. Detachment:	Once	B	is	proved,	it	can	be	used	regardless	of	how	it	was	derived.	It	can	be	

detached from	its	justification.
3. Truth-functionality:	the	truth	of	complex	sentences	can	be	computed	from	the	truth	of	the	

components.	Probability	combination	does	not	work	this	way.
The	idea	is	to	attach	degree	of	belief	to	facts	and	rules	and	to	combine	and	propagate	them
The	most	famous	example	is	the	certainty	factors	model,	which	was	developed	for	the	MYCIN	
medical	diagnosis	program.	The	system	was	carefully	engineered	to	avoid	mixing	different	kind	of	
rules	(diagnostic	vs	causal)	leading	to	non	plausible	results.
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Representing	ignorance:	Dempster–Shafer	theory
Introduces	the	distinction	between	uncertainty and	ignorance.
Instead	of	computing	the	probability	of	an	event	uses	a	function	Bel(p) to	represent	the	
probability	that	the	evidence	supports	p.	
Example:	

Not	knowing	whether	a	coin	is	fair	Bel(head)	=	0	and Bel(tail)	=	0.
Knowing	that	the	coin	is	fair	with	probability	0.9	then	Bel(head)	=	0.9	x	0.5	=	0.45,	similarly	
for	tail

Instead	of	assigning	probabilities	to	possible	worlds,	the	theory	assigns	masses	to	sets	
of	possible	worlds,	that	is,	to	events.
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Representing	vagueness:	fuzzy	sets	and	fuzzy	logic
Fuzzy	set	theory	is	a	means	of	specifying	how	well	an	
object	satisfies	a	vague	(non	categorical)		property,	
like	“being	tall”.	
Tall	is	a	fuzzy	predicate	and	says	that	the	truth	value	
of	Tall (john)	is	a	number	between	0	and	1,	rather	
than	being	just	true or	false.
A	fuzzy	predicate	implicitly defines	a	set	that	does	not	
have	sharp	boundaries	(a	fuzzy	set).
Fuzzy	logic	is	a	method	for	reasoning	with	logical	
expressions	describing	membership	in	fuzzy	sets.
Example.	T(Tall	(john)	∧	Heavy(john))	=	

=	MIN(T(Tall (john), T(Heavy(john))	
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Conclusions
ü We	have	explored	Bayesian	networks	as	a	natural	an	concise	way	to	represent	

conditional	independence	assumptions.
ü Their	semantics	in	terms	of	join	probability	distribution.
ü How	to	perform	efficient	probabilistic	inference	with	this	networks.
ü A	specific	algorithm	for	exact	inference:	variable	elimination.
ü Given	the	intractability	of	exact	inference	in	large,	multiply	connected	networks,	it	is	

essential	to	consider	alternative	methods.
ü We	leave	to	other	courses:

- stochastic	approximate	inference	methods	(logic	sampling,	likelihood	weighting,	…)
- dealing	with	continuous	distributions
- Bayesian	learning	
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Your	turn
ü Build	a	Bayesian	network	for	a	new	example	and	compute	some	inference.	

See for	example	exercises	at	the	end	of	AIMA,	ch 14.
ü Study	the	AIMA-code	for	the	Enumeration	algorithm,	run	it	on	an	example	and	

report.
ü Study	the	AIMA-code	for	the	Variable	Elimination	algorithms,	run	it	on	an	

example	and	report.
ü First	order	probability	models	(AIMA)
ü Fuzzy	sets	and	fuzzy	logic
ü Dempster–Shafer	theory
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