
AI	Fundamentals:	rule-based	systems
Maria	Simi

Logic	programming	and	Prolog
LESSON	2:	PROLOG- PROCEDURAL	CONTROL	OF	REASONING-
CONSTRAINT	LOGIC	PROGRAMMING-META	INTERPRETERS

Summary
§ Logic	programming	and	Prolog
§ Prolog	as	a	full	fledged	programming	language

- Data	structures,	special	constructs
§ Procedural	control	of	reasoning	(ALGORITHM	=	LOGIC	+	CONTROL)

- Specifying	goal	ordering
- Controlling	backtracking
- Negation	as	failure
- Implementing	search	strategies

§ Constraint	logic	programming
§ Meta-interpreters

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 3

SLD	resolution	and	Prolog
Prolog	is	a	rule-based/logic-programming	language	based	on	SLD	resolution.
1. The	declarative	semantics	is	given	by	Horn	clause	knowledge	bases.
2. The	procedural	semantics	is	given	by	a	specific	strategy	for	generating	SLD	trees:

§ Successors	are	generated	in	the	order	they	appear	in	the	logic	program
§ The	SLD	tree	is	generated	left-to-right	depth-first.
§ In	the	unification,	the	occur-check	is	omitted	for	efficiency.

Since	the	depth-first	visiting	strategy	is	not	complete,		the	Prolog	is	not	complete.
For	example	the	program:

ancestor(X,	Y)	:- ancestor(Z,	Y),	 parent(X,	Z).				
ancestor(X,	Y)	:- parent(X,	Y).

diverges		on	the	query	?- ancestor(lia,	mark).

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 4

Introduction	to	Prolog
FROM	THE	BOOK	BY	IVAN BRATKO

Prolog:	basic	data	types
§ Atoms

Ø Identifiers	with	initial	lowercase:	tom,	x-1,		… (logical	constants)
Ø Strings	of	characters:	‘Tom’,	’Sarah	Johnes’,	…
Ø Strings	of	special	characters:	<==>,	::=,	…

§ Numbers
Ø Integers:	0,	1,	-10,	1313,	…
Ø Real:	3.4,	-0.0035,	…

§ Variables
Ø Identifiers	with	initial	UPPERCASE:	Tom,	X1,	Result		…
Ø Anonymous	variables:	‘_’	as	in	 hasChild(X)	:- parent(X,	_)

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 6

§ Structured	objects	are	terms	including	functions	(functor applied	to	arguments)
Ø date(1,	may,	2001),	date(Day,	may,	2001)		any	day	in	May
Ø point(1,	1),	point(2,	2),	… segment(point(1,1),	point(2,	2))
Ø Arithmetic	expressions:	*(+(a,	b),	-(c,		5))

§ Lists
Ø [Head	|	Tail]:	Head	is	the	first	element,	Tail is	the	rest.
Ø [1	|	2,	3,	4,	5]	=	[1,	2,	3,	4,	5]	=	[1,	2,	3	|	4,	5]

§ Examples:	membership	in	a	list	and	concatenation	of	two	lists:
member(X,	[X	|	Tail]).
member(X,	[Head	|	Tail])	:- member(X,	Tail).

Prolog:	structured	objects

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 7

conc([],	L,	L).
conc([X	|	L1],	L2,	[X	|	L3])	:- conc(L1,	L2,	L3).

§ Basic	arithmetic	operations:
Ø +,	−,	*,	/	(division),	//	(integer	division),	**	(power),	mod	…
Ø The	‘is’	infix	operator	forces	the	evaluation	of	the	expressions:	A	is	(5−2)	+	1

§ Comparison	operators:
Ø >,	<,	>=,	=<,	=:=	(equal),	=\= (not	equal)	 they	force	evaluation
While	with		1+2	=	2+1	unification	fails,	1+2	=:=	2+1	forces	the	evaluation	and	the	answer	
is	YES.	If	X	=:=	Y,	the	variables	must	be	instantiated.

Example:	length	of	a	list.	Compare	the	two	programs.

Arithmetic

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 8

len([],	0).
len([_|Tail],	N+1)	:- len(Tail,	N).

?- len([a,	b,	c],	N),	Length	is	N.

len([],	0).
len([_|Tail],	N)	:- len(Tail,	N1),	N	is	1+N1.	

?- len([a,	b,	c],	N).

Using	structures:	a	family	knowledge	base

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 9

family(
person(tom,	fox,	date(7,may,1950),	works(bbc,15200)),	
person(ann,	fox,	date(9,may,	1951),	unemployed),
[person(pat,	fox,	date(5,may,1973),	unemployed),
person(jim,	fox,	date(5,may,1973),	unemployed)]).

Using	structures:	retrieving	from	the	KB

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 10

?- family(person(_,	fox,	_,	_),	_,	_).
?- family(X,_,[_,_]).
husband(X):- family(X,	_,	_).	
wife(X):- family(_,	X,	_).
child(X)	:- family(_,	_,	Children),	member(X,	Children).
dateofbirth(person(_,	_,	Date,	_),	Date).
?- child(X),	dateofbirth(X,	date(_,	may,	_)).

Using	structures:	computing

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 11

exists(P)	:- husband(P); wife(P); child(P).			syntax	for	or
?- exists(P),		dateofbirth(P,	date(_,	_,	Y)),	Y	<	1970.
salary(person(_,	_,	_,	works(_,	S)),	S).
salary(person(_,	_,	_,	unemployed),	0).
total([],	0).
total([P|L],	Sum)	:- salary(P,	S),	total(L,	R),	Sum	is	S	+	R.
?- family(H,	W,	C),	total([H,	W	|	C],	FamilyIncome).

“Algorithm	=	logic	+	control”
ROBERT	KOWALSKI

Procedural	control	of	reasoning
ALGORITHM	=	LOGIC	+	CONTROL	[Robert	Kowalski]
“An	algorithm	can	be	regarded	as	consisting	of	a	logic	component,	which	specifies	the	
knowledge	to	be	used	in	solving	problems,	and	a	control	component,	which	determines	
the	problem-solving	strategies	by	means	of	which	that	knowledge	is	used.	 The	logic	
component	determines	the	meaning	of	the	algorithm	whereas	the	control	component	
only	affects	its	efficiency.”
Declarative	encoding	of	knowledge	and	general	deduction	are	appealing	but	inefficient.	
For	efficiency	we	must	have	some	domain	dependent	control	on	the	reasoning	process.

Given	a	KB	made	of	facts	and	rules,	 how	to	make	the	most	effective	use	of	the	rules?

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 13

Ordering	subgoals
Suppose	we	are	looking	for	an	American	cousin	of	Sally:	

?- americanCousin(X,	sally)	
we	could	either:
1. find	an	American	and	then	check	to	see	if	she	is	a	cousin	of	Sally

americanCousin(X,	Y)	:- american(X), cousin(X,	Y).
2. find	a	cousin	of	Sally	and	then	check	to	see	if	she	is	an	American

americanCousin(X,	Y)	:- cousin(X,	Y),	american(X).
Both	programs	are	correct,	but	che choice	makes	a	difference	in	performance.
PROLOG	takes	ordering	of	clauses	and	subgoals very	seriously;	the	burden	is	on	the	
programmer.	In	this	case,	it	is	better	to	generate	all	cousins	and	for	each	one	test	
whether	she	is	American	…

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 14

Consider	three	logically	equivalent	ways	to	express	the	
relationship	between	the	two	predicates:
1. ancestor	(X,	Y)	:- parent	(X	,	Y).

ancestor	(X,	Y)	:- parent	(X,	Z),		ancestor(Z	,	Y).

2. ancestor	(X,	Y)	:- parent	(X,	Y).
ancestor	(X,	Y)	:- parent	(Z,	Y),	ancestor	(X	,	Z).

3. ancestor	(X,	Y)	:- parent	(X,	Y).
ancestor	(X,	Y)	:- ancestor	(X,	Z),	ancestor	(Z,	Y).

The	three	versions	give	the	same	results	on	all	
questions.	However	they	could	lead	to	substantially	
different	amounts	of	computation.

Three	versions	of	the	ancestor	example

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 15

sam

bill

sue

(1)

sam

sue

(2)

fred

sam

sue

(3)

george

Controlling	backtracking
Prolog	will	automatically	backtrack	if	this	is	necessary	to	satisfy	a	goal.
Uncontrolled	backtracking	however	may	cause	inefficiency	in	a	Prolog	programs.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 16

f1(X,	0)	:- X	<	3. %	Rule 1	
f1(X,	2)	:- 3	=<	X,	X	<	6. %	Rule 2
f1(X,	4)	:- 6 =<	X. %	Rule 3
?- trace,	f1(1,	Y),	2	<	Y.
?- 1	<	3,	2	<	0	fail {X/1,	Y/0}
?- 3	=<	1	fail {X/1,	Y/2}
?- 6	=<	1	fail {X/1,	Y/4}

Since	the	conditions	in	the	body	are	mutually	exclusive,	
we	know	that	only	one	of	them	will	succeed.	After	trying	
the	first	rule	and	failing	on	2	<	Y,	we	could	give	up.

Controlling	backtracking	with	CUT

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 17

f2(X,	0)	:- X	<	3,	!. CUT! %	Rule 1	
f2(X,	2)	:- 3	=<	X,	X	<	6. %	Rule 2
f2(X,	4)	:- 6 =<	X. %	Rule 3
?- f2(1,	Y),	2	<	Y.			
No backtracking after	first failure
?- trace,	f2(7,	Y).
?- 7	<	3	fail
?- 3	=<	7,	7	<	6	fail this test is redundant
?- 6=<7	ok this test is redundant

f3(X	,	0)	:- X	<	3	,	! .		
f3(X,	2)	:- X	<	6	,	! .
f3(X,	4).

if X	<	3	then Y	=	0,
else	if	X	<	6	then Y	=	2,
else Y	=	4.

General	behavior	of	CUT
The	example	was	a	case	where,	given	a	clause	of	the	form	“G :- T,	R.”	 goal	T	is	needed	
only	as	a	test	for	the	applicability	of	subgoal R;	if	R fails	we	do	not	want	to	backtrack	to	
T	 nor	try	any	other	alternative	for	G.
The	pattern:
 G :- T, ! , R is	equivalent	to
 G :- S.
More	efficient	than:
G	:-	T, R.
	 G :-	T,		S. T	a	goal	mutually	exclusive	with	T
In	general:

G :- T1,	T2,...,	Tm,	!,	G1,	G2,	...	,	Gn.
means	that	once	T1,	T2,...,	Tm have	been	established	we	can	commit	to	the	rest	of	
goals	without	looking	for	alternatives.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 18

if	T
then	R	implies	G
else S	implies	G.

Other	CUT	examples
1. Anybody,	except	Adam	and	Eve,	has	

two	parents.

2. The	maximum	of	two	numbers

3. This	version	of	member	stops	as	soon	
as	it	finds	an	element	equal	X.

4. Classify	people	in	categories	according	
to	this	schema:
Winner:	always	wins
Fighter:	sometime	wins,	sometime	not
Sportsman:	always	beated

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 19

numberOfParents (adam,	V)	:- !,	V=0.
numberOfParents (eve,	V)	:- !,	V=0.
numberOfParents (P,	2).

max(X,	Y,	X)	:- X	>=	Y,	!.	
max(X,	Y,	Y).	

member(X,	[X	| L])	:- !.
member(X,	[Y	|	L])	:- member(X,	L).

beat(tom,	jim).
beat(ann,	tom).
beat(pat,	jim).
class(X,	fighter)	:- beat(X,	_),	beat(_,	X),	!.
class(X,	winner)	:- beat(X,	_),	!.	
class(X,	sportsman)	:- beat(_,	X).

Negation	as	failure
Suppose	we	want	to	represent	“Mary	likes	all	animals	but	snakes”.
Let’s	try	with	“If	X	is	a	snake	then	‘Mary	likes	X'	is	not	true,	otherwise	if	X	is	an	animal	
then	Mary	likes	X”.	This	can	be	done	introducing	a	special	goal	fail that	always	fails:

This		example,	and	many	others,	indicate	that	it	would	be	useful	to	have	a	unary	
predicate	'not'	such	that	not(P) is	true	if	P fails.	It	could	be	defined	as	follows:

not is	a	built-in Prolog	procedure	that	behaves	as	defined	above.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 20

likes(mary,	X)	:- snake(X),	!,	fail.
likes(mary,	X)	:- animal(X).

likes(mary,	X)	:- snake(X),	!,	fail;	animal(X).

not(P)	:- P,	!,	fail.				fail	if	P succeeds
not(P). else	succeed	

The	example	is	more	naturally	expressed	as:
likes(mary,	X)	:- animal(X),	not	snake(X).

Negation	as	failure
This	new	type	of	goal,	not(G),	is	understood	to	succeed	when	the	goal	G fails	and	to	fail	
when	the	goal	G	succeeds.	
Failure	must	occur	in	a	finite	number	of	steps.
Other	examples:
1. noChildren(X)	:- not(parent(X,	Y)). we	assume	a	closed	world.
:- noChildren(john)	succeeds	if	:- parent(john,	Y)	fails
Different	from	proving	KB	⊨	∀y	¬parent(john,	y)	=	¬∃y	parent(john,	y).	It	is	rather
KB	⊭ ∃y	parent(john,	y).	This	makes	the	behavior	nonmonotonic.

2. composite(N)	:- N	> 1,	not	(primeNumber(N)).
3. Easier	to	read	solution	to	the

classification	problem.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 21

class(X,	fighter)	:- beat(X,	_),	beat(_,	X).
class(X,	winner)	:- beat(X,	_),	not(beat(_,	X)).	
class(X,	sportsman)	:- beat(_,	X),	not(beat(X,	_)).

Problems	with	CUT	and	negation
Using	CUT	has	advantages	and	drawbacks:
1. With	cut	we	can	often	improve	the	efficiency	of	the	program.	The	idea	is to	

explicitly	tell	Prolog:	do	not	try	other	alternatives	because	they	are	bound	to	fail.
2. Using	cut	we	can	specify	mutually	exclusive	rules;	so	we	can	add	expressivity	to	the	

language.
The	main	disadvantage	is	that	we	can	lose the	correspondence	between	the	declarative	and	
procedural	meaning of	programs.	Compare:
p	:-

We	can	distinguish
§ Green	cuts:	that	do	not	change	the	meaning	(safer)
§ Red	cuts:	that	change	the	meaning,	we	have	to	be	careful	to	the	actual	meaning.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 22

p	:- a,	b.
p	:- c.

p	:- a,	!, b.
p	:- c.

meaning
p	⇔	(a	∧	b)	∨	c

meaning
p	⇔	(a	∧	b)	∨	(¬a	∧ c)

p	:- c.
p	:- a,	!, b.

meaning
p	⇔	c	∨	(a	∧	b)

Algorithm	design
Consider	the	Fibonacci	series:	1,	1,	2,	3,	5,	8,	13,	21,	34,	.	.	.
Solution	1:
fib(0,1).
fib(1,1).
fib(N,	V)	:- X2	is	N−2,	fib(X2,	Y),	X1	is	N−1,	fib(X1,	Z),	plus(Y,	Z,	V).

Solution 2:
fib(N,	V)	:- f(N,	1,	0,	V).
f(0,	Y,	Z,	Y).
f(N,	Y,	Z,	V)	:- X1	is	(N−1),	plus(Y,	Z,	S),	f(X1,	S,	Y,	V).

This	equivalent	characterization	avoids	the	redundancy	of	the	previous	version	and	requires	only	
a	linear	number	of	Plus	subgoals.	Fib	of	100	is	computable	in	solution	2	but	not	in	solution	1.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 23

f(n,	y,	z,	v)	iff v=	y*	fib(n)	+	z*fib(n-1)	???

fib(n)	= fib(n−2)	+	fib(n−1)

AI	programming	in	Prolog
Basic	search	algorithms	for	problem	solving	are	easy	to	implement	(see	Part	II	of	Bratko
book).	The	following	is	a	depth-first	search	with	cycle	breaking.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 24

solve(Node,	Solution)	:-
depthfirst([],	Node,	Solution).

depthfirst(Path, Node,	[Node	|	Path])	:-
goal(Node).

depthfirst(Path,	Node,	Sol)	:-
s(Node,	Node1),
not	(member(Node1,	Path)),	
depthfirst([Node	|	Path],	Node1,	Sol).

You	need	to	define:
§ States
§ Initial	state
§ Goal-test	(s)
§ Successors	(s)
for	your	problem,	then	ask:
?- solve(initial-state-node,	Solution).
Note:	the	test	
not	(member(Node1,	Path))

is	to	break	cycles.

A	well	known	example:	blocks	world

Initial	state:	[[c,	a,	b],	[],	[]]	a	list	of	stacks
Goal	state:	[…[a,	b,	c]…]
Goal	test:
goal(State)	:- member([a,	b,	c],	State).

Transition	function:
• moves	the	top	of	one	stack	to	another	stack	

(empty	stack	means	table).
• uses	the	del function	to	delete	an	item	from	

a	stack

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 25

goal(State)	:- member([a,	b,	c],	State).

s(Stacks,	[Stack1,	[Top1|Stack2]|Other]):-
del([Top1	|	Stack1],	Stacks,	Stacks1),	
del(Stack2,	Stacks1,	Other).

del(X,	[X|L],	L). %	utility
del(X,	[Y|L],	[Y|L1])	:- del(X,	L,	L1).

?- solve([[c,	a,	b],	[],	[]],	Solution).
%	as	defined	in	previous	slide

The	solution	found	is	very	long,	not	optimal.

Adding	a	depth-limit,	iterative	deepening-1

Iterative	deepening	can	be	obtained	by	
starting	with	depth	0	and	incrementing	
depth	until	a	solution	is	found.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 26

solve(Node,	Solution,	Max)	:-
depthfirstL(Node,	Solution,	Max).

depthfirstL(Node,	[Node],	_)	:-
goal(Node).

depthfirstL(Node,	[Node|Sol],	Max)	:-
Max	>	0,			
s(Node,	Node1),		
Max1	is	Max-1,			
depthfirstL(Node1,	Sol,	Max1).

?- solve([[c,	a,	b],	[],	[]],	Solution,	4).

solve(Node,	Sol,	N)	:-
depthfirstL(Node,	Sol,	N).

solve(Node,	Sol,	N)	:-
N1	is	N+1,
solve(Node,	Sol,	N1).

?- solve([[c,	a,	b],	[],	[]],	Solution,	0).

Blocks	world	with	iterative	deepening	- 2
This	is	an	alternative	version	of	iterative	
deepening.
The	function	path generates,	for	the	
given	initial	node,	all	the	possible	paths	
of	increasing	length.
Each	one	is	then	goal	tested	by	solve.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 27

path(Node,	Node,	[Node]).

path(FirstN,	LastN,	[LastN |	Path])	:-
path(FirstN,	OneButLast,	Path),				
s(OneButLast,	LastN),																																																																																		
not(member(LastN,	Path)).

solve(Node,	Solution)	:-
path(Node,	GoalNode,	Solution),				
goal(GoalNode).

?- solve([[c,	a,	b],	[],	[]],	Solution).

AI	programming	in	Prolog
§ We	can	easily	implement	other	search	strategies:	breadth-first,	A*	…
§ The	book	shows	other	nice	examples	of	AI	Programming	…
§ Constraint	logic	programming
§ Expert	systems
§ Planning
§ Machine	learning
§ Language	processing
§ Game	planning
§ Meta-programming.

You	are	free	to	explore	in	the	Your	turn	session.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 28

Constraint	logic	programming

Constraint	Logic	Programming
Constraint	logic	programming	(CLP)	combines	the	constraint	satisfaction	approach	with	
logic	programming,	creating	a	new	language	where	a	logic	program	works	along	a	
specialized	constraint	solver.
The	basic	Prolog	can	be	seen	as	a	very	specific	constraint	satisfaction	language	where	
the	constraints	are	of	a	limited	form,	that	is	unifications	constraints or	bindings.
Prolog	is	extended	introducing	other	types	of	constraints.
CLP(X)	differ	in	the	domain	and	type	of	constraints	they	can	handle.
1. CLP(R):	constraints	on	real	numbers
2. CLP(Z):	integers
3. CLP(Q):	rational	numbers
4. CLP(B):	boolean values
5. CLP(FD):	finite	domains

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 30

Trying	the	SWISH	Prolog	CLP’s	libraries
Constraint	logic	programming	(CLP)	allows	variables	to	be	constrained	rather	than	
bound.
A	CLP	solution	is	the	most	specific	set	of	constraints on	the	variables	that	can	be	
derived	from	the	knowledge	base.	A	specific	solution	if	the	constraints	are	tight	enough.
Compare	the	behavior	a	classical	Prolog	program	with	a	CLP	program.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 31

convert(Euro,	USD)	:-
{USD	= Euro	*	0.842}.

?- convert(150, USD).
USD	=	126.3
?- convert(Euro,	200).
Euro	=	237.52969121140143
?- convert(Euro,	USD).
{USD=0.842*Euro}

convert(Euro,	USD)	:-	
USD	is Euro	*	0.842.

?- convert(150, USD).
USD	=	126.3
?- convert(Euro,	200).
Arguments	are	not	sufficiently	instantiated

Syntax	and	built-in		functions	for	CLP
CLP(R)	and	CLP(Q),	real	and	rational

Syntax	for	constraints:
{A	<	2,	B	=	5,	C	>	A}
{1	+		X	=	5}

Built-in	functions	for	constraints:
?- {X	=<5},	maximize(X).
X=5.0
?- {X	 =<	5,	2	=<	X},	minimize(2*X	+	3).
X=2.0

CLP(FD),	finite	domains
Syntax	for	constraints:
X	in	Set										to	declare	the	domain	of	X
Set	can	be:
{1,	2,	3,	4,	5} a	list	of	integers
1	..	10 a	range
Set1	\/	Set2 union
Set1	/\ Set2 intersection
\Set complement

Comparison	operators:
#= equal
#=\= not	equal
#< less	than
#=< less	or	equal	…

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 32

Trying	the	SWISH	Prolog	CLP’s	libraries

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 33

triangle(X, Y, Z)	:-	
X > 0,	Y > 0,	Z > 0,	
X+Y >= Z,	Y+Z >= X,	X+Z >= Y.	
?- triangle(3, 4, 5).
YES.
?- triangle(3,4,Z)	
cannot	be	solved

:- use_module(library(clpfd)).
triangle(X,	Y,	Z)	:-
{X #> 0,	Y #> 0,	Z #> 0,
X+Y #>= Z,	Y+Z #>= X,	
X+Z	#>=	Y}.	

?- triangle(3,4,Z).
Z	in	1..7
:- use_module(library(clpq)).
triangle(X,	Y,	Z)	:-
{X > 0,	Y > 0,	Z > 0,	X+Y >= Z,	
Y+Z >= X,	X+Z	>=Y}.	
?- triangle(3,4,Z).
{Z >= 1, Z =< 7}
%	{Z >= 1.0, Z =< 7.0}	

In	Swish	Prolog	you	can	load	the	following	
libraries:
1. clpfd (for	finite	domains)
2. clpq (for	rational	domains)
3. clpr (for	real	domains)

PROLOG CLP(FD)

CLP(Q)/CLP(R)

Crypto-arithmetic CLP
DONALD+
GERALD=

ROBERTO

Built-in	functions:
all_different(L):	
all	the	variables	have	different	values
labeling([],	L):	assigns	values	from	
left	to	right.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 34

:- use_module(library(clpfd)).

solve([D,O,N,A,L,D],	[G,E,R,A,L,D],	[R,O,B,E,R,T])	:-
Vars	=	[D,O,N,A,L,G,E,R,B,T],				
D	in 0..9,	O	in 0..9,	N	in 0..9,	A	in 0..9,				
L	in 0..9,	G	in 0..9,	E	in 0..9,	R	in 0..9,				
B	in 0..9,	T	in 0..9,				
all_different(Vars),				
100000*D+10000*O+1000*N+100*A+10*L+D	+				
100000*G+10000*E+1000*R+100*A+10*L+D	#=				
100000*R+10000*O+1000*B+100*E+10*R+T,					
labeling([],	Vars).

?- solve(N1,	N2,	N3).

Meta	interpreters

Meta-interpreters
§ A	meta-interpreter for	a	language	is	a	program	that	is	written	in	the	language	itself	

and	treats	other	programs	as	data.
§ Prolog	has	a	powerful	features	for	writing	meta	programs	because	Prolog	treats	

programs	and	data	both	as	terms.
§ One	can	write	meta	interpreters	for	various	applications,	extending	the	

implementation	of	Prolog	in	different	directions.
§ Applications:
§ exploring	different	execution	strategies for	the	intepreter,	i.e.	on	breadth	first,	

limited	depth	search,	combination	of	depth	first	and	breadth	first	searches,	etc.
§ generating	proof	trees,	expert	system	shell,	trace	facilities	…
§ Implementing	new	languages

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 36

A	vanilla	meta-interpreter
To	build	the	meta-interpreter	we	can	rely	
on	the	built-in	predicate:
clause(Goal,	Body)
which	retrieves	a	clause	from	the	
consulted	program	that	matches	Goal.
The	vanilla	meta-interpreter	does	nothing,	
but	it	can	be	extended	in	several	
directions.

member1(X,	[X	|_]).								%		example	program	
member1(X,	[_|	Tail])	:-
member1(X,	Tail).

%?- member1(3,	[1,2,	3]).
%---
%	Vanilla	meta-interpreter
prove(true).
prove(Goal)	:-
clause(Goal,	Body),
prove(Body).

prove(Goal1,	Goal2)	:-
prove(Goal1),	prove(Goal2).

%?- prove(member1(3,	[1,2,	3])).

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 37

A	tracing	meta-interpreter
The	following	code	extends	the	vanilla	
meta-interpreter	with	a		tracing	facility.

%	a	tracing	meta- interpreter
prove(true)	:- !.

prove(Goal)	:-
write('Call:	'),	write(Goal),	nl,			
clause(Goal,	Body),			
prove(Body),			
write('Exit:	'),	write(Goal),	nl.

prove(Goal1,	Goal2)	:- !,			
prove(Goal1),			
prove(Goal2).

%?- prove(member1(3,	[1,2,3])).

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 38

A	breadth-first	
meta-interpreter
From	Artificial	Intelligence	
Techniques	in	Prolog	by	Yoav	
Shoham

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 39

Conclusions
ü Prolog	is	a	very	powerful	and	elegant	rule-based	programming	language,	very	flexible	

and	suitable	for	rapid	prototyping	of	AI	paradigms.
ü Implementation	is	quite	efficient	(Warren	abstract	machine).
ü Care	must	be	taken	in	controlling	the	order	of	rules	and	subgoals,	and	of	the	CUT	(!)	

operator.
ü Meta-level	interpreters	can	be	used	to	extend	the	language	and	easily	design	new	

languages.
ü The	II	part	of	the	book	by	Bratko,	implements	with	simple	Prolog	programs	many	AI	

paradigms,	including	machine	learning.
ü You	are	encouraged	to	experiment.
ü Rules	are	used	backwords.	Next	time	we	will	discuss	rule	based	running	forward.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 40

Your	turn
ü The	II	part	of	the	book	by	Bratko,	implements	in	Prolog	programs	AI	

paradigms,	including	machine	learning.
ü You	are	encouraged	to	experiment.	For	example:

- Search	algorithms
- An		expert	system	application
- An	application	of	constraint	programming
- An	expert	system	shell
- Planning	algorithms
- Learning	algorithms
- …

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 41

References
ü Ronald	Brachman	and	Hector	Levesque.	Knowledge	Representation	and	

Reasoning.	Morgan	Kaufmann	Publishers	Inc.,	San	Francisco,	CA,	USA.	2004.	
[Chapter].

ü Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach
(3rd edition).	Pearson	Education	2010	[Chapter	9]

ü Ivan	Bratko,	PROLOG	programming	for	Artificial	Intelligence,	Pearson,	4th
edition	in	2011.

12/12/17 AI	FUNDAMENTALS	- M.	SIMI 42

