

Al Fundamentals: Knowledge Representation and Reasoning

Knowledge engineering and Ontology engineering

LESSON 2: SITUATION CALCULUS - EVENT AND PROCESS CALCULUS

Knowledge engineering \& Ontological engineering

We start with representation. It is possible to discuss representation issues at two levels.
Knowledge engineering is the activity to formalize a specific application domain. It involves decisions about:

1. What are the relevant, facts, objects relations ...
2. Which is the right level of abstraction
3. What are the queries to the KB (inferences)

Ontology engineering seeks to build a general-purpose ontology which should be applicable in any special-purpose domain (with the addition of domain-specific axioms). For example:

Objects and categories, composite objects, bunches, substances, measurements, actions and change, events, temporal intervals ... [AIMA cap. 12]
Defaults (non monotonic reasoning), knowledge and beliefs In any non trivial domain, different areas of knowledge must be combined.

Knowledge engineering: a simple example

Before implementing, need to understand clearly, like in software engineering

- what is to be computed?
- what kind of knowledge?
- why and where inference is necessary?

Task: KB with appropriate knowledge and entailments

- Assuming FOL as representation language, the kinds of objects that will be important to the agent, their properties, and the relationships among them
- the vocabulary and relations among terms.
- what facts to represent

Example domain: soap-opera world (about human relationships and behavior) [KRR, Ch. 3]

- people and their relationships, places, companies, marriages, divorces, "hanky-panky", deaths, kidnappings, crimes, money ...

Ontology and vocabulary

We need to define names for individuals and domain-dependent predicates and functions.

Named individuals

- john, sleezyTown, faultyInsuranceCorp, fic, johnQsmith, ...

Basic types

- Person, Place, Man, Woman, ...

Attributes

- Rich, Beautiful, Unscrupulous, ...

Relationships

- LivesAt, MarriedTo, DaughterOf, HadAnAffairWith, Blackmails, ...

Functions

- fatherOf, ceoof, bestFriendOf, ...

Basic facts: atomic sentences

Type facts

- Man(john),
- Woman(jane),
- Company(faultyInsuranceCorp)

Property facts

- Rich(john),
- \neg HappilyMarried(jim),
- WorksFor(jim, fic)

Equality facts

- john = ceoOf(fic),
- fic = faultyInsuranceCorp
- bestFriendOf(jim) = john

So far, like a simple database (can store in a table)

Complex facts

Universal assertions (abbreviations)

- $\forall y[\operatorname{Woman}(y) \wedge y \neq j a n e \Rightarrow \operatorname{Loves}(y, j o h n)]$
- $\forall y[\operatorname{Rich}(y) \wedge \operatorname{Man}(y) \Rightarrow \operatorname{Loves}(y, j a n e)]$
- $\forall x \forall y[\operatorname{Loves}(x, y) \Rightarrow \neg \operatorname{Blackmails}(x, y)]$
"All the women, maybe not Jane, love John" "All the rich men love Jane."

Incomplete knowledge (relates to expressivity)

- Loves(jane, john) V Loves(jane, jim) which?
- $\exists x[\operatorname{Adult}(x) \wedge$ Blackmails(x, john $)] \quad$ who?

Closure axioms

- $\forall x[\operatorname{Lawyer}(\mathrm{x}) \Rightarrow x=j a n e \vee x=j o h n \vee x=j i m]$
- $\forall \underline{\mathrm{x}} \forall \mathrm{y}[\operatorname{MarriedTo}(x, y) \Rightarrow(x=$ ethel $\wedge \mathrm{y}=$ fred $) ..$.
- $\forall \mathrm{x}[\mathrm{x}=$ fic $\vee \mathrm{x}=j$ jane $\vee \mathrm{x}=j$ john $\vee \mathrm{x}=j i m$...] also useful to have jane $\neq j$ john ...

Terminological facts

General relationships among predicates. For example:

- disjoint $\quad \forall x[\operatorname{Man}(x) \Rightarrow \neg \operatorname{Woman}(x)]$
- subtype $\quad \forall x[\operatorname{Senator}(x) \Rightarrow$ Legislator $(x)]$
- exhaustive $\quad \forall x[\operatorname{Adult}(x) \Rightarrow \operatorname{Man}(x) \vee \operatorname{Woman}(x)]$
- symmetry $\quad \forall x \forall y[\operatorname{MarriedTo}(x, y) \Rightarrow \operatorname{MarriedTo}(y, x)]$
- inverse $\quad \forall x \forall y[\operatorname{ChildOf}(x, y) \Rightarrow \operatorname{ParentOf(}(y, x)]$
- type restriction $\forall x \forall y[\operatorname{MarriedTo}(x, y) \Rightarrow \operatorname{Person}(x) \wedge \operatorname{Person}(y)]$
- definitions $\quad \forall x[\operatorname{Rich} \operatorname{Man}(\mathrm{x}) \Leftrightarrow \operatorname{Rich}(\mathrm{x}) \wedge \operatorname{Man}(\mathrm{x})]$

Usually universally quantified conditionals or biconditionals

Entailment -1

Is there a company whose CEO loves Jane?
$\mathrm{KB} \vDash \exists x[\operatorname{Company}(x) \wedge \operatorname{Loves}(\operatorname{ceoOf}(x), j a n e)]$??
Suppose KB is true,
then Rich(john), Man(john), $\forall y[\operatorname{Rich}(y) \wedge \operatorname{Man}(y) \Rightarrow \operatorname{Loves}(y, j a n e)]$ are true
so Loves(john, jane) Also john $=$ ceoOf(fic)
so Loves(ceoOf(fic), jane)
Finally Company(faultyInsuranceCorp), and fic = faultyInsuranceCorp, so Company(fic)
Thus, Company (fic) ^ Loves(ceoOf(x), jane)
so $\exists x[\operatorname{Company}(x) \wedge \operatorname{Loves}($ ceoOf (x), jane)
Can extract identity of company from this proof

Entailment - 2

If no man is blackmailing John, then is he being blackmailed by somebody he loves?

$$
\begin{gathered}
\mathrm{KB} \vDash \forall x[\operatorname{Man}(x) \Rightarrow \neg \operatorname{Blackmails}(x, j o h n)] \Rightarrow \\
\exists y[\operatorname{Loves}(j o h n, y) \wedge \text { Blackmails }(y, \text { john })] ?
\end{gathered}
$$

Show: $\operatorname{KB} \cup \forall x[\operatorname{Man}(x) \Rightarrow \neg \operatorname{Blackmails}(x, j o h n)] \vDash$ $\exists y[\operatorname{Loves}(j o h n, y) \wedge \operatorname{Blackmails}(y, j o h n)]$

Loves(john, jane) ^ Blackmails(jane, john)]

Abstract individuals and reification

Sometimes useful to reduce n-ary predicates to 1-place predicates and 1-place functions

- involves reifying properties, creating new individuals
- typical of description logics / frame languages (later)

Flexibility in terms of arity:
Purchases(john, sears, bike) or
Purchases(john, sears, bike, feb14) or
Purchases(john, sears, bike, feb14, \$100)
Instead: introduce individuals for purchase objects and functions for roles (reification)
Purchase $(\underline{p 23}) \wedge \operatorname{agent}(p 23)=j$ john $\wedge \operatorname{object}(p 23)=$ bike $\wedge \operatorname{source}(p 23)=\operatorname{sears} \wedge$ amount $(p 23)=\$ 200 \wedge \ldots$
allows purchase to be described at various levels of detail.
For talking about ages and money, we need to decide how to deal with measurements.

Other sort of facts requiring FOL extensions

Statistical / probabilistic facts

- Half of the companies are located on the East Side.
- Most of the employees are restless.
- Almost none of the employees are completely trustworthy,

Default / prototypical facts

- Company presidents typically have secretaries intercepting their phone calls.
- Cars have four wheels.
- Companies generally do not allow employees that work together to be married.

Intentional facts

- John believes that Henry is trying to blackmail him.
- Jane does not want Jim to think that she loves John. Others ...

Representing common sense [AIMA cap 12]

- The use of KR languages and logic in A.I. is representing "common sense" knowledge about the world, rather than mathematics or properties of programs.
- Common sense knowledge is difficult since it comes in different varieties. It requires formalisms able to represent actions, events, time, physical objects, beliefs ... categories that occur in many different domains.
- In this lecture we will explore FOL as a tool to formalize different kinds of knowledge.
- A lot of intersections with philosophical logic, but in A.I. the emphasis is also on reasoning and its complexity.

General/upper ontology

A general ontology organizes everything in the world into a hierarchy of categories.

Properties of general-purpose ontologies

- A general-purpose ontology should be applicable in any special-purpose domain (with the addition of domain-specific axioms).
- In any non trivial domain, different areas of knowledge must be combined, because reasoning and problem solving could involve several areas simultaneously.
- Difficult to construct one best ontology. "Every ontology is a treaty—a social agreement-among people with some common interest in sharing."
- Several attempts:
- CYC (Lenat and Guha, 1990); OpenMind (MIT project); DBpedia (Bizer et al., 2007)
- Parsing text documents and extracting information from them (e.g. TextRunner ...)
- The ontologies of the semantic web [see Semantic web course]

Categories and objects

Much reasoning takes place at the level of categories: we can infer category membership from the perceived properties of an object, and then uses category information to derive specific properties of the object.
There are two choices for representing categories in first-order logic:

1. Predicates, categories are unary predicates, that we assert of individuals:

Sport(tennis)
2. Objects: categories are objects that we talk about (reification)
tennis \in Sports
WinterSports \subseteq Sports
This way we can organize categories in taxonomies (like in natural sciences), define disjoint categories, partitions ... and use specialized inference mechanisms. Problems with natural kinds, which do not admit logical definitions.

Composite objects: part-of

We use the general PartOf relation to say that one thing is part of another.
Composite objects can be seen as part-of hierarchies, similar to the Subset hierarchy.
These are called mereological hierarchies.

```
PartOf(nose , face)
PartOf(Bucharest, Romania)
PartOf(Romania, EasternEurope)
PartOf(EasternEurope, Europe)
PartOf(Europe, Earth)
```

The PartOf relation is transitive and reflexive:
$\operatorname{PartOf}(x, y) \wedge \operatorname{PartOf}(y, z) \Rightarrow \operatorname{PartOf}(x, z)$
PartOf (x, x)

Composite objects: structural relations

Structural relations among parts.
For example, a biped has two legs attached to a body:

$$
\begin{aligned}
& \operatorname{Biped}(a) \Rightarrow \exists l_{1}, l_{2}, b \\
& \quad \operatorname{Leg}\left(l_{1}\right) \wedge \operatorname{Leg}(l 2) \wedge \operatorname{Body}(b) \wedge \\
& \quad \operatorname{PartOf}\left(l_{1}, a\right) \wedge \operatorname{PartOf}\left(l_{2}, a\right) \wedge \operatorname{PartOf}(b, a) \wedge \\
& \operatorname{Attached}\left(l_{1}, b\right) \wedge \operatorname{Attached}\left(l_{2}, b\right) \wedge \\
& I_{1} \neq l_{2} \wedge\left[\forall l_{3} \operatorname{Leg}\left(l_{3}\right) \wedge \operatorname{PartOf}\left(l_{3}, a\right) \Rightarrow\left(l_{3}=l_{1} \vee l_{3}=l_{2}\right)\right]
\end{aligned}
$$

esattamente due gambe!

Composite objects: bunches

Composite objects with definite parts but no particular structure.
E.g. "a bag of three apples".

BunchOf (\{Apple e_{1}, Apple $_{2}$, Apple $\left.\left._{3}\right\}\right)$ not to be confused with the set of 3 apples
BunchOf (Apples) is the composite object consisting of all apples-not to be confused with Apples, the category or set of all apples.
How objects, bunches, sets and categories relate?

1. BunchOf $(\{x\})=x$
2. Each element of category s is part of $\operatorname{BunchOf}(s)$:
$\forall x . x \in$ Apples $\Rightarrow \operatorname{PartOf}(x$, BunchOf(Apples))
3. BunchOf (s) is the smallest object satisfying this condition.
$\forall y[\forall x x \in s \Rightarrow \operatorname{PartOf}(x, y)] \Rightarrow \operatorname{PartOf}(B u n c h O f(s), y)$
BunchOf (s) must be part of any object that has all the elements of s as parts

Quantitative measures

Physical objects have height, weight, mass, cost, and so on. The values that we assign for these properties are called measures.
A solution is to represent measures with units functions that take a number as argument.

```
Length( }\mp@subsup{L}{1}{})=\operatorname{Inches(1.5) = Centimeters(3.81)
Centimeters (2.54 × d) = Inches (d)
Diameter (Basketball 12) = Inches(9.5)
ListPrice(Basketball 12) = $(19)
d\in Days }=>\mathrm{ Duration(d) = Hours(24)
```


Qualitative measures

The most important aspect of measures is not the particular numerical values/scale, but the fact that measures can be ordered.
For example, we might well believe that Norvig's exercises are tougher than Russell's, and that one scores less on tougher exercises:

```
    \(e_{1} \in\) Exercises \(\wedge e_{2} \in\) Exercises \(\wedge\) Wrote(Norvig, \(\left.e_{1}\right) \wedge \operatorname{Wrote}\left(\right.\) Russell, \(\left.e_{2}\right) \Rightarrow\)
```

 Difficulty \(\left(e_{1}\right)>\operatorname{Difficulty}\left(e_{2}\right)\)
 \(e_{1} \in\) Exercises \(\wedge e_{2} \in\) Exercises \(\wedge\) Difficulty \(\left(e_{1}\right)>\operatorname{Difficulty~}\left(e_{2}\right) \Rightarrow\)
 ExpectedScore \(\left(e_{1}\right)<\) ExpectedScore \(\left(e_{2}\right)\)
 To perform some sort of qualitative inference, often it is enough to be able to order values and to compare quantities (qualitative physics)

Objects vs stuff

There are countable objects, things such as apples, holes, and theorems, and mass objects, such as butter, water, and energy. These are called Stuff.
Properties of stuff:

1. Any part of butter is still butter:
$b \in$ Butter ^ PartOf $(p, b) \Rightarrow p \in$ Butter
2. Stuff has a number of intrinsic properties (color, high-fat content, density ...), shared by all its subparts, but no extrinsic properties (weight, length, shape ...). It is a substance.

The situation calculus in FOL

The situation calculus is a specific ontology dealing with actions and change:

- Situations: snapshots of the world at a given instant of time, the result of an action.
- Fluents: time dependent properties
- Actions: performed by an agent, but also events.
- Change: how the world changes as a result of actions

The situation calculus is formalization in FOL of this ontology [Mc Carthy, 69]

The blocks world

A scenario much used in planning. The are blocks on a table and the goal is to reach a given arrangement of the blocks by stacking them on top of each other.
States: arrangements of blocks on a table
Initial state and goal state: a specific arrangement of blocks

Actions:

- move: move block x from block y to block z, provided x and \underline{z} are free.
- unstack: move block x from y to the table. x must be free.
- stack: move x from the table to $y . y$ must be free.

The blocks world formalization in FOL

- Situations: $s, s_{0}, s_{1}, s_{2} \ldots$ and functions denoting situations
- Fluents: predicates or functions that vary from a situation to another:

On, Table, Clear ... Hat
On (a, b) becomes On (a, b, s)
Hat(a) becomes Hat (a, s)
Immutable properties are represented as before (e.g. Block)

- Actions: are modelled as functions (terms)
move (a, b, c)
is a function representing the action of moving block A from B to C. It is an instance of the generic operator/function move.
Similarly for unstack (a, b) and $\operatorname{stack}(a, b)$.

Situations as result of actions

- Effect of actions: function Result: $A \times S \rightarrow S$
$s_{1}=\operatorname{Result}\left(\operatorname{move}(b, a, c), s_{0}\right)$
denotes the situation resulting from the action $\operatorname{move}(b, a, c)$ executed in s_{0}.
Then we can assert for example:
$\operatorname{On}\left(b, c, \operatorname{Result}\left(\operatorname{move}(b, a, c), s_{0}\right)\right)$

Result of a sequence of actions

Effect of a sequence of actions: Result: $\left[A^{*}\right] \times S \rightarrow S$

1. Result $([], s)=s$
2. $\operatorname{Result}([a \mid s e q], s)=\operatorname{Result}(s e q, \operatorname{Result}(a, s))$

For example:
$\operatorname{Result}\left([\operatorname{move}(a, b, c), \operatorname{stack}(a, b)], s_{0}\right) \equiv$
Result (stack(a, b), Result (move $\left.(a, b, c), s_{0}\right)$)
In general:
$\operatorname{Result}\left(\left[a_{1}, a_{2}, \ldots a_{n}\right], s_{0}\right) \equiv$
$\operatorname{Result}\left(a_{n}, \operatorname{Result}\left(a_{n-1}, \ldots \operatorname{Result}\left(a_{2}, \operatorname{Result}\left(a_{1}, s_{0}\right)\right) \ldots\right.\right.$)

Formalizing actions

- We need possibility axioms with this structure: preconditions \Rightarrow poss

$$
\begin{aligned}
& \operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge \operatorname{Clear}(z, s) \wedge x \neq z \Rightarrow \\
& \quad \operatorname{Poss}(\operatorname{move}(x, y, z), s)
\end{aligned}
$$

Note: Variables are universally quantified.

- And effect axioms such as:

$$
\begin{aligned}
& \operatorname{Poss}(\operatorname{move}(x, y, z), s) \Rightarrow \\
& \quad \operatorname{On}(x, z, \operatorname{Result}(\operatorname{move}(x, y, z), s)) \wedge \operatorname{Clear}(y, \operatorname{Result}(\operatorname{move}(x, y, z), s))
\end{aligned}
$$

- This is not enough however: Is y on the table in the new situation? Is x free?
- We have a [big] problem: in the new situation we do not know anything about properties that were not influenced at all by the action. These are the majority!!!
- This is the frame problem.

The frame problem and frame axioms.

The frame problem is one the most classical A.I. problems [McCarthy-Hayes, 1969]. There is an analogy with the animation world, where the problem is to distinguish background (the fixed part) from the foreground (things that change) from one frame to the other.

Let's fix that writing frame axioms.
Frame axioms for Clear with respect to move:
$\operatorname{Clear}(x, s) \wedge x \neq w \Rightarrow \operatorname{Clear}(x, \operatorname{Result}(\operatorname{move}(y, z, w), s))$
A block stays free unless the move action is putting something on it.
$\neg \operatorname{Clear}(x, s) \wedge x \neq z \Rightarrow \neg \operatorname{Clear}(x, \operatorname{Result}($ move $(y, z, w), s))$
A block remains not free unless it is not freed by the action.
And similarly for each pair fluent-action. Too many axioms (representational frame problem)

Successor-state axioms [Reiter 1991]

We can combine preconditions, effect and frame axioms to obtain a more compact representation for each fluent f. The schema is as follows:

```
ftrue after }\Leftrightarrow\mathrm{ preconditions and
    [some action made f true or
    f was true before and no action made it false]
```

preconditions
effect
frame axioms

Example: state-successor axiom for fluent Clear:
$\operatorname{Clear}(y, \operatorname{Result}(a, s)) \Leftrightarrow$

$$
\begin{aligned}
& [\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge \operatorname{Clear}(z, s) \wedge x \neq z \wedge a=\operatorname{move}(x, y, z))] \vee \\
& {[\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge(a=\operatorname{unstack}(x, y))] \vee} \\
& {[\operatorname{Clear}(y, s) \wedge(a \neq \operatorname{move}(z, w, y)) \wedge(a \neq \operatorname{stack}(z, y))]}
\end{aligned}
$$

Deriving successor-state axioms

Positive and negative effect axioms, stating a fluent becomes true [false].

$$
\begin{aligned}
& +\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge \operatorname{Clear}(z, s) \wedge x \neq z \Rightarrow \operatorname{Clear}(y, \operatorname{Result}(\operatorname{move}(x, y, z), s)) \\
& +\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \Rightarrow \operatorname{Clear}(y, \operatorname{Result}(\operatorname{unstack}(x, y), s)) \\
& -\operatorname{Clear}(w, s) \wedge \operatorname{Clear}(y, s) \Rightarrow \neg \operatorname{Clear}(y, \operatorname{Result}(\operatorname{move}(w, x, y), s)) \\
& -\operatorname{Clear}(w, s) \wedge \operatorname{Table}(w, s) \Rightarrow \neg \operatorname{Clear}(y, \operatorname{Result}(\operatorname{stack}(w, y), s))
\end{aligned}
$$

Rewrite as a single formula the positive effects:

$$
\begin{aligned}
& [\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge \operatorname{Clear}(z, s) \wedge x \neq z \wedge a=\operatorname{move}(x, y, z))] \vee \\
& {[\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge(a=\operatorname{unstack}(x, y))] \Rightarrow \operatorname{Clear}(y, \operatorname{Result}(a, s))}
\end{aligned}
$$

Assume these are the only actions producing that positive effects:

$$
\begin{align*}
& {[\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge \operatorname{Clear}(z, s) \wedge x \neq z \wedge a=\operatorname{move}(x, y, z)] \vee} \\
& \quad[\operatorname{On}(x, y, s) \wedge \operatorname{Clear}(x, s) \wedge(a=\operatorname{unstack}(x, y)] \Leftrightarrow \operatorname{Clear}(y, \operatorname{Result}(a, s)) \tag{1}
\end{align*}
$$

Moreover we assume $\operatorname{move}(x, y, z)$ and $\operatorname{unstack}(x, y)$ are different actions

Deriving successor-state axioms (cnt.)

For negative effects

```
\([\operatorname{Clear}(w, s) \wedge \operatorname{Clear}(y, s) \wedge a=\operatorname{move}(w, x, y) \vee\)
\(\operatorname{Clear}(w, s) \wedge \operatorname{Table}(w, s) \wedge a=\operatorname{stack}(w, y)] \Rightarrow \neg \operatorname{Clear}(y, \operatorname{Result}(a, s))\)
```

By closure (these are the only actions making Clear false, provided it was not false already):

```
\(\neg \operatorname{Clear}(y, s) \vee[\operatorname{Clear}(w, s) \wedge \operatorname{Clear}(y, s) \wedge a=\operatorname{move}(w, x, y)] \vee\)
    \([\operatorname{Clear}(w, s) \wedge \operatorname{Table}(w, s) \wedge a=\operatorname{stack}(w, y)] \Leftrightarrow \neg \operatorname{Clear}(y, \operatorname{Result}(a, s))\)
```

Negating both members and simplifying we get frame axioms:

$$
[\operatorname{Clear}(y, s) \wedge a \neq \operatorname{move}(w, x, y) \wedge a \neq \operatorname{unstack}(w, y)] \Leftrightarrow
$$

$$
\operatorname{Clear}(y, \operatorname{Result}(a, s))
$$

Putting (1) and (2) together, we obtain the successor state axiom.

Deriving successor-state axioms in general

Positive and negative effect axioms, stating a fluent becomes true [false].

$$
\begin{align*}
& \mathrm{P}(\boldsymbol{x}, a, s) \Rightarrow F(\boldsymbol{x}, \operatorname{Result}(a, s)) \tag{1}\\
& \mathrm{N}(\boldsymbol{x}, a, s) \Rightarrow \neg F(\boldsymbol{x}, \operatorname{Result}(a, s)) \tag{2}
\end{align*}
$$

Completeness assumptions, called explanation closures:

$$
\begin{align*}
& \neg F(\boldsymbol{x}, \mathrm{~s}) \wedge[\mathrm{P}(\boldsymbol{x}, a, s) \equiv F(\boldsymbol{x}, \operatorname{Result}(a, s))] \tag{3}\\
& F(\boldsymbol{x}, \mathrm{~s}) \wedge[\neg \mathrm{N}(\boldsymbol{x}, a, s) \equiv F(\boldsymbol{x}, \operatorname{Result}(a, s))] \tag{4}
\end{align*}
$$

Successor state axiom for fluent F :

$$
F(\boldsymbol{x}, \operatorname{Result}(a, s)) \equiv\left[\neg F(\boldsymbol{x}, \mathrm{~s}) \wedge \mathrm{P}_{F}(\boldsymbol{x}, a, s)\right] \vee\left[F(\boldsymbol{x}, s) \wedge \neg \mathrm{N}_{F}(\boldsymbol{x}, a, s)\right]
$$

F is true after doing a iff a made it true or it was true before and it was not made false by any other action.

Related problems

The representational frame problem is considered to be (more or less) solved.
Qualification problem: in real situations it is almost impossible to list all the necessary and relevant preconditions.

$$
\begin{aligned}
& \operatorname{Clear}(x) \wedge \operatorname{Clear}(y) \wedge \operatorname{Clear}(z) \wedge y \neq z \wedge \neg \operatorname{Heavy}(x) \wedge \neg \operatorname{Glued}(x) \wedge \neg \operatorname{Hot}(x) \wedge \ldots \Rightarrow \\
& \operatorname{move}(x, y, z)
\end{aligned}
$$

Ramification problem: among derived propertied which ones persist and which ones change?

- Objects on a table are in the room where the table is. If we move the table from one room to another, objects on the table must also change their location. Frame axioms could make the objects make the old location persist.

Uses of situation calculus

Planning: finding a sequence of actions to reach a certain goal state.
Projection: Given a sequence of actions and some initial situation, determine what it would be true in the resulting situation.

Given $\Phi(s)$ determine whether $K B \vDash \Phi\left(\operatorname{Result}\left(a, s_{0}\right)\right)$ where $\boldsymbol{a}=\left[a_{1}, \ldots, a_{n}\right]$
Legality test: Checking whether a given sequence of actions $\left[a_{1}, \ldots, a_{n}\right]$ can be performed starting from an initial situation.
$K B \vDash \operatorname{Poss}\left(a_{\mathrm{i}}, \operatorname{Result}\left(\left[\mathrm{a}_{1}, \ldots, a_{i-1}\right], s_{0}\right)\right)$ for each i such that $1 \leq i \leq n$
For example:
Result(pickup $\left.\left(b_{2}\right), \operatorname{Result}\left(\operatorname{pickup}\left(b_{1}\right), s_{0}\right)\right)$
Would not be a legal situation, given that the robot can hold only one object.

Nonmonotonic approach to the frame problem

What we would need is the ability to formalize a notion of persistence:
"in the absence of information to the contrary (by default) things remain as they were".

Unfortunately this leads out of classical logic. Next lecture.
The closure assumption we used is already an ad hoc form of completion and we will see more of this strategy in nonmonotonic reasoning.
In planning we end up using other languages that make stronger assumptions and are more limited in their expressivity.

Limits of situation calculus

Situation calculus is limited in its applicability:

1. Single agent
2. Actions are discrete and instantaneous (no duration in time)
3. Actions happen one at a time: no concurrency, no simultaneous actions
4. Only primitive actions: no way to combine actions (conditionals, iterations ...)

To handle such cases we introduce an alternative formalism known as event calculus, which is based on events, points in time, intervals rather than situations.

Event calculus: reification of fluents

Event calculus reifies fluents and events.
The fluent is an object (represented by a function).
At(Shankar, Berkeley)
This is a term and does not by itself say anything about whether it is true.
To assert that a fluent is true at some point in time t we use the predicate T :
T(At(Shankar, Berkeley), t)

Event calculus: reification of events

Events are described as instances of event categories.
The event E_{1} of Shankar flying from San Francisco to Washington, D.C. is described as

$$
E_{1} \in \text { Flyings } \wedge F l y e r\left(E_{1}, \text { Shankar }\right) \wedge \operatorname{Origin}\left(E_{1}, S F\right) \wedge \operatorname{Destination}\left(E_{1}, D C\right)
$$

By reifying events we make it possible to add any amount of arbitrary information about them. For example, we can say that Shankar's flight was bumpy with Bumpy $\left(E_{1}\right)$.
$E_{1} \in \operatorname{Flyings}(S h a n k a r, \underline{\text { SF }}, D C$) as an alternative

Event calculus: intervals

Time intervals are a pair of times (start, end):
$i=\left(t_{1}, t_{2}\right)$ is the time interval that starts at t_{1} and ends at t_{2}.
$\operatorname{Happens}\left(E_{1}, i\right)$ to say that the event E_{1} took place over the time interval i
Same thing in functional form with $\operatorname{Extent}\left(E_{1}\right)=i$.
The complete set of predicates for one version of the event calculus is:
$\mathrm{T}(f, t)$
Fluent f is true at time t
$\operatorname{Happens}(e, i) \quad$ Event e happens over the time interval i
Initiates $(e, f, t) \quad$ Event e causes fluent f to start to hold at time t
Terminates (e, f, t) Event e causes fluent f to cease to hold at time t
$\operatorname{Clipped}(f, i) \quad$ Fluent f ceases to be true at some point during time interval i
Restored $(f, i) \quad$ Fluent f becomes true sometime during time interval i

Event calculus: properties

A fluent holds at a point in time if the fluent was initiated by an event at some time in the past and was not made false (clipped) by an intervening event. Formally:
$\operatorname{Happens}\left(e,\left(t_{1}, t_{2}\right)\right) \wedge \operatorname{Initiates}\left(e, f, t_{1}\right) \wedge \neg \operatorname{Clipped}\left(f,\left(t_{1}, t\right)\right) \wedge t_{1}<t \Rightarrow T(f, t)$
A fluent does not hold at a point in time if the fluent was terminated by an event at some time in the past and was not restored by an event occurring at a later time. Formally:
$\operatorname{Happens}\left(e,\left(t_{1}, t_{2}\right)\right) \wedge \operatorname{Terminates}\left(e, f, t_{1}\right) \wedge \neg \operatorname{Restored}\left(f,\left(t_{1}, t\right)\right) \wedge t_{1}<t \Rightarrow \neg T(f, t)$ where Clipped and Restored are defined by
$\operatorname{Clipped}\left(f,\left(t_{1}, t_{2}\right)\right) \Leftrightarrow \exists e, t, t_{3} \operatorname{Happens}\left(e,\left(t, t_{3}\right)\right) \wedge t_{1} \leq t<t_{2} \wedge \operatorname{Terminates}(e, f, t)$
$\operatorname{Restored}\left(f,\left(t_{1}, t_{2}\right)\right) \Leftrightarrow \exists e, t, t_{3} \operatorname{Happens}\left(e,\left(t, t_{3}\right)\right) \wedge t_{1} \leq t<t_{2} \wedge \operatorname{Initiates}(e, f, t)$
A fluent holds over an interval if it holds on every point within the interval:

$$
T\left(f,\left(t_{1}, t_{2}\right)\right) \Leftrightarrow\left[\forall t\left(t_{1} \leq t<t_{2}\right) \Rightarrow T(f, t)\right]
$$

Actions in the event calculus

Fluents and actions are related with domain-specific axioms that are similar to successor-state axioms.
For example, in the Wumpus world we can say that "the only way to use up an arrow is to shoot it", assuming the agent has an arrow in the initial situation:
$\operatorname{Initiates}(e, \operatorname{HaveArrow}(a), t) \Leftrightarrow e=\operatorname{Start}$
Terminates $(e, \operatorname{HaveArrow}(a), \mathrm{t}) \Leftrightarrow e \in \operatorname{Shootings}(a)$
where Start denotes a distinguished event, used to describe what is true in the initial state

We can extend event calculus to make it possible to represent simultaneous events, continuous events and so on ...

Processes

Processes or liquid events are events with the property that if they happen over an interval also happen over any subinterval:
$(e \in$ Processes $) \wedge$ Happens $\left(e,\left(t_{1}, t_{4}\right)\right) \wedge\left(t_{1}<t_{2}<t_{3}<t_{4}\right) \Rightarrow \operatorname{Happens}\left(e,\left(t_{2}, t_{3}\right)\right)$
The distinction between liquid and nonliquid events is analogous to the difference between substances, or stuff, and individual objects, or things.
For example $e \in$ Flyings is a liquid event: any small interval within a flight is still a flying event. Instead, a subevent of a trip from Milan to Rome has a different nature (perhaps a trip from Milan to Bologna).

Time intervals

We can consider two kinds of time intervals:

1. Moments, zero duration $\quad i \in \operatorname{Moments} \Leftrightarrow \operatorname{Duration}(i)=\operatorname{Seconds}(0)$
2. Extended intervals

More vocabulary:
Time (x) : points in a time scale, giving us absolute times in seconds
Begin(1), End(i): the earliest and latest moments in an interval
Duration(i): the duration of an interval
Property: Interval $(i) \Rightarrow \operatorname{Duration}(i)=(\operatorname{Time}(\operatorname{End}(i))-\operatorname{Time}(\operatorname{Begin}(i)))$
Examples:
$\operatorname{Time}(\operatorname{Begin}(A D 2001))=\operatorname{Seconds}(3187324800)=\operatorname{Date}(0,0,0,1$, Jan, 2001)
Date (0, 20, 21, 24, 1, 1995) = Seconds(3000000000)

Interval relations [Allen 1983]

Time interval relations

Complete set of interval relations, proposed by Allen (1983):
$\operatorname{Meet}(i, j) \quad \Leftrightarrow \quad \operatorname{End}(i)=\operatorname{Begin}(j)$
Before $(i, j) \Leftrightarrow \operatorname{End}(i)<\operatorname{Begin}(j)$
After (j, i) \Leftrightarrow Before (i, j)
During $(i, j) \Leftrightarrow \operatorname{Begin}(j)<\operatorname{Begin}(i)<\operatorname{End}(i)<\operatorname{End}(j)$
Overlap $(i, j) \Leftrightarrow \operatorname{Begin}(i)<\operatorname{Begin}(j)<\operatorname{End}(i)<\operatorname{End}(j)$
$\operatorname{Begins}(\underline{i}, j) \Leftrightarrow \operatorname{Begin}(i)=\operatorname{Begin}(j)$
Finishes $(\underline{i}, j) \Leftrightarrow \operatorname{End}(i)=\operatorname{End}(j)$
Equals $(i, j) \Leftrightarrow \operatorname{Begin}(i)=\operatorname{Begin}(j) \wedge \operatorname{End}(i)=\operatorname{End}(j)$
Examples:
Meets(ReignOf(GeorgeVI), ReignOf(ElizabethII))
Overlap(Fifties, ReignOf(Elvis))
$\operatorname{Begin}($ Fifties $)=\operatorname{Begin}(A D 1950)$
End $($ Fifties $)=\operatorname{End}($ AD1959 $)$

Physical objects as generalized events

Physical objects, when their properties change in time, are better represented as events with a duration.
Example: USA and President(USA) have different properties in different periods.
Population(USA), or identity of President(USA) in 1789.
Proposed solution: President(USA) denotes a single object that consists of different people at different times.

T(Equals(President(USA), GeorgeWashington), AD1790)
Why not President (USA, t)?
Not consistent with the ontology.
Why Equals and not '='?
A predicate as argument of another predicate Is not allowed by FOL

Conclusions

\checkmark By using FOL, we discussed several representational problems, that may occur in different application domains.
\checkmark The frame problem is maybe the most serious one, if you want to reason about a changing world and do some KB-based planning. We will see later, how this difficulty leads to more practical approaches.
\checkmark We anticipated some of the limits of FOL, shared by all classical logics, in expressing defaults and persistence, that lead us to consider alternatives to classical logic.
\checkmark We did not talk about mental states, because these will be tackled in a separate lecture.

Your turn

Knowledge engineering in another domain using FOL:
\checkmark The electronic circuits domain (AIMA cap 8.4)
\checkmark The Internet shopping world (AIMA cap 12.7)
Discuss some general ontological problem.

References

[AIMA] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3 ${ }^{\text {rd }}$ edition). Pearson Education 2010 (cap 4, cap 12).
[KRR] Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 2004. (Cap.)

