
AI	Fundamentals:	planning
Maria	Simi

Classical	planning
LESSON	1:	 INTRODUCTION	TO	CLASSICAL	PLANNING – PDDL	–
PROGRESSIVE	AND	REGRESSIVE	PLANNING	– HEURISTICS	FOR	
PLANNING

Planning	vs	problem	solving	&	theorem	proving
Planning	combines	two	major	areas	of	AI:	search	and	logic.
1. Problem	solving	(searching	for	a	solution	path	in	a	state	graph)	is	already	a	

form	of	planning,	but	we	assume	atomic	states	and	a	simple	goal	function
2. We	discussed	how	to	model	actions	and	change		in	FOL	with	the	situation	

calculus	and	related	problems	such	as	the	frame	and	qualification problems.
We	will	introduce	a	suitable	language	for	describing	planning	problems.
1. Allowing	richer	descriptions	of	actions	and	states	(including	goals),	special	

algorithms	and	heuristics	can	be	developed.
2. Suitable	limitations	to	circumvent	the	computational	problems	with	a	FOL	

representation.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 3

Planning	vs	problem	solving
A	problem	solving agent.	Goals	and	actions	are	not	explicitly	represented.
§ Actions:	a	function	defining	successors	states
§ Goal:	test	Goal(s)	->	{true,	false}.	
§ Planning:	to	obtain,	by	heuristic	search,	a	path	in	the	state	graph,	leading	from	the	
initial	state	to	a	goal.	Heuristics	are	domain	dependent.

A	planning	agent
§ Has	an	explicit	representation	of	the	goal,	of	actions	and	their	effect	
§ It	is	able	to	inspect	the	goal	and	decompose	it,		and	make	abstractions	
§ It	can	work	freely	on	the	plan	construction	manipulating	plans
A	planning	agent	can	be	more	efficient.

Planning	as	satisfiability	in	PROP
1. The	SAT	problem	to	solve	is	obtained	by	generating a	[huge]	propositional	sentence	

(in	clausal	form)	that	includes:
§ Init0,	a	collection	of	assertions	about	the	initial	state.	Example:	L01,1
§ Transition1,	.	.	.	,	Transitiont,	the	successor-state	axioms	for	all	possible	action	at	each	time	

up	to	some	maximum	time t.		Example:	HaveArrowt+1 ⇔	(HaveArrowt∧	¬Shoot t)
§ State	constraints	like	non	ubiquity:	Lzx,y ⇒¬Lzx’,y’
§ Action	exclusion	axioms:	¬Ait ∨	¬Ajt for any pair of	actions Ai and	Aj and	any time t
§ The	assertion	that	the	goal	is	achieved	at	time	t:	HaveGold t ∧	ClimbedOut t

2. Solve	the	problem	with	a	SAT	solver.
3. If	a	model	is	found	at	t,	a	plan	is	made	from	the	actions	with	value	true.	Minimum	

plans	can	be	found	by	trying	with	increasing	values	ot t.

Modern	SAT-solving	technology	makes	the	approach	feasible,	for	medium-size	problems

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 5

SATPLAN

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 6

The	planning	problem	is	translated	into	a	CNF	sentence		for	increasing	values	of	t	until	a	
solution	is	found	or	the	upper	limit	to	the	plan	length	is	reached.

The	situation	calculus
§ A	special	ontology	made	out	of	situations,	fluents,	actions	…
§ Problems	in	defining	actions	and	their	effect	(frame	problem)	partially	solved	

by	defining	state	successor	axioms,	one	for	each	fluent.	For	example:
Clear(y,	Result(a,	s))	Û
[On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ z	Ù a	=	move(x,	y,	z))]	Ú
[On(x,	y,	s) Ù Clear(x,	s)	Ù (a	=unstack(x,	y))]	Ú
[Clear(y,	s)	Ù (a	¹move(z,	w,	y))	Ù (a	¹ stack(z,	y))]

§ Effect	of	a	sequence	of	actions:	Result:	[A*] ´ S	® S
1. Result([],	s)	=	s
2. Result([a	|seq],	s)	=	Result(seq,	Result(a,	s))

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 7

Planning	as	theorem	proving	in	FOL
Planning	is	the	generatation of	a	sequence	of	actions	p to	reach	the	goal	G.	This	
amounts	to	proving	that:

$p G(Result(p,	s0))	
The	Green	planner	used	a	theorem	prover	based	on	resolution.
The	task	is	made	complex	by	different	sources	of	non	determinism:
◦ the	length	of	the	sequence	of	actions	is	not	known	in	advance
◦ frame	axiomsmay	infer	many	things	that	are	irrelevant
◦ we	need	to	resort	to	ad	hoc strategies,	completeness	is	not	guaranteed

A	general	theorem	prover	is	inefficient	and semi-decidable
We	do	not	have	any	guarantee	on	the	efficiency	of	the	generated	plan.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 8

Definition	of	classical	planning
1. In	classical	planning	we	assume	fully	observable,	deterministic,	static	

environments	with	single	agents.
2. We	assume	a	factored	representation:	a	state	of	the	world	is	represented	by	

a	collection	of	variables.
3. PDDL,	the	Planning	Domain	Definition	Language	is	a	specialized	language	for	

describing	planning	problems	and	in	particular:
§ States
§ Applicable	actions	(ACTIONS(s))	and	transition	model	(RESULT(s,	a))
§ Goal	states

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 9

PDDL:	a	language	for	planning
States:	conjunction/set	of	fluents,	ground	positive	atoms,	no	variables,	no	functions.	

Examples:	At(Truck1,	Melbourne)	∧	At(Truck2,	Sydney)
Database	semantics	is	used:
1. Closed	World	Assumption:	fluents that	are	not	mentioned	are	false
2. Unique	Name	Assumption:	distinct	names	refer	to	distinct	individuals

Actions:	a	set	of	action	schemas	that	implicitly	define	the	Actions(s) and	Result(s,	a)
Actions	are	defined	in	a	way	that	avoids	the	frame	problem	since	they	implicitly	
assume	that	you	carefully	specify	all	the	changes	and	all	the	rest	remains	as	it	was	
before	the	action.
In	most	problems	things	that	change	are	a	few	compared	to	the	ones	that	do	not.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 10

PDDL:	actions
Actions	are	defined	by	a	set	of	action	schemas,	corresponding	to	parametric	actions	or	
operators.
Example	of	action	schema,	flying	from	a	location	to	another	one:
Action(Fly(p,	from,	to),	 //	p,	from and to are	variables
PRECOND:	At(p,	from)	∧	Plane(p)	∧	Airport(from)	∧	Airport(to)
EFFECT:¬At(p,	from)	∧	At(p,	to))

p,	from,	to are	universally	quantified	variables,	that	need	to	be	instantiated.	
An	instance:
Action(Fly(P1,	SFO,	JFK),	
PRECOND:	At(John,	SFO)	∧	Plane(P1)	∧	Airport(SFO)	∧	Airport(JFK)
EFFECT:¬At(P1,	SFO)	∧	At(P1,	JFK))

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 11

PDDL:	preconditions	and	effects
Action(Fly(p,	from,	to),	
PRECOND:	At(p,	from)	∧	Plane(p)	∧	Airport(from)	∧	Airport(to)
EFFECT:	¬At(p,	from)	∧	At(p,	to))

PRECOND a	list	of	preconditions to	be	satisfied in	s for	the	action	to	be	applicable
(a ∈	ACTIONS(s))	⇔	s	⊨	PRECOND(a)
i.e.	 positive	literals	are	in	s	and	negated	literals	are	not	in	s

EFFECT the	successor	state	s’	is	obtained	from	s	as	result	of	the	action	by:
- adding	positive	effects	to	s add	list,	ADD(a)
- removing	negative	effects	from	s delete	list,	DEL(a)
RESULT(s,	a)	=	(s −	DEL(a)) ∪	ADD(a)

Example:	The	action	Fly(P1,	SFO,	JFK)	would	remove	At(P1,	SFO)	and	add	At(P1,	JFK)	

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 12

PDDL:	initial	state	and	goal	description
Initial	state:	a	collection	of	ground	positive	atoms
Goal:	 a	conjunction	of	literals	(positive	or	negative)	that	may	contain	variables,	

for	example	At(p,	SFO)	∧	Plane(p)	is	the	goal	of	having	any plane	to	SFO.
The	problem	is	solved	when	we	can	find	a	sequence	of	actions	that	end	in	a	state	
s that	entails	the	goal.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 13

Example:	 air	cargo	transport

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 14

Plan:	[Load(C1,	P1,	SFO),	Fly(P1,	SFO,	JFK),	Unload(C1,	P1,	JFK),
Load(C2,	P2,	JFK),	Fly(P2,	JFK,	SFO),	Unload(C2,	P2,	SFO)]

Example:	spare	tire

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 15

Plan:	[Remove(Flat ,	Axle),	Remove(Spare,	Trunk),	PutOn(Spare,	Axle)]

Example:	the	blocks	world

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 16

Start State Goal State

B A
C

A
B
C

Start State Goal State

B A
C

A
B
C

Plan:	[MoveToTable (C,	A),	Move(B,	Table,	C),	Move(A,	Table,	B)]

Algorithms	and	heuristics
for	planning

Decision	problems	for	planning	and	complexity
1. PlanSAT:	does	a	plan	exist?
2. Bounded	PlanSAT:	there	is	a	solution	of	length	k	or	less?
Decidability:	both	problems	are	decidable	for	classical	planning.
• PlanSAT without	functions, since	the	number	of	states	is	finite.
• Bounded	PlanSAT:	always	decidable,	also	with	functions.
Complexity	results:
§ if	we	disallow	negative	effects,	both	problems	are	still	NP-hard.
§ if	we	also	disallow	negative	preconditions,	PlanSAT reduces	to	the	class	P.
§ For	many	domains	(including	the	blocks	world	and	the	air	cargo	world),	Bounded	

PlanSAT is	NP-complete	while	PlanSAT is	in	P.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 18

Planning	as	state-space	search
In	planning	graphs	nodes	are	states	arcs	
are	actions.
1. Progression	planning:	forward	search	

from	the	initial	state	to	the	goal	state.
Believed	to	be	inefficient
• prone	to	exploring	irrelevant actions
• planning	problems	often	have	large	

state	spaces
2. Regression	planning:	backward	search	

backward	from	the	goal	state	to	the	
initial	state.
The	first	approach	attempted	(STRIPS)

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 19

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

At(P1, B)
At(P2, B)

At(P1, B)
At(P2, A)

At(P1, A)
At(P2, B)

Regression	planning
We	start	with	the	goal,	a	conjunction	of	literals,	describing	a	set	of	worlds.
The	PDDL	representation	allows	to	regress actions,	i.e.	to	find	a	state	g’	from	where	it	is	
possible	to	rich	the	goal	with	some	action	a:
g’	=	(g −	ADD(a)) ∪ Precond(a) we	do	not	say	anything	about	DEL(a)

Regressing		an	action	with	variables,	having	goal	At	(C2,	SFO):
Action(Unload(C2,	p’,	SFO), p’	 after	renaming
PRECOND:	In(C2,	p’)	∧	At(p,	SFO)	∧	Cargo(C2)	∧	Plane(p’)	∧	Airport(SFO)
EFFECT:	At	(C2,	SFO)	∧	¬In	(C2,	p’)

The	regressed	state	description	after	Unload(C2,	p’,	SFO), is
g'	=	In(C2,	p’)	∧	At(p’	, SFO)	∧	Cargo(C2)	∧	Plane(p’)	∧	Airport(SFO)

	

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 20

Relevant	actions
Actions	that	can	be	used	to	reach	a	goal	are	defined	relevant.
Relevant	actions	contribute	to	the	goal	but	must	not	have	effects	that	negate	some	
element	of	the	goal.
Several	Unload	actions	may	be	relevant	but	we	choose	the	less	instantiated	one	
Unload(C2,	p’,	SFO).	Any	plane	will	do.	This	is	obtained	by	taking	the	Most	General	
Unifier	(θ).
Formally:	
Assume	a	goal	g	containing	a	literal	gi and	an	action	schema	A, standardized	to	A’.	
If	A has	an	effect	literal	ej where	Unify(gi,	ej)=θ and	a	=	SUBST(θ,	A)	and	if	there	is	no	
effect	in	a that	is	the	negation	of	a	literal	in	g,	then	a is	a	relevant action	towards	g.
One	of	the	earlier	planning	system	was	a	linear regression	planner	called	STRIPS	(Fikes
and	Nilsson,	1971).

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 21

STRIPS	by	example
Action(Stack(x,	y),	
PRECOND:	Clear(x)	∧	Table(x)	∧	Clear(y)	
EFFECT:	On(x,	y)	∧ ¬Table(x)	∧	¬Clear(y)	
)

Action(Unstack(x,	y),	
PRECOND:	Clear(x)	∧	On(x,	y)	
EFFECT:	¬On(x,	y)	∧	Table(x)	∧	Clear(y)	
)

Initial	state:	On(A,	C)	∧	Table(B)	∧	Table(C)
Goal:	On(C,	B)	∧	Table(A)	∧	Table(B)

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 22

C B

A

Initial state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C B

A

Current state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

Table (B)
Table(A)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C B

A

Current state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

Table(A)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C B

A

Current state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

Clear(A)
Unstack(A)
Table(A)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C B

A

Current state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

Unstack(A)
Table(A)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C B

A

Current state

C

BA

Goal state

STRIPS	in	action

C B

A

Initial state

Table(A)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

Current state

C BA

STRIPS	in	action

C B

A

Initial state

On(C,	B)
On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

Current state

C BA

STRIPS	in	action

C B

A

Initial state

Clear(B)
Clear(C)
Stack(C,	B)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

Current state

C BA

STRIPS	in	action

C B

A

Initial state

Clear(C)
Stack(C,	B)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

Current state

C BA

STRIPS	in	action

C B

A

Initial state

Stack(C,	B)
On(C,	B)

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

Current state

C BA

STRIPS	in	action

C B

A

Initial state

On(C,	B)
On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

C

BA

Current state

STRIPS	in	action

C B

A

Initial state

On(C,	B)	Ù Table(A)	Ù Table (B)

STACK

C

BA

Goal state

C

BA

Current state

STRIPS	in	action

C B

A

Initial state
STACK

C

BA

Goal state

C

BA

Current state

On(b, c) Ù On(a, b)

On(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Clear(b)
Clear(a)
Table(a)

Stack(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Clear(a)
Table(a)

Stack(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Clear(c)
Unstack(c)
Table(a)

Stack(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Unstack(c)
Table(a)

Stack(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Table(a)
Stack(a, b)

On(b, c)
On(b, c) Ù On(a, b)

Stack(a, b)
On(b, c)

On(b, c) Ù On(a, b)
On(b, c)

On(b, c) Ù On(a, b)

Clear(c)
Clear(b)
Table(b)

Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Clear(b)
Table(b)

Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Table(b)
Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Clear(a)
Unstack(a)
Table(b)

Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Unstack(a)
Table(b)

Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Table(b)
Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)

Stack(b, c)
On(b, c)

On(b, c) Ù On(a, b)
On(b, c)

On(b, c) Ù On(a, b)
On(a, b)

On(b, c) Ù On(a, b)

Clear(b)
Clear(a)
Table(a)

Stack(a, b)
On(a, b)

On(b, c) Ù On(a, b)

Clear(a)
Table(a)

Stack(a, b)
On(a, b)

On(b, c) Ù On(a, b)

Table(a)
Stack(a, b)
On(a, b)

On(b, c) Ù On(a, b)

Stack(a, b)
On(a, b)

On(b, c) Ù On(a, b)
On(a, b)

On(b, c) Ù On(a, b)On(b, c) Ù On(a, b)

C

B A

The	Sussman anomaly

C

B

A

Goal state

C

B A

Initial state

STACK

CB A CB

A

CB A C

B

A C

B

A

The	Sussman anomaly
The	plan	generated	is:

[Unstack(C),	Stack(A, B), Unstack(A),	Stack(B, C),	Stack(A,	B)]
Another	plan	that	could	have	been	generated	stacking	subgoals in	a	different	
order	is:

[Stack(B, C),	Unstack(B),	Unstack(C),	
Stack(A, B),	Unstack(A),	Stack(B, C),	Stack(A,	B)]

The	ideal	plan,	that	cannot	obtained	with	linear	planning	(the	goals	interfere	
and	cannot	be	achieved	without	interleaving	actions)	is:

[Unstack(C),	Stack(B,	C),	Stack(A,	B)]

Heuristics	for	planning
Problem	relaxation	is	a	common	technique	for	finding	admissible	heuristics.	
Given	the	factored	representation	we	can	devise	general	heuristics	for	planning.
Relaxing	the	problem.	It	can	be	done	in	two	ways:
1. Adding	arcs	to	the	planning	graph,	thus	making	the	graph	easier	to	search:

§ Ignore	preconditions	heuristics
§ ignore	delete	lists	heuristic

2. Clustering	nodes,	i.e.	state	abstraction.
§ Ignore	some	fluents

Decompose	the	problem	by	assuming	subgoal independence.
Using	a	data	structure	called	‘planning	graphs’	(next	lesson).

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 38

‘Ignore	preconditions’	heuristics
The	ignore	preconditions	heuristic	drops	all	preconditions	from	actions,	so	every	action	is	
applicable	in	any	state,	any	single	goal	literal	can	be	satisfied	in	one	step	or	no	solution.
The	number	of	steps	to	solve	the	goal	approximated	by	the	number	of	unsatisfied	subgoals,	but	…

a. one	action	may	satisfy	more	than	one	subgoal (non	admissible	estimate)
b. one	action	may	undo	the	effect	of	another	one	(admissible)

An	accurate	heuristics	is	the	following:
1. remove	all	preconditions	and	all	effects	except	those	that	are	literals	in	the	goal
2. count	the	minimum	number	of	actions	required	such	that	the	union	of	those	actions’	effects	

satisfies	the	goal	(a	problem	of	set-cover).	NP-hard	but	greedy	approximations	exist.
As	an	alternative	we	could	ignore	only	some	preconditions	from	the	actions.
Example:	in	the	sliding	tiles	puzzle,	removing	the	precondition	of	empty	destination,	leads	to	the	
Manhattan	distance	heuristics.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 39

‘Ignore	delete	list’	heuristic
Assume	that	all	goals	and	preconditions	contain	only	positive	literals.
Remove	the	delete	lists	from	all	actions	(i.e.,	removing	all	negative	literals	from	
effects).
No	action	will	ever	undo	the	effect	of	actions,	so	there	is	a	monotonic	progress	
towards	the	goal.	
Still	NP-hard	to	find	the	exact	solution	of	the	relaxed	problem	but	this	can	be	
approximated	in	P	time,	with	hill-climbing.	This	strategy	can	be	effective	for	
some	problems.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 40

The	‘ignore	delete-list’	heuristic	in	action

Two	state	spaces	from	planning	problems	with	the	ignore-delete-lists	heuristic.
The	height	above	the	bottom	plane	is	the	heuristic	score	of	a	state;	states	on	the	bottom
plane	are	goals.	There	are	no	local	minima,	so	search	for	the	goal	is	straightforward.
From	Hoffmann	(2005).

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 41

State	abstraction
In	order	to	reduce	the	number	of	states,	we	need	other	forms	of	relaxations,	i.e.	state	
abstractions.
A	state	abstraction	is	a	many-to-one	mapping	from	states	in	the	ground/original	
representation	of	the	problem	to	the	abstract	representation.
Common	strategy:	ignore	some	fluents.
Air	cargo	example:	10	airports,	50	planes,	and	200	pieces	of	cargo.
There	are	5010 × 20050+10 ≈	10155 states	to	consider.
Consider	a	specific	problem	in	that	domain	where	all	the	packages	are	at	5	of	the	airports,	
and	all	packages	at	a	given	airport	have	the	same	destination.
Drop	all	the	At fluents except	for	the	ones	involving	one	plane	and	one	package	at	each	of	
the	5	airports.	
The	cost	of	the	solution	to	this	smaller	problem	is	an	admissible	heuristic.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 42

Decomposition
Decomposition:	divide	a	problem	into	parts,	solve each	part	independently,	and	
then	combine	the	parts.
The	subgoal independence	assumption	is	that	the	cost	of	solving	a	conjunction	
of	subgoals is	approximated	by	the	sum of	the	costs	of	solving	each	subgoal
independently.	This	assumption	can	be:
1. optimistic (admissible),	when	there	are	negative	interactions
2. pessimistic,	and	therefore	inadmissible,	when	subplans contain	redundant	

actions
Goal	G,	divided	into	disjoint	subsets	of	fluents G1,	.	.	.,Gn
P1,	.	.	.	,	Pn are	plans	solving	the	corresponding	subgoals
Cost (Pi)	is	a	heuristic	estimate	of	plan	Pi
maxi Cost (Pi)	is	an	admissible	heuristic	while	∑ Cost	(Pi)s is	not.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 43

Conclusions
ü Classical	planning	systems	assume	a	factored	representation	of	states	and	

goals	(PDDL)	that	makes	possible	specialized	strategies	and	heuristics.
ü We	also	discussed	other	approaches	such	as	planning	as	SAT	problem,	and	the	

limits	of	linear regression	planning	à la	STRIPS.
ü We	discussed	several	strategies	for	finding	admissible	heuristics.
ü Next	time	we	will	discuss	planning	graphs,	a	data	structure	that	can	be	used	

to	find	better	heuristics	for	forward	planners,	and	is	the	basis	for	the	
GraphPlan algorithm.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 44

Your	turn
ü Solve	a	new	planning	problem	with	SATplan:	for	example	“Monkey	and	

bananas”,	or	the	“Shakey world”	(see	descriptions	at	the	end	of	AIMA	Chapter	
10).

ü Solve	a	new	planning	problem	with	a	regression	planner	such	as	STRIPS.
ü An	example	of	a	system	that	makes	use	of	effective	heuristics	is	FF,	or	

FastForward (Hoffmann,	2005).	Discuss.
ü Discuss	heuristics	that	you	find	in	the	literature.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 45

References
ü Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach

(3rd edition).	Pearson	Education	2010	[Chapter	4,	10]

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 46

