
AI	Fundamentals:	planning
Maria	Simi



Classical	planning	2
LESSON	2:	PLANNING	GRAPHS,	GRAPHPLAN,	PARTIAL	ORDER	
PLANNING		



Planning	graphs
A	data	structure	called	a	planning	graph:
1. can	be	used	to	give	better	heuristic	estimates	to	employ	in	conjunction	with	

search	algorithms
2. is	the	basis	of	an	algorithm	called	GraphPlan.
A	planning	graph	is	polynomial	size approximation	to	the	[exponential]	search	
tree.		It	can	be	constructed	quickly.	
The	planning	graph	can’t	answer	definitively	whether	G is	reachable	from	S0,	but	
it	can	estimate	how	many	steps	it	takes	to	reach	G.		This	estimate	is	always	
correct	when	it	reports	the	goal	is	not	reachable,	and	it	never	overestimates	the	
number	of	steps,	so	it	represents		an	admissible	heuristic.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 3



Planning	graph	definition
Planning	graphs	work	only	for	propositional	planning	problems,	with	no	variables.
A	planning	graph	is	a	directed	graph		which	is	built	forward and	is	organized	into	levels:	
• a	level	S0 for	the	initial	state,	representing	each	fluent	that	holds	in	S0
• a	level	A0	consisting	of	nodes	for	each	ground	action	applicable	in	S0
• alternating	levels	Si followed	by	Ai are	built	until	we	reach	a	termination	condition.

Si contains	all	the	literals	that	could	hold	at	time	i (even	P	and¬P)
Ai contains	all	the	actions	that	could	have	their	preconditions	satisfied	at	time	i
Mutual	exclusion	links		(mutex)	between	actions	mean	that	two	actions	cannot	occur	at	
the	same	time.	Mutex between	literals	mean	that	two	literals	cannot	appear	in	the	
same	belief	state.	More	in	detail	after	the	example	…

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 4



An	example	of	planning	graph	

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 5

Bake(Cake)

Eat(Cake)
Have(Cake)

S0 A0 S1 A1 S2

Have(Cake) Have(Cake) Have(Cake)
Have(Cake)

Eaten(Cake)
Eaten(Cake) Eaten(Cake)Eaten(Cake)

Eaten(Cake)
Eat(Cake)

¬

¬ ¬

¬

¬

Rectangles	indicate	actions	
Small	squares	persistence	actions	(no-ops)
Straight	lines	indicate	preconditions	
and	effects
Mutex links	are	shown	as	curved	gray	lines



Mutex computation
§ Mutex relations	between	actions:

1. Inconsistent	effects:	one	action	negates	an	effect	of	another	action
2. Interference:	one	of	the	effects	of	one	action	is	the	negation	of	a	precondition	of	

the	other
3. Competing	needs:	one	of	the	preconditions	of	one	action	is	mutually	exclusive	

with	a	precondition	of	the	other
§ Mutex relations	between	literals	at	the	same	level

1. if	one	is	the	negation	of	the	other
2. inconsistent	support:	if	each	possible	pair	of	actions	that	could	achieve	the	two	

literals	is	mutually	exclusive.	Example	Have(Cake),	produced	by	noop,	is	mutex
with	Eaten(Cake),	produced	by	Eat(Cake).

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 6



Properties	of	the	planning	graph
§ Each	level	Si represents	a	set	of	possible	belief	states.	Two	literals	connected	by	a	

mutex belong	to	different	belief	states.
§ The	levels,	alternating	S’s	an	A’s,	are	computed	until	we	reach	a	point	where	two	

consecutive	levels	are	identical.	The	graph	levels	off at	S2.
§ The	process	of	constructing	the	planning	graph	does	not	require	choosing	among	

actions	and	is	very	fast.
§ A	planning	graph	is	polynomial	in	the	size	of	the	planning	problem:

an	entire	graph	with	n levels,	a	actions, l	literals, has	size	O(n	(a +	l	)2).	
Time	complexity	is	the	same.

§ The	level	j at	which	a	literal	first	appears	is	never	greater	than	the	level	at	which	it	
can	be	achieved.	

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 7



Use	of	planning	graphs	for	heuristic	estimation
Information	that	can	be	extracted	from	the	planning	graph:
1. If	any	goal	literal	fails	to	appear	in	the	final	level	of	the	graph,	then	the	problem	is	

unsolvable;
2. we	can	estimate	the	cost	of	achieving	a goal	literal	gi as	the	level	at	which	gi first	appears	in	

the	planning	graph,	the	level	cost.	This	estimate	is	admissible.
3. A	better	estimate	can	be	obtained	by	serial	planning	graphs,	only	one	action	at	each	level.
Estimating	the	heuristic	of	a	conjunction	of	goals:
1. max-level	heuristic:	the	maximum	level	cost	of	any	of	the	sub-goals.	Admissible.
2. level	sum	heuristic:	the	sum	of	the	level	costs	of	the	goals.	This	can	be	inadmissible	when	

goals	are	not	independent,	but	can	be	accurate.
3. set-level	heuristic:	finds	the	level	at	which	all	the	literals	appear	together	in	the	planning	

graph,	without	any	mutex between	pair	of	them.	Admissible,	accurate.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 8



The	planning	graph	as	relaxed	problem
We	can	only	prove	that:

If	there	exists	a	plan	with i action	levels	that	achieves	g	then	g	appears	at	
level i
but	not	vice	versa.

If	g does	appear	at	level i ,	the	plan	possibly	exists	but,	in	order	to	be	sure,	we	
need	to	check	the	mutex relations,	pairs	of	conflicting	actions	or	pairs	of	
conflicting	literals.
Even	so,	there	are	plans	that	are	not	recognized	as	impossible,	for	example	the	
goal	to	get	block	A	on	B,	B	on	C,	and	C	on	A.	To	detect	that	this	problem	is	
impossible,	we	would	have	to	search	over	the	planning	graph

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 9



The	GRAPHPLAN algorithm
The	GRAPHPLAN algorithm	is	a	strategy	for	extracting	a	plan from	the	planning	
graph.
The	planning	graph	is	computed	incrementally by	the	function EXPAND-GRAPH.
Once	a	level	is	reached	where	all	the	goals	show	up	as	non-mutex,	a	plan	is	
extracted	with	EXTRACT-SOLUTION.
It	this	EXTRACT-SOLUTION fails,	the	failure	is	recorded	as	a	no-good,	another	level	is	
expanded	and	the	process	repeats	until	a	terminal	condition	is	met.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 10



GRAPHPLAN pseudo-code

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 11



GRAPHPLAN on	the	spare-tire example

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 12

S0 A1 S2
At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)
At(Spare,Ground)

At(Spare,Trunk)

At(Spare,Trunk)

At(Flat,Axle)
At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)
At(Flat,Ground)
At(Spare,Ground)
At(Spare,Ground)

At(Spare,Axle)

At(Spare,Trunk)

At(Flat,Axle)

At(Spare,Axle)

At(Flat,Ground)

At(Spare,Ground)

PutOn(Spare,Axle)

LeaveOvernight

Remove(Flat,Axle)

Remove(Spare,Trunk)

Remove(Spare,Trunk)

Remove(Flat,Axle)

LeaveOvernight

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

¬

A0 S1



Progress	of	the	algorithm
1. The	planning	graph	is	initialized	with	So,	representing	the	initial	state.	The	

goal	At(Spare,	Axle)	is	not	present	in	So.
2. EXPAND-GRAPH adds	into	Ao the	three	applicable	actions	and	persistence	

actions	for	all	the	literals	in	So.	The	effects	of	the	actions	are	added	at	level	
S1.	Mutex relations	are	also	added	to	the	graph.

3. At(Spare,	Axle)	is	not	still	present	in	S1,	so	again	we	call	EXPAND-GRAPH
adding	A1 and	S2

4. All	the	literals	from	the	goal	are	present	in	S2,	and	none	of	them	is	mutex
with	any	other,	… so	we	can	call	EXTRACT-SOLUTION.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 13



EXTRACT-SOLUTION
Two	approaches:
1. Solve	as	a	boolean CSP: the	variables	are	the	actions	at	each	level,	the	values	for	each	

variable	are in	or	out of	the	plan,	and	the	constraints	are	the	mutex and	the	need	to	satisfy	
each	goal	and	precondition.

2. Solve	as	a	backward	search	problem:
§ Start	with	Sn,	the	last	level	of	the	planning	graphs,	and	the	goals.
§ For	each	level	Si	select	a	number	of	non-conflicting	actions	in	Ai-1	whose	effects	cover	the	
goals	in	Si	.	The	resulting	state	is	Si-1	with	goals	the	preconditions	of	the	selected	actions.

§ The	process	is	repeated	until	level	S0	hoping	all	the	goals	are	satisfied.

If	EXTRACT-SOLUTION fails	to	find	a	solution	for	a	set	of	goals	at	a	given	level,	we	record	
the	(level ,	goals)	pair	as	no-good,	so	that	we	can	avoid	to	repeat	the	computation.

Going	back	to	the	example	…

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 14



Complexity	and	heuristics
Constructing	the	planning	graph	takes	polynomial	time
Solution	extraction	is intractable	in	the	worst	case.	
Heuristics	exist.
Greedy	algorithm	based	on	the	level	cost	of	the	literals:
1. Pick	first	the	literal	with	the	highest	level	cost.
2. To	achieve	that	literal,	prefer	actions	with	easier	preconditions.	That	is,	

choose	an	action	such	that	the	sum	(or	maximum)	of	the	level	costs	of	its	
preconditions	is	smallest.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 15



Termination	of	GRAPHPLAN
We	can	prove	that	GRAPHPLAN will	in	fact	terminate	and	return	failure	when	there	is	no	
solution.
But	we	may	need	to	expand	the	graph	even	after	it	levels	off.
Theorem:	If	the	graph	and	the	no-goods	have	both	leveled	off,	and	no	solution	is	found	
we	can	safely	terminate	with	failure.
Sketch	of	the	proof:
1. Literals	and	actions	increase	monotonically	and	are	finite,	we	need	to	reach	a	level	where	

they	stabilize.
2. Mutex and	no-goods	decrease	monotonically	and	cannot	become	less	than	zero,	so	they	too	

must	level	off.
3. When	we	reach	this	stable	state	if	one	of	the	goals	is	missing	or	is	mutex with	another	goal	it	

will	remain	so.	We	may	as	well	stop	computation.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 16



International	Planning	Competition

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 17



Other	classical	approaches
1. Planning	as	a	Constraint	Satisfaction	problem.
2. Planning	as	refinement	of	partially	ordered	plans
Partial	Order	Planning	is	an	interesting	approach,	very	popular	in	the	ninthies.
Interesting	since	it	addresses	the	issue	of	independent	subgoals,	that	can	be	performed	
in	parallel.	For	some	specific	tasks,	such	as	operations	scheduling	is	the	technology	of	
choice.	
Interesting	because	it	represents	a	change	of	paradigm:	planning	as	search	in	the	state	
of	partial	plans	rather	than	in	space	of	states.
The	plan	refinement	approach	is	also	more	explainable:	it	makes	it	easier	for	the	
humans	to	understand	what	the	planning	algorithms	are	doing	and	verify	that	they	are	
correct.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 18



Partial	Order	Planning:	ideas
The	driving	principle	is	least-commitment.

Partially	ordered	plans:

§ Do	not order steps in	the	plan unless necessary to	do	so.
§ In	a	partial-order plan steps are	partially ordered.
§ Plan	linearization:	to	impose	a	total order to	a	partially ordered plan.

Partially	instantiated	plans:
§ Leave variables uninstantiated until is necessary to	instantiate them
§ A	plan without variables is said to	be	totally instantiated.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 19



Searching	in	the	space	of	partial	plans
Instead	of	searching	in	space	of	states	as	in	the	classical	formulation,	we	search	in	the	
space	of	partial	plans.
1. We	start	with	an	empty	plan.
2. At	each	step	we	use	operators	for	plan	construction	and	refinement:

§ We	can	add	actions	in	order	to	satisfy	some	pre-condition,	i.e.	fixing	flaws	in	the	plan.
§ We	can	instantiate	variables
§ We	can	add	ordering	constraints	between	steps.

3. We	stop	when	we	obtain	a	consistent and	complete plan	where:
§ All	the	preconditions	of	all	the	steps	are	satisfied
§ Ordering	constraints	do	not	create	cycles

Every	linearization	is	a	solution.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 20



Empty	plan

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 21

T

Start

Finish

NIL

Facts	holding	in	the	initial	state

Facts	that	must	hold	in	the	goal	state



Representation	for	plans
Partial	plan	are	represented	as:
§ A	set	of	actions,	among	them	Start and	Finish.
§ A	set	of	open	preconditions.
§ Constraints	among	actions	of	two	different	types:

- Ordering	relations:	S1< S2		 (S1 before	S2	)
- Causal	links	S1⟶cond S2	 (S1 achieves	cond for	S2	)
Note:	If	S1⟶cond S2	 then	S1< S2 but	not	vice	versa

Example:
{Unstack(A,	B),	Unstack(C,	D),	Stack(B,	A),	Stack(D,	C),	Start,	Finish}
Unstack(A,	B)	< Stack(B,	A)		 Unstack(A,	B)	® Clear(B) Stack(B,	A)	
Unstack(C,	D)	< Stack(D,	C)			 Unstack(C,	D)	® Clear(D) Stack(D,	C)	

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 22



Representation	for	actions

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 23

Action Stack

Clear(x) Clear(y)Table(x)

Stack(x,	y)

¬Clear(y) On(x,	y)¬Table(x)

Action	Unstack

Clear(x) On(x,	y)

Unstack(x,	y)

Clear(y) ¬ On(x,	y)Table(x)



PoP algorithm
We	start	with	the	empty	plan,	with	Start and Finish.
At	each	step:
§ We	choose	a	step	B and	one	of	its	open	preconditions	p and	we	generate	a	successor	plan	for	
each	action	A (old	or	new)	having	p among	the	effects

§ After	choosing	an	action	A	consistency	is	re-established	as	follows:
◦ Add	to	the	plan	the	constraints	A <	B and	A®p B
◦ Possible	actions	C having	¬p	as	effect,	are	potential	conflicts	(or	threats).	They	need	to	be	
anticipated	or	delayed		adding	the	constraints	C <	A or	B <	C.	This	step	may	fail.

§ We	stop	when	the	set	of	open	pre-conditions	is	empty.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 24



Threats	removal

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 25

(a)	 S3 is	a	threat	for	pre-condition	c di	S2,	achieved	by	S1
(b)	 The	threat is	resolved	by	demotion	
(c)	 The	threat is	resolved	by	promotion



POP	in	action
T

Start

Clear(c) Table(a)On(c, a) Clear(b) Table(b)

C

B

A

goal

C

B A

Stato iniziale

Finish

NIL

On(b, c)On(a, b)

Start < Finish

Clear(a) Clear(b)Table(a)

Stack(a, b)

¬Clear(b) On(a, b)¬Table(a)

Start < Stack(a, b) < Finish

Clear(b) Clear(c)Table(b)

Stack(b, c)

On(b, c) ¬Clear(c)¬Table(b)

Start < Stack(b, c) < Finish
Stack(b, c) < Stack(a, b) 

Clear(x)On(x, a)

Unstack(X, a)

Clear(a)

Clear(c)On(c, a)

Unstack(c, a) Unstack(c, a) < Stack(b, c)



PoP:	analysis
§ We	obtained	a	complete	and	consistent	partial	plan
§ Any	linearization	is	a	solution:	in	this	case	only	one:
[Unstack(C,	A),	Stack(B,	C),	Stack(A,	B)]

§ The	PoP algorithm	is	correct	and	complete:	
- any	plan	computed	is	a	solution
- If	a	plan	exists,	the	algorithm	finds	it

§ The	Sussman’s anomaly	was	solved	without	problems.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 27



Conclusions
ü Planning	combines	search and	logic.	
ü Progress	in	forward	planning	(GRAPHPLAN and PLANSAT)	has	been	steady	in	the	

last	ten	years	and	there	is	an	increasing	use	of	planners	in	industrial	
applications.

ü Planners	rely	on	a	combination	of	heuristics	and	there	is	no	clear	winning	
approach	for	every	domain.

ü An	important	speed-up	can	be	obtained	by	recognizing	that	a	problem	has	
serializable	subgoals,	i.e.	subgoals can	be	ordered	in	such	a	way	that	they	can	
be		achieved	in	that	order	without	having	to	undo	any	of	the	previously	
achieved	subgoals.

ü Next	time	we	go	outside	“classical	planning”	to	more	realistic	scenarios.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 28



Your	turn
ü Describe	more	heuristics	for	planning
ü Describe	some	of	the	winning	algorithms	for	planning
ü Implement/run	Partial	order	planning	algorithms
ü Compute	the	planning	graph	for	a	new	problem	and	discuss	the	execution	of	

GraphPlan.

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 29



References
ü Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach

(3rd edition).	Pearson	Education	2010	[Chapter	10]

22/11/17 AI	FUNDAMENTALS	- M.	SIMI 30


