
AI	Fundamentals:	Knowledge	Representation	and	
Reasoning
Maria	Simi

Knowledge	engineering	and	
Ontology	engineering
LESSON	2:	SITUATION	CALCULUS	– EVENT	AND	PROCESS	CALCULUS

Knowledge	engineering	&	Ontological	engineering
We	start	with	representation.	It	is	possible	to	discuss	representation	issues	at	two	levels.
Knowledge	engineering	is	the	activity	to	formalize	a	specific	application	domain.	It	involves	
decisions	about:
1. What	are	the	relevant,	facts,	objects	relations	…
2. Which	is	the	right	level	of	abstraction
3. What	are	the	queries	to	the	KB	(inferences)
Ontology	engineering	seeks	to	build	a	general-purpose	ontology	which	should	be	applicable	in	any	
special-purpose	domain	(with	the	addition	of	domain-specific	axioms).	For	example:

Objects	and	categories,	composite	objects,	bunches,	substances,	measurements,	actions	and	
change,	events,	temporal	intervals		… [AIMA	cap.	12]
Defaults	(non	monotonic	reasoning),	knowledge	and	beliefs

In	any	non	trivial	domain,	different	areas	of	knowledge	must	be	combined.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 3

Knowledge	engineering:	a	simple	example
Before	implementing,	need	to	understand	clearly,	like	in	software	engineering
§ what	is	to	be	computed?
§ what	kind	of	knowledge?
§ why	and	where	inference	is	necessary?
Task:	KB	with	appropriate	knowledge	and	entailments
§ Assuming	FOL	as	representation	language,	the	kinds	of	objects	that	will	be	important	to	the	

agent,	their	properties,	and	the	relationships among	them
§ the	vocabulary	and	relations	among	terms.
§ what	facts	to	represent
Example	domain:	soap-opera	world	(about	human	relationships	and	behavior)	[KRR,	Ch.	3]
§ people	and	their	relationships,	places,	companies,	marriages,	divorces,	“hanky-panky”,	deaths,	

kidnappings,	crimes,	money	...

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 4

Ontology	and	vocabulary
We	need	to	define	names	for	individuals	and	domain-dependent	predicates	and	
functions.
Named	individuals
§ john,	sleezyTown,	faultyInsuranceCorp,	fic,	johnQsmith,	...
Basic	types
§ Person,	Place,	Man,	Woman,	...
Attributes
§ Rich,	Beautiful,	Unscrupulous,	...
Relationships
§ LivesAt,	MarriedTo,	DaughterOf,	HadAnAffairWith,	Blackmails,	...
Functions
§ fatherOf,	ceoOf,	bestFriendOf,	...

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 5

Basic	facts:	atomic	sentences
Type	facts
§ Man(john),
§ Woman(jane),
§ Company(faultyInsuranceCorp)
Property	facts
§ Rich(john),
§ ¬HappilyMarried(jim),
§ WorksFor(jim,	fic)
Equality	facts
§ john	=	ceoOf(fic),
§ fic	=	faultyInsuranceCorp
§ bestFriendOf(jim) =	john

So	far,	like	a	simple	database	(can	store	in	a	table)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 6

Complex	facts
Universal	assertions	(abbreviations)
§ ∀y	[Woman(y)	∧	y ≠	jane ⇒	Loves(y,	john)] ”All	the	women,	maybe	not	Jane,	love	John”
§ ∀y	[Rich(y)	∧ Man(y)	⇒	Loves(y,	jane)] “All	the	rich	men	love	Jane.”
§ ∀x ∀y[Loves(x,	y)	⇒	¬Blackmails(x,	y)] “Nobody	blackmails	a	loved	one”
Incomplete	knowledge	(relates	to	expressivity)
§ Loves(jane,	john)	∨	Loves(jane,	jim) which?
§ ∃x	[Adult(x)	∧	Blackmails(x,	john)]	 who?
Closure	axioms
§ ∀x	[Lawyer(x)	⇒	x=jane ∨	x=john ∨	x=jim]
§ ∀x ∀y[MarriedTo(x,	y)	⇒ (x	=ethel ∧	y	=fred)		...]
§ ∀x	[x=fic ∨	x=jane	∨	x=john ∨	x=jim ...]
also	useful	to	have	jane ≠	john ...

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 7

Terminological	facts
General	relationships	among	predicates.	For	example:
§ disjoint	 ∀x	[Man(x)	⇒	¬Woman(x)]
§ subtype	 ∀x	[Senator(x)	⇒ Legislator(x)]
§ exhaustive	 ∀x [Adult(x)	⇒ Man(x)	∨	Woman(x)]
§ symmetry	 ∀x ∀y [MarriedTo(x,	y)	⇒ MarriedTo(y,	x)]
§ inverse	 ∀x ∀y [ChildOf(x,	y)	⇒ ParentOf(y,	x)]
§ type	restriction	∀x ∀y [MarriedTo(x,	y)	⇒ Person(x)	∧	Person(y)]
§ definitions ∀x [RichMan(x)	⇔	Rich(x)	∧	Man(x)]

Usually	universally	quantified	conditionals	or	biconditionals

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 8

Entailment	-1
Is	there	a	company	whose	CEO	loves	Jane?

KB	⊨	∃x [Company(x)	∧ Loves(ceoOf (x),	jane)]	??
Suppose	KB is	true,		

then	Rich(john),	Man(john),	∀y	[Rich(y)	∧	Man(y)	⇒ Loves(y,	jane)]	are	true
so	Loves(john,	jane) Also	john =	ceoOf(fic)
so	Loves(ceoOf(fic),	jane)
Finally	Company(faultyInsuranceCorp),	and	fic	=	faultyInsuranceCorp,
so	Company(fic)
Thus,	Company(fic) ∧ Loves(ceoOf(x),	jane)	
so ∃x [Company(x)	∧ Loves(ceoOf(x),	jane)

Can	extract	identity	of	company	from	this	proof

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 9

Entailment	- 2
If	no	man	is	blackmailing	John,	then	is	he	being	blackmailed	by	somebody	he	
loves?

KB	⊨	∀x [Man(x) ⇒	¬Blackmails(x,	john)]	⇒
∃y [Loves(john,	y) ∧	Blackmails(y, john)]?

Show:	KB	∪	∀x [Man(x) ⇒	¬Blackmails(x,	john)]	⊨	
∃y [Loves(john,	y) ∧	Blackmails(y, john)]

…
Loves(john,	jane) ∧	Blackmails(jane,	john)]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 10

Abstract	individuals	and	reification
Sometimes	useful	to	reduce	n-ary predicates	to	1-place	predicates	and	1-place	functions
§ involves	reifying	properties,	creating	new	individuals
§ typical	of	description	logics	/	frame	languages	(later)
Flexibility	in	terms	of	arity:
Purchases(john,	sears, bike)	or
Purchases(john,	sears,	bike,	feb14)	or
Purchases(john,	sears,	bike,	feb14,	$100)

Instead:	introduce	individuals	for	purchase	objects	and	functions	for	roles	(reification)
Purchase(p23)	∧	agent(p23)	=	john ∧	object(p23)	=	bike ∧	source(p23)	=	sears ∧	
amount(p23)	=	$200	∧	.	.	.

allows	purchase	to	be	described	at	various	levels	of	detail.
For	talking	about	ages	and	money,	we	need	to	decide	how	to	deal	with	measurements.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 11

Other	sort	of	facts	requiring	FOL	extensions
Statistical	/	probabilistic	facts
§ Half	of	the	companies	are	located	on	the	East	Side.
§ Most	of	the	employees	are	restless.
§ Almost	none	of	the	employees	are	completely	trustworthy,
Default	/	prototypical	facts
§ Company	presidents	typically	have	secretaries	intercepting	their	phone	calls.
§ Cars	have	four	wheels.
§ Companies	generally	do	not	allow	employees	that	work	together	to	be	married.
Intentional	facts
§ John	believes	that	Henry	is	trying	to	blackmail	him.
§ Jane	does	not	want	Jim	to	think	that	she	loves	John.
Others	...

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 12

Representing	common	sense	[AIMA	cap	12]
§ The	use	of	KR	languages	and	logic	in	A.I.	is	representing	“common	sense”	

knowledge	about	the	world,	rather	than	mathematics	or	properties	of	
programs.

§ Common	sense	knowledge	is	difficult	since	it	comes	in	different	varieties.	It	
requires	formalisms	able	to	represent	actions, events,	time,	physical	objects,	
beliefs … categories	that	occur	in	many	different	domains.

§ In	this	lecture	we	will	explore	FOL	as	a	tool	to	formalize	different	kinds	of	
knowledge.

§ A	lot	of	intersections	with	philosophical	logic,	but	in	A.I.	the	emphasis	is	also	
on	reasoning	and	its	complexity.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 13

General/upper	ontology

A general	ontology	organizes	everything	in	the	world	into	a	hierarchy	of	categories.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 14

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Interval Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Properties	of	general-purpose	ontologies
§ A	general-purpose	ontology	should	be	applicable	in	any	special-purpose	

domain	(with	the	addition	of	domain-specific	axioms).
§ In	any	non	trivial	domain,	different	areas	of	knowledge	must	be	combined,

because	reasoning	and	problem	solving	could	involve	several	areas	
simultaneously.

§ Difficult	to	construct	one	best	ontology.	“Every	ontology	is	a	treaty—a	social	
agreement—among	people	with	some	common	interest	in	sharing.”

§ Several	attempts:
§ CYC	(Lenat and	Guha,	1990);	OpenMind (MIT	project);	DBpedia (Bizer et	al.,	2007)
§ Parsing text documents and extracting information from them (e.g.	TextRunner ...)
§ The	ontologies	of	the	semantic	web	[see	Semantic	web	course]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 15

Categories	and	objects
Much	reasoning	takes	place	at	the	level	of	categories:	we	can	infer	category	
membership	from	the	perceived	properties	of	an	object,	and	then	uses	category	
information	to	derive	specific	properties	of	the	object.
There	are	two	choices	for	representing	categories	in	first-order	logic:
1. Predicates,	categories	are	unary	predicates,	that	we	assert	of	individuals:

Sport(tennis)
2. Objects:	categories	are	objects	that	we	talk	about	(reification)	

tennis ∈	Sports
WinterSports ⊆	Sports

This	way	we	can	organize	categories	in	taxonomies (like	in	natural	sciences),	
define	disjoint	categories,	partitions	… and	use	specialized	inference	mechanisms.	
Problems	with	natural	kinds,	which	do	not	admit	logical	definitions.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 16

Composite	objects:	part-of
We	use	the	general	PartOf relation	to	say	that	one	thing	is	part	of	another.	
Composite	objects	can	be	seen	as	part-of	hierarchies,	similar	to	the	Subset hierarchy.	
These	are	called	mereological hierarchies.
PartOf (nose ,	face)
PartOf (Bucharest ,	Romania)
PartOf (Romania,	EasternEurope)
PartOf (EasternEurope,	Europe)
PartOf (Europe,	Earth)

The	PartOf relation	is	transitive	and	reflexive:
PartOf (x,	y)	∧	PartOf (y,	z)	⇒	PartOf (x,	z)
PartOf (x,	x)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 17

Composite	objects:	structural	relations
Structural	relations	among	parts.	
For	example,	a	biped	has	two	legs	attached	to	a	body:

Biped(a)	⇒	∃	l1,	l2,	b
Leg(l1)	∧	Leg(l2)	∧	Body(b)	∧
PartOf (l1,	a)	∧	PartOf (l2,	a)	∧	PartOf (b,	a)	∧
Attached(l1,	b)	∧	Attached(l2,	b)	∧
l1 ≠	l2 ∧	[∀l3 Leg(l3)	∧	PartOf (l3,	a)	⇒	(l3 = l1 ∨	l3 = l2)]

esattamente due	gambe!

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 18

Composite	objects:	bunches
Composite	objects	with	definite	parts	but	no	particular	structure.	
E.g.	“a	bag	of	three	apples”.
BunchOf ({Apple1,	Apple2,	Apple3})	not	to	be	confused	with	the	set	of	3	apples
BunchOf (Apples) is	the	composite	object	consisting	of	all	apples—not	to	be	
confused	with	Apples,	the	category	or	set	of	all	apples.
How	objects,	bunches,	sets	and	categories	relate?
1. BunchOf ({x	}) =	x
2. Each	element	of	category	s is	part	of	BunchOf (s):

∀x	.	x		∈	Apples ⇒	PartOf (x,	BunchOf (Apples))
3. BunchOf (s) is	the	smallest	object	satisfying	this	condition.

∀y	[∀x	 x ∈ s	⇒	PartOf(x,	y)]	⇒	PartOf(BunchOf	(s),	y)
BunchOf (s)	must	be	part	of	any	object	that	has	all	the	elements	of	s as	parts

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 19

Quantitative	measures
Physical	objects	have	height,	weight,	mass,	cost,	and	so	on.	The	values	that	we	assign	
for	these	properties	are	called	measures.
A	solution	is	to	represent	measures	with	units	functions	that	take	a	number	as	
argument.
Length(L1)	=	Inches(1.5)	=	Centimeters(3.81)
Centimeters(2.54	× d)	=	Inches(d)
Diameter	(Basketball12)	=	Inches(9.5)
ListPrice(Basketball12)	=	$(19)
d	∈	Days ⇒	Duration(d)	=	Hours(24)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 20

L1

Qualitative	measures
The	most	important	aspect	of	measures	is	not	the	particular	numerical	
values/scale,	but	the	fact	that	measures	can	be	ordered.
For	example,	we	might	well	believe	that	Norvig’s exercises	are	tougher	than	
Russell’s,	and	that	one	scores	less	on	tougher	exercises:

e1 ∈ Exercises	∧ e2 ∈ Exercises	 ∧	Wrote(Norvig,	e1)	∧	Wrote(Russell,	e2) ⇒
Difficulty(e1)	>	Difficulty(e2)
e1 ∈ Exercises	∧ e2 ∈	Exercises	∧ Difficulty(e1)	>	Difficulty(e2)	⇒
ExpectedScore(e1)	<	ExpectedScore(e2)

To	perform	some	sort	of	qualitative	inference,	often	it	is	enough	to	be	able	to	
order	values	and	to	compare	quantities	(qualitative	physics)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 21

Objects	vs	stuff
There	are	countable	objects,	things	such	as	apples,	holes,	and	theorems,	and	
mass	objects, such	as	butter,	water,	and	energy.	These	are	called	Stuff.
Properties	of	stuff:
1. Any	part	of	butter	is	still	butter:

b	∈	Butter ∧	PartOf (p,	b)	⇒	p ∈	Butter
2. Stuff	has	a	number	of	intrinsic	properties	(color,	high-fat	content,	density	

...),	shared	by	all	its	subparts,	but	no	extrinsic	properties	(weight,	length,	
shape	…).	It	is	a	substance.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 22

The	situation	calculus	in	FOL
The	situation	calculus	is	a	specific	ontology	dealing	with	actions	and	change:
§ Situations:	snapshots	of	the	world	at	a	given	instant	of	time,	the	result	of	an	

action.
§ Fluents:	time	dependent	properties
§ Actions:	performed	by	an	agent,	but	also	events.
§ Change:	how	the	world	changes	as	a	result	of	actions
The	situation	calculus	is	formalization	in	FOL	of	this	ontology	[Mc	Carthy,	69]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 23

The	blocks	world
A	scenario	much	used	in	planning.	The	are	blocks	on	a	table	and	the	goal	is	to	
reach	a	given	arrangement	of	the	blocks	by	stacking	them	on	top	of	each	other.
States:	arrangements	of	blocks	on	a	table
Initial	state	and	goal	state:	a	specific	arrangement	of	blocks
Actions:
• move:	move	block	x from	block	y to	block	z,	provided	x and	z are	free.
• unstack:	move	block	x from	y to	the	table.	xmust	be	free.
• stack:	move	x from	the	table	to	y.	ymust	be	free.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 24

C

B

A

The	blocks	world	formalization	in	FOL
§ Situations:	s,	s0,	s1,	s2…	and	functions	denoting	situations
§ Fluents:	predicates	or	functions	that	vary	from	a	situation	to	another:	
On,	Table,	Clear	…	Hat	
On(a,	b)	becomes	On(a,	b,	s)
Hat(a) becomes	Hat(a, s)
Immutable	properties	are	represented	as	before (e.g.	Block)

§ Actions:	are	modelled	as	functions	(terms)
move(a,	b,	c)	
is	a	function	representing	the	action	of	moving	block	A from	B to	C.	
It	is	an	instance	of	the	generic	operator/function	move.
Similarly	for	unstack(a,	b)	and	stack(a,	b).

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 25

Situations	as	result	of	actions

§ Effect	of	actions:	function	Result:	A	´ S	® S
s1		=	Result	(move(b,	a,	c),	s0)	
denotes	the	situation	resulting	from	the	action	move(b,	a,	c)	executed	in	s0.	
Then	we	can	assert	for	example:
On(b,	c,	Result	(move(b,	a,	c),	s0))

C

B

A

S0

C

B

A

S1

Þ
move(b,	a,	c)

Result	of	a	sequence	of	actions
Effect	of	a	sequence	of	actions:	Result:	[A*] ´ S	® S
1. Result([],	s)	=	s
2. Result([a	|seq],	s)	=	Result(seq,	Result(a,	s))

For	example:	
Result([move(a,	b,	c),	stack(a,	b)],	s0)	≡	
Result	(stack(a,	b),	Result	(move(a,	b,	c),	s0))

In	general:	
Result([a1,	a2, … an],	s0)	≡	
Result	(an,	Result	(an-1,	… Result	(a2,	Result	(a1,	s0))	…)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 27

Formalizing	actions
§ We	need	possibility	axioms	with	this	structure:	preconditions	Þ poss
On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ z		Þ

Poss(move(x,	y,	z),	s)
Note:	Variables	are	universally	quantified.

§ And	effect	axioms	such	as:
Poss(move(x,	y,	z),	s)	Þ

On(x,	z,	Result(move(x,	y,	z),	s)) Ù Clear(y,	Result(move(x,	y, z),	s))
§ This	is	not	enough	however:	Is	y on	the	table	in	the	new	situation?	Is	x	free?
§ We	have	a	[big]	problem:	in	the	new	situation	we	do	not	know	anything	about	

properties	that	were	not	influenced	at	all	by	the	action.	These	are	the	majority!!!
§ This	is	the	frame	problem.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 28

z

X

Y

S

The	frame	problem	and	frame	axioms.
The	frame	problem	is	one	the	most	classical	A.I.	problems	[McCarthy-Hayes,	
1969].	There	is	an	analogy	with	the	animation	world,	where	the	problem	is	to	
distinguish	background	(the	fixed	part)	from	the	foreground	(things	that	change)	
from	one	frame	to	the	other.	
Let’s	fix	that	writing	frame	axioms.
Frame	axioms	for	Clear	with	respect	to	move:
Clear(x,	s)	Ù x ¹wÞ Clear(x,	Result(move(y,	z,	w),	s))
A	block	stays	free	unless	the	move action	is	putting	something	on	it.

¬Clear(x,	s)	Ù x ¹ z Þ ¬Clear(x,	Result(move(y,	z,	w),	s))
A	block	remains	not	free	unless	it	is	not	freed	by	the	action.	

And	similarly	for	each	pair	fluent-action.	Too	many	axioms
(representational	frame	problem)

Successor-state	axioms	[Reiter	1991]
We	can	combine	preconditions,	effect	and	frame	axioms	to	obtain	a	more	
compact	representation	for	each	fluent	f. The	schema	is	as	follows:
f	true	after		Û preconditions and preconditions

[some	action	made	f true	or effect
f was	true	before	and	no	action	made	it	false] frame		axioms

Example:	state-successor axiom	for	fluent	Clear:
Clear(y,	Result(a,	s))	Û

[On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ z	Ù a	=	move(x,	y,	z))]	Ú
[On(x,	y,	s) Ù Clear(x,	s)	Ù (a	=unstack(x,	y))]	Ú

[Clear(y,	s)	Ù (a	¹move(z,	w,	y))	Ù (a	¹ stack(z,	y))]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 30

z

X

Y

S

Deriving	successor-state	axioms
Positive	and negative	effect	axioms,	stating	a	fluent	becomes	true	[false].
+ On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ zÞ Clear(y,	Result(move(x,	y,	z),	s))	
+ On(x,	y,	s) Ù Clear(x,	s)	Þ Clear(y,	Result(unstack(x,	y),	s))
−	Clear(w,	s)	Ù Clear(y,	s)	Þ¬Clear(y,	Result(move(w,	x,	y),	s))
−	Clear(w,	s)	Ù Table(w,	s)Þ¬Clear(y,	Result(stack(w,	y),	s))

Rewrite	as	a	single	formula	the	positive	effects:
[On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ z	Ù a	=move(x,	y,	z))]	Ú
[On(x,	y,	s) Ù Clear(x,	s)	Ù (a=unstack(x,	y))]	Þ Clear(y,	Result(a,	s))

Assume	these	are	the	only	actions	producing	that	positive	effects:
[On(x,	y,	s) Ù Clear(x,	s)	Ù Clear(z,	s)	Ù x	¹ z	Ù a	=move(x,	y,	z)]	Ú

[On(x,	y,	s) Ù Clear(x,	s)	Ù (a=unstack(x,	y)]	Û Clear(y,	Result(a,	s))						 (1)
Moreover	we	assume	move(x,	y,	z)	and unstack(x,	y)	are	different	actions

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 31

Deriving	successor-state	axioms	(cnt.)
For	negative	effects

[Clear(w,	s)	Ù Clear(y,	s)	Ù a	= move(w,	x,	y)	Ú
Clear(w,	s)	Ù Table(w,	s) Ù a	= stack(w,	y)]	Þ¬Clear(y,	Result(a,	s))

By	closure	(these	are	the	only	actions	making	Clear	false,	provided	it	was	not	
false	already):

¬Clear(y,	s)	Ú [Clear(w,	s)	Ù Clear(y,	s)	Ù a	= move(w,	x,	y)]	Ú
[Clear(w,	s)	Ù Table(w,	s) Ù a	= stack(w,	y)]	Û¬Clear(y,	Result(a,	s))

Negating	both	members	and	simplifying	we	get	frame	axioms:
[Clear(y,	s)	Ù a ¹move(w,	x,	y)	Ù a ¹ unstack(w,	y)]	Û (2)

Clear(y,	Result(a,	s))
Putting	(1)	and	(2)	together,	we	obtain	the	successor	state	axiom.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 32

Deriving	successor-state	axioms	in	general
Positive	and negative	effect	axioms,	stating	a	fluent	becomes	true	[false].
P(x,	a,	s)	Þ F(x,	Result(a,	s)) (1)	
N(x,	a,	s)	Þ¬F(x,	Result(a,	s)) (2)

Completeness	assumptions,	called	explanation	closures:
¬F(x,	s)	∧	[P(x,	a,	s)	≡ F(x,	Result(a,	s))] (3)
F(x,	s)	∧	[¬N(x,	a,	s)	≡ F(x,	Result(a,	s))] (4)

Successor	state	axiom	for	fluent	F:
F(x,	Result(a,	s))	≡	[¬F(x,	s)	∧	PF(x,	a,	s)]	∨	[F(x,	s)	∧	¬NF	(x,	a,	s)]
F	is	true	after	doing	a iff amade	it	true	or	it	was	true	before	and	it	was	not	
made	false	by	any	other	action.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 33

Related	problems
The	representational	frame	problem is	considered	to	be	(more	or	less)	solved.
Qualification	problem:	in	real	situations	it	is	almost	impossible	to	list	all	the	
necessary	and	relevant	preconditions.
Clear(x)	Ù Clear(y)	Ù Clear(z)	Ù y	¹ z Ù ¬Heavy(x)	Ù ¬Glued(x)	Ù ¬Hot(x)	Ù…	Þ
move(x,	y,	z)

Ramification	problem:	among	derived	propertied	which	ones	persist	and	which	
ones	change?	
§ Objects	on	a	table	are	in	the	room	where	the	table	is.	If	we	move	the	table	from	one	
room	to	another,	objects	on	the	table	must	also	change	their	location.	Frame	axioms	
could	make	the	objects	make	the	old	location	persist.	

Uses	of	situation	calculus
Planning:	finding	a	sequence	of	actions	to	reach	a	certain	goal	state.
Projection:	Given	a	sequence	of	actions	and	some	initial	situation,	determine	what	it	
would	be	true	in	the	resulting	situation.

Given	𝛷(s) determine	whether	KB	⊨	𝛷(Result(a,	s0))	where	a	=[a1,	…,	an]
Legality	test:	Checking	whether	a	given	sequence	of	actions	[a1,	…,	an] can	be	
performed	starting	from	an	initial	situation.
KB	⊨	Poss(ai,	Result([a1,	…,	ai-1],	s0))	 for	each i such	that	1≤	i ≤	n

For	example:
Result(pickup(b2),	Result(pickup(b1),	s0))

Would	not	be	a	legal	situation,	given	that	the	robot	can	hold	only	one	object.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 35

Nonmonotonic approach	to	the	frame	problem
What	we	would	need	is	the	ability	to	formalize	a	notion	of	persistence:	
“in	the	absence	of	information	to	the	contrary	(by	default)	things	remain	as	they	
were”.
Unfortunately	this	leads	out	of	classical	logic.	Next	lecture.
The	closure	assumption	we	used is	already	an	ad	hoc	form	of	completion	and	
we	will	see	more	of	this	strategy	in	nonmonotonic reasoning.
In	planning	we	end	up	using	other	languages	that	make	stronger	assumptions	
and	are	more	limited	in	their	expressivity.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 36

Limits	of	situation	calculus
Situation	calculus	is	limited	in	its	applicability:	
1. Single	agent
2. Actions	are	discrete	and	instantaneous (no	duration	in	time)
3. Actions	happen	one	at	a	time:	no	concurrency,	no	simultaneous		actions
4. Only	primitive	actions:	no	way	to	combine	actions	(conditionals,	iterations	…)

To	handle	such	cases	we	introduce	an	alternative	formalism	known	as	event	
calculus,	which	is	based	on	events,	points	in	time,	intervals rather	than	
situations.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 37

Event	calculus:	reification	of	fluents
Event	calculus	reifies fluents and	events.	
The	fluent	is	an	object	(represented	by	a	function).	
At(Shankar,	Berkeley)

This	is	a	term	and	does	not	by	itself	say	anything	about	whether	it	is	true.	
To	assert	that	a	fluent	is	true at	some	point	in	time	t	we	use	the	predicate	T :
T(At(Shankar ,	Berkeley),	t)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 38

Event	calculus:	reification	of	events
Events	are	described	as	instances	of	event	categories.
The	event	E1 of	Shankar	flying from	San	Francisco	to	Washington,	D.C.	is	
described	as
E1 ∈	Flyings ∧	Flyer(E1 ,	Shankar)	∧	Origin(E1 ,	SF)	∧	Destination(E1,	DC)

By	reifying	events	we	make	it	possible	to	add	any	amount	of	arbitrary	
information	about	them.	For	example,	we	can	say	that	Shankar’s	flight	was	
bumpy with	Bumpy(E1).	
E1 ∈	Flyings(Shankar ,	SF,	DC)		as	an	alternative

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 39

Event	calculus:	intervals
Time	intervals	are	a	pair	of	times	(start,	end):
i =	(t1,	t2)	is	the	time	interval	that	starts	at	t1 and	ends	at	t2.	
Happens(E1, i)	to	say	that	the	event	E1 took	place	over	the	time	interval	i
Same	thing	in	functional	form	with	Extent(E1)	=	i.

The	complete	set	of	predicates	for	one	version	of	the	event	calculus	is:
T(f,	t)	 Fluent	f is	true	at	time	t
Happens(e,	i)	 Event	e happens	over	the	time	interval	i
Initiates(e,	f,	t)	 Event	e causes	fluent	f to	start	to	hold	at	time	t	
Terminates(e,	f,	t)	 Event	e causes	fluent	f to	cease	to	hold	at	time	t	
Clipped(f,	i)	 Fluent	f ceases	to	be	true	at	some	point	during	time	interval	i
Restored(f,	i)	 Fluent	f becomes	true	sometime	during	time	interval	i

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 40

Event	calculus:	properties
A	fluent	holds	at	a	point	in	time	if	the	fluent	was	initiated	by	an	event	at	some	time	in	the	
past	and	was	not	made	false	(clipped)	by	an	intervening	event.	Formally:
Happens(e,	(t1,	t2))	∧	Initiates(e,	f,	t1)	∧	¬Clipped(f,	(t1,	t))	∧	t1 <	t ⇒	T(f, t)

A	fluent	does	not	hold	at	a	point	in	time	if	the	fluent	was	terminated	by	an	event	at	some	
time	in	the	past	and	was	not	restored	by	an	event	occurring	at	a	later	time.	Formally:
Happens(e,	(t1,	t2))	∧	Terminates(e,	f,	t1)	∧	¬Restored(f,	(t1,	t))	∧	t1 <	t ⇒	¬T(f, t)

where	Clipped and	Restored are	defined	by
Clipped(f,	(t1,	t2))	⇔	∃e,	t,	t3 Happens(e,	(t,	t3))	∧	t1 ≤	t <	t2 ∧	Terminates(e,	f,	t)	
Restored(f,	(t1,	t2))	⇔	∃e,	t,	t3 Happens(e,	(t,	t3))	∧	t1 ≤	t <	t2 ∧	Initiates(e,	f,	t)	

A	fluent	holds	over	an	interval	if	it	holds	on	every	point	within	the	interval:
T(f,	(t1,	t2))	⇔	[∀	t (t1 ≤	t	<	t2)	⇒	T(f,	t)]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 41

Actions	in	the	event	calculus
Fluents and	actions	are	related	with	domain-specific	axioms	that	are	similar	to	
successor-state axioms.	
For	example,	in	the	Wumpus world	we	can	say	that	“the	only	way	to	use	up	an	
arrow	is	to	shoot	it”,	assuming	the	agent	has	an	arrow	in	the	initial	situation:
Initiates(e,	HaveArrow(a), t)	⇔	e =	Start
Terminates(e,	HaveArrow(a),	t)	⇔	e ∈	Shootings(a)

where	Start	denotes	a	distinguished	event,	used	to	describe	what	is	true	in	the	
initial	state
We	can	extend	event	calculus	to	make	it	possible	to	represent	simultaneous	
events,	continuous	events	and	so	on	…

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 42

Processes
Processes or	liquid	events	are	events	with	the	property	that	if	they	happen	over	
an	interval	also	happen	over	any	subinterval:
(e ∈	Processes)	∧	Happens	(e,	(t1,	t4))	∧	(t1 <	t2 <	t3 <	t4)	⇒	Happens(e,	(t2,	t3))

The	distinction	between	liquid	and nonliquid events	is	analogous	to	the	
difference	between	substances,	or	stuff,	and	individual	objects,	or	things.
For	example	e	∈	Flyings is	a	liquid	event:	any	small	interval	within	a	flight	is	still	a	
flying	event.	Instead,	a	subevent	of	a	trip	from	Milan	to	Rome	has	a	different	
nature	(perhaps	a	trip	from	Milan	to	Bologna).

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 43

Time	intervals
We	can	consider	two	kinds	of	time	intervals:	
1. Moments,	zero	duration i ∈	Moments ⇔	Duration(i)=Seconds(0)	
2. Extended	intervals
More	vocabulary:
Time(x):	points	in	a	time	scale,	giving	us	absolute	times	in	seconds
Begin(i),	End(i):	the	earliest	and	latest	moments	in	an	interval
Duration(i):	the	duration	of	an	interval

Property: Interval	(i)	⇒	Duration(i)	=	(Time(End(i))	−	Time(Begin(i)))
Examples:
Time(Begin(AD2001))=	Seconds(3187324800)	=	Date(0,	0,	0,	1,	Jan,	2001)
Date(0,	20,	21,	24,	1,	1995)	=	Seconds(3000000000)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 44

Interval	relations	[Allen	1983]

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 45

Time	interval	relations
Complete	set	of	interval	relations,	proposed	by	Allen	(1983):	

Meet	(i,	j)	 ⇔	 End(i)=Begin(j)
Before	(i,	j)	 ⇔	 End	(i)	<	Begin(j)
After (j,	i)	 ⇔	 Before (i,	j)		
During (i,	j)	 ⇔	 Begin(j)	<	Begin(i)	<	End	(i)	<	End	(j)
Overlap (i,	j)	 ⇔	 Begin(i)	<	Begin(j)	<	End	(i)	<	End	(j)
Begins (i,	j)	 ⇔	 Begin(i)	=	Begin(j)
Finishes(i,	j)	 ⇔	 End(i)	=	End(j)
Equals	(i,	j)	 ⇔	 Begin(i)	=	Begin(j)	∧	End	(i)	=	End	(j)

Examples:
Meets(ReignOf (GeorgeVI),	ReignOf (ElizabethII))
Overlap(Fifties,	ReignOf (Elvis))
Begin(Fifties)	=	Begin(AD1950)
End(Fifties)	=	End(AD1959)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 46

Physical	objects	as	generalized	events
Physical	objects,	when	their	properties	change	in	time,	are	better	represented	as	events	
with	a	duration.		
Example:	USA and	President(USA)	have	different	properties	in	different	periods.	

Population(USA),	or	identity	of	President(USA) in	1789.
Proposed	solution:	President(USA)	denotes	a	single	object	that	consists	of	different	people	
at	different	times.
T(Equals(President(USA),	GeorgeWashington),		AD1790)
Why	not	President(USA,	t)?	
Not	consistent	with	the	ontology.

Why	Equals and	not	‘=‘?	
A	predicate	as	argument	of	another	predicate
Is	not	allowed	by	FOL

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 47

time
18011797

1789

Washington

Adams
Jefferson

Conclusions
ü By	using	FOL,	we	discussed	several	representational	problems,	that	may	occur	

in	different	application	domains.
ü The	frame	problem	is	maybe	the	most	serious	one,	if	you	want	to	reason	

about	a	changing	world	and	do	some	KB-based	planning.	We	will	see	later,	
how	this	difficulty	leads	to	more	practical	approaches.

ü We	anticipated	some	of	the	limits	of	FOL,	shared	by	all	classical	logics,	in	
expressing	defaults and	persistence,	that	lead	us	to	consider	alternatives	to	
classical	logic.

ü We	did	not	talk	about	mental	states,	because	these	will	be	tackled	in	a	
separate	lecture.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 48

Your	turn
Knowledge	engineering	in	another	domain	using	FOL:
üThe	electronic	circuits	domain	(AIMA	cap	8.4)
üThe	Internet	shopping	world	(AIMA	cap	12.7)
Discuss	some	general	ontological	problem.

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 49

References
[AIMA]	Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	
Approach (3rd edition).	Pearson	Education	2010	(cap	4,	cap	12).
[KRR]	Ronald	Brachman	and	Hector	Levesque.	Knowledge	Representation	and	
Reasoning.	Morgan	Kaufmann	Publishers	Inc.,	San	Francisco,	CA,	USA.	2004.	
(Cap.)

16/10/17 AI	FUNDAMENTALS	- M.	SIMI 50

