
AI	Fundamentals:	rule-based	systems
Maria	Simi



Rule-based	systems:	the	basics
LESSON	1- SLD	RESOLUTION



Rules	are	everywhere
1. Expert	systems
2. Natural	language	processing,	e.g.	chatbots
3. Rule-based	programming	
4. Business	logics	in	organizations
5. End	user	programming,	e.g.	in	domotics

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 3



Resolution	theorem	proving
Given	the	the	fundamental	problem	KB	⊨ α	an	equivalent	problem	is	“KB	∪¬α is	
unsatisfiable”	
This	can	be	solved	by	a	deductive	system	showing	that	KB	∪¬α		⊢	{	},	where	{	}	is	the	
empty	clause	meaning	False.
Resolution	by	refutation	is	a	method	which	is	correct and	complete:
1. transform	the	KB	in	clausal	form	(a	conjunction	of	disjunction	of	literals)	
2. add	to	KB	the	negation	of	the	goal	in	clausal	form
3. use	the	resolution	rule as	unique	inference	rule.
This	strategy	works	for	PROP	and	FOL	with	different	complexity	results:
1. It	is	decidable	and	NP-complete	for	PROP
2. It	is	semi-decidable	for	FOL.

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 4



Resolution	rule
Clauses	are	set	of	literals,	i.e.	atomic	formulas	or	their	negation:	{p1,	p2,	… pk}	
Resolution	rule	for	PROP	(c1	and	c2 are	clauses):

c1 ∪	{p} c2 ∪	{¬p}
c1 ∪	c2		 (the	resolvent)

In	a	resolution	refutation	we	aim	to	deduce	the	empty	clause:
{p} {¬p}

{	}
Resolution	rule	for	FOL:

c1 ∪	{p} c2 ∪	{¬q} and	MGU(p,	q)	=	𝛾 and 𝛾 is	not	fail
[	c1 ∪	c2] 𝛾 a	fundamental	operation	is	unification

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 5



Resolution	in	the	predicate	calculus
Unification:	is	a	process	to	determine	whether	two	expressions	can	be	made	identical	
by	a	substitution	of	terms	to	variables.	
The	result	is	the	unifying	substitution,	the	unifier,		or	FAIL,	if	the	expressions	are	not	
unifiable.	
For	example:
{P(f(y),	A),	Q(B,	C)} {¬P(x,	A),	R(x,	C),	S(A,	B)}	 x and y are	variables
With	the	substitution	{x/f(y)}	the	literal	¬P(x,	A)	becomes	¬P(f(y),	A),		and	it	is	
possible	to	apply	the	resolution	rule.	
The	resolvent is:	{Q(B,	C),	R(f(y),	C),	S(A,	B)}
Given	two	expressions	there	may	be	different	substitutions	that	make	them	identical.	
We	are	interested	in	computing	the	most	general	unifier	(MGU),	the	one	that	does	only	
the	essential	instantiations.

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 6



Unification	algorithm	[Martelli,	Montanari,	1982]

• Computes	the	MGU	by	means	of	a	rule-based equation-rewriting	system
• Initially	the	working	memory	(WM)	contains	the	equality	of	the	two	

expressions	to	be	unified	
• The	rules	modify	the	equations	in	the	WM
• The	algorithm	terminates	with	failure	or	when	there	are	no	applicable	rules	

(success)
• At	the	end,	if	there	is	no	failure,	the	WM	contains	the	MGU.

Note:	different	from	the	AIMA	unification	algorithm	but	easier	to	understand.



The	rules
1. f(s1,	…	,	sn)	=	f(t1,	…	,	tn)	® s1=	t1,	…	,	sn=	tn
2. f(s1,	…	,	sn)	=	g(t1,	…	,	tm)	® fail when		f¹g or	n¹m
3. x =	x® remove equation
4. t	=	x® x =	t bring variable to	the	left
5. x =	t,	x does not occur in	t® apply {x/t}	to	other equations
6. x =	t,	t is	not x, x occur in	t® fail (occur check)

Nota:	when	comparing	two	different	constants,	rule	2	applies,	as	a	special	case		
where n=m=0,	and	we	fail.



Step 0
P(A,	y,	z)	=	P(x,	B,	z) regola 1

Unification	algorithm:	example	1
Computing	the	MGU	of	P(A,	y,	z)	and	P(x,	B,	z)

Step 1
A =	x rule 4
y =	B
z =	z

Step 2
x =	A
y =	B
z = z rule 3

Step 3
x	=	A
y =	B

MGU!



Step 0

P(f(x),	x)	=	P(z,	z)	

Unification	algorithm:	example	2
Computing	the	MGU	of	P(f(x),	x)	and	P(z,	z)	

Step 1
f(x)	=	z rule 4

x =	z

Step 2

z =	f(x) rule 5
x	= z

Step 3
z =	f(x)
x =	f(x) rule	6

FAIL!
(occurr check)



Reasoning	with	Horn	clauses
By	limiting	expressivity	to	only	a	certain	interesting	subset	of	first-order	logic,	
resolution procedures	becomes	much	more	manageable.
We	limit	the	degree	of	uncertainty	we	can	express	by	considering	clauses	that	have	at	
most	one	positive	literal	(Horn	clauses).	Three	cases:
1. Rules:

{¬Child,	¬Male ,	Boy}	 is	logically	equivalent	to	
Child	∧	Male	⇒Boy	 which	has	a	natural	interpretation	as	a	rule.

2. Facts:	{Child}
3. Goals	or	queries:	{¬Boy} only	negative	literals	(negative	clauses)

Propositional	Horn	clauses	have	linear-time	deduction	algorithms.

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 11



Goal	trees	are	and-or	trees
1. Toddler
2. Baby	⇒ Child
3. Toddler	⇒ Child
4. Child,	Male	⇒Boy
5. Infant ⇒ Child
6. Child,	Female ⇒ Girl
7. Female

GOAL:	Girl

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 12

Girl

Child Female

ToddlerBaby



Example	of	SLD	resolution
{Toddler}
{¬Baby,	Child}
{¬Toddler,	Child}
{¬Child,	¬Male,	Boy}
{¬Infant,	Child}
{¬Child,	¬Female,	Girl}
{Female}
GOAL:	{¬Girl}

A	SLD	derivation of	a	clause	c from	S is	a	
sequence	of	clauses	c1 ,	c2 ,	.	.	. ,	cn,	such	that	
cn =	c ,	c1 ∈	S	,	and	ci+1 is	a	resolvent of	
ci and	some	clause	in	S.
S ⊢SLD A	iff S ⊢ A	

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 13

{¬Girl}{¬Child,	¬	Female,	Girl}

{Female} {¬Child,	¬Female}

{¬Toddler,	Child} {¬Child}	

{Toddler} {¬Toddler}

{	}



Logic	programs
A	logic	program	is	a	set	of	definite Horn	clauses	(facts	and	rules).
A.
A :- B1,	B2,	…	,	Bn. (A head,	B1,	B2,	…	,	Bnbody)

Declarative interpretation
A is	true.
A is	true	if	B1,	B2,	…	,	Bn are	all	true.
The	goal	(query)	is	a	negative	clause	whose	logical	meaning	is	¬(G1	Ù G2Ù…	Ù Gk)
written	as	?- G1,	G2,	…	,	Gk

Procedural	interpretation
The	head	of	a	rule	can	be	seen	as	a	function	call	and	the	body	as	functions	to	be	called	in	
sequence.	When	they	all	return	the	main	procedure	returns.



Example	of	logic	program
1. parent(X,	Y)	:- father(X,	Y).
2. parent(X,	Y)	:-mother(X,	Y).
3. ancestor(X,	Y)	:- parent(X,	Y).
4. ancestor(X,	Y)	:- parent(X,	Z),	ancestor(Z,	Y).
5. father(john,	mark).
6. father(john,	luc).
7. mother(lia,	john).

8. ?- ancestor(lia,	mark)							the	negation of	the	goal



SLD	resolution
Given	a	logic	program	and	a	goal	G1,	G2,	…	,	Gk the	SLD	goal	tree	is	constructed	as	
follows.	Each	node	of	the	tree	corresponds	to	a	conjunctive	goal	to	be	solved.
§ The	root	node	is	?- G1,	G2,	…	,	Gk
§ Let	?- G1,	G2,	…	,	Gk a	node	in	the	tree;	the	node	successors	are	obtained	by	
considering	the	facts	and	rules	in	the	program	whose	head	is	unifiable	with	G1	
◦ If	A :- B1,	…	,	Bm is	a	rule	and	g =	MGU(A,	G1),	a	descendent	is	the	new	goal	
?- (B1,	…	,	Bm,	G2,	…	,	Gk)g

◦ If	A is	a	fact	and	g =	MGU(A,	G1),	a	descendent	is	the	new	goal	 ?- (G2,	…	,	Gk)g
Note:	variables	in	rules	are	renamed	before	using	them.

§ Nodes	that	correspond	to	empty	clauses	are	successes.
§ Nodes	without	successors	are	failures.



SLD	tree	for	goal	ancestor(lia,	mark)
?- a(lia,	mark)

?- p(lia,	Z1),	a(Z1,	mark)?-p(lia,	mark)

?- f(lia,	mark)
FAIL

?- m(lia,	mark)
FAIL

1

3 4

1. parent(X,	Y)	:- father(X,	Y).	
2. parent(X,	Y)	:-mother(X,	Y).
3. ancestor(X,	Y)	:- parent(X,	Y).
4. ancestor(X,	Y)	:- parent(X,	Z),	ancestor(Z,	Y).
5. father(john,	mark).
6. father(john,	luc).
7. mother(lia,	john).

?- f(lia,	Z1)
FAIL

1

?- m(lia,	Z1),	a(Z1,	mark)

YES	with	{Z1/john}

2 2

?- a(john,	mark)

?- f(john,	mark)
SUCCESS

….

?- p(john,	mark) ?- p(john,	Z3),	A(Z3,	mark)

….

7



Computed	answers
In	addition	to	ground	goals	such	as	?-ancestor(lia,	mark) whose	answer	is	YES	or	NO,	
we	can	also	have	goals	with	variables	such	as

?- ancestor(X,	mark).
The	logical	meaning	of	the	query	is:	

KB ⊨	∃X ancestor(X,	mark)	?	 Are	there	ancestors	of	Mark?
KB	∪	¬∃X ancestor(X,	mark) unsatisfiable?	
KB	∪	{¬ancestor(X,	mark)}		⊢RES {	}	?

In	this	case	the	expected	answer	are	the	values	that	X is	bound	to	during	the	resolution	
proof.

X=lia;	X=john
Similarly: ?- ancestor(lia,	Y)

returns	all	the	descendants	of	Lia	(Y=john,	Y=mark,	Y=luc).

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 18



SLD	resolution	strategy
The	SLD	resolution	strategy	is	complete	for	definite	Horn	clauses.	
This	means	that	if	PÈ {¬G} is	unsatisfiable,	then	at	least	one	of	the	leaves	of	
the	goal	tree	produces	the	empty	clause	(success).
Moreover	trying	to	satisfy	the	subgoals in	the	order	they	appear	it	is	not	
restrictive,	since	in	the	end	all	of	them	must	be	satisfied.	
When	there	are	variables	in	the	goal,	the	substitution	that	we	obtain	is	the	
computed	answer.
Completeness	and	efficiency	are	however	influenced	by:
§ the	order	of	expansion	of	the	nodes		(the	visit	strategy)
§ the	order	in	which	we	consider	successor	nodes	at	each	level
§ the	order	of	literals	in	the	body



Your	turn
ü Make	sure	you	understand	all	these	premises.
ü Do	something	useful	for	the	IIA	students:	implement	the	rule-based	version	of	

UNIFICATION	to	be	used	in	connection	with	the	AIMA	code	in	file	logic.py.
ü Get	familiar	with	the	online	version	of	SWISH	Prolog	(if	you	prefer,	you	can	

install	it	on	your	PC).
https://swish.swi-prolog.org/

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 20



References
ü Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach

(3rd edition).	Pearson	Education	2010	[Chapter	9]

05/12/17 AI	FUNDAMENTALS	- M.	SIMI 21


