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Nonmonotonic reasoning
LESSON	3:	CLOSED	WORLD	ASSUMPTION	– CIRCUMSCRIPTION	–
DEFAULT	LOGICS



Monotonicity	of	classical	logic
Classical	entailment	is	monotonic.

If	KB ⊨	a,	then	KB	∪{b}	⊨	a [KB ∧	b ⊨	a	]
Failures	of	monotonicity	are	widespread	in	commonsense	reasoning.	It	seems	
that	humans	often	“jump	to	conclusions”,	when	they	think	it	is	safe	to	do	so	
(lacking	information	to	the	contrary).
These	conclusions	are	only	“reasonable”,	given	what	you	know,	not	classically	
entailed.	
Most	of	the	inference	we	do	is	defeasible:	additional	information,	may	lead	to	to	
retract	those	tentative	conclusions.	The	set	of	beliefs	does	not	grow	
monotonically	as	new	evidence	arrives;	the	monotonicity	property	is	violated.
.
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Instances	of	nonmonotonic reasoning
Some	common	instances	of	nonmonotonic reasoning:
1. Default	reasoning:	reasonable	assumptions	unless	evidence	of	the	contrary	

§ Car	parked	on	the	street;	you	assume	it	has	four	wheels	even	if	you	can	see	only	two.

§ Birds	fly,	swan	are	white,	bananas	are	yellow,	tomatoes	are	red	(prototypes).

2. Persistence:	things	stay	the	same,	according	to	a	principle	of	inertia,	unless	
we	know	they	change

3. Economy	of	representation:	only	true	facts	are	stored,	false	facts	are	only	
assumed

4. Reasoning	about	knowledge:	if	you	have	¬Know(p)	and	you	learn	p	…
5. Abductive	reasoning:	most	likely	explanations	to	known	facts.
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Strictness	of	FOL	universals
Universal	rules,	e.g.	∀x (P(x)	⇒	Q(x))
§ express	properties	that	apply	to	all	instances
§ all	or	nothing!
But	most	of	what	we	learn	about	the	world	is	in	terms	of	generics	rather	than	
universals
Encyclopedia	entries	for	ferry	wheels,	violins,	turtles,	wildflowers
E.g.	“Violins	have	four	strings”	vs	“All	violins	have	four	strings”
Properties	are	not	strict	for	all	instances,	because
§ genetic	/	manufacturing	varieties	
§ borderline	cases	(early	ferry	wheels	– toy	violins)
§ cases	in	exceptional	circumstances	etc.
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Universal	with	exceptions
Listing	exceptions	is	not	a	viable	solution:
§ “All	violins	that	are	not	E1 or	E2 or	...	have	four	strings”.	

Exceptions	usually	are	difficult	to	enumerate:	qualification	problem.
Similarly,	for	general	properties	of	individuals.

§ Goal:	be	able	to	say	a	P is	a	Q in	general,	normally,	but	not	necessarily.	It	is	
reasonable	to	conclude	Q(a),	given	P(a),	unless	there	is	a	good	reason	not	to.

§ This	is	what	we	call	a	default and	default	reasoning	the	tentative	conclusion.
§ Note:	qualitative	version	(no	numbers	involved)
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Approaches
There	are	two	ways	to	approach	the	problem.
1. Model	theoretic	formalizations	(CWA,	Circumscription):	

§ consist	in	a	restriction	to	the	possible	interpretations,	redefining	the	notion	of	
entailment;

§ we	can	still	have	systems	sound	and	complete	wrt the	new	semantics.
2. Proof	theoretic	formalizations	(Default	logic,	Autoepistemic logic)

§ A	proof	system	with	nonmonotonic inference	rules
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What’s	next
We	will	consider	four	approaches	to	default	reasoning:	
1. Closed-world	reasoning,	i.e.	under	the	Closed	World	Assumption	(CWA)
2. Circumscription
3. Default	logic
4. Autoepistemic logic
Then	discuss	systems	supporting	belief	revision:
1. TMS,	ATMS
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Closed	World	Assumption	(CWA)
§ Reiter's	observation:	

“There	are	usually	many	more	negative	facts	than	positive	facts!”
Example:	airline	flight	database	provides:

DirectConnect(cleveland,	toronto) DirectConnect(toronto,	northBay),
DirectConnect(toronto,	winnipeg) ...
but	not:	¬DirectConnect(cleveland,	northBay)	…

The	classical	logical	answer	to	DirectConnect(cleveland,	northBay)	:	“I	don't	know”
§ Under	Closed	World	Assumption	(CWA) only	positive	facts	are	stored,	any	other	fact	

is	assumed	false.
The	answer	to	DirectConnect(cleveland,	northBay)	under	CWA	:	“No”

§ CWA	assumption	is	used	in	databases	and	in	logic	programming	with	negation	as	
failure.
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Complete	and	incomplete	knowledge
§ CWA	can	be	seen	as	an	assumption	about	complete	knowledge

KB	with	consistent	knowlegde:
For	no	α	,	KB	⊨α		and	KB	⊨¬α	

KB	with	complete	knowledge:
For	every	α,	KB	⊨α		or	KB	⊨¬α	

§ Normally,	a	KB has	incomplete	knowledge:
Let	KB = {p ∨	q}
Then	KB ⊨(p ∨q)
But	for	p	:	KB ⊭	p and	KB ⊭	¬p	
Similarly	for	q:	KB ⊭	q and	KB ⊭	¬q	
Similarly	for	any	ground	atom	not	mentioned	in	KB .
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Semantics	and	properties	of	CWA
§ CWA	corresponds	to	a	new	version	of	entailment:	

Def	CWA: KB	⊨c a iff KB+⊨ a
where	KB+	=	KB ∪	{¬p |	p ground	atom	and	KB ⊭	p}

• By	an	inductive	argument,	it	can	be	proved	that:
Theorem: For	every	α	(without	quantifiers),	KB	⊨cα		or	KB	⊨c¬α		(1)

Inductive	argument:
– immediately	true	for	ground	atomic	sentences
– KB ⊨¬¬a iff KB ⊨	a
– KB ⊨	(a ∧	b) iff KB ⊨	a and	KB ⊨	b
– Say	KB ⊭c (a ∨b).	Then	KB ⊭c a and	KB ⊭cb.	
So	by	induction,	KB ⊨c¬a and	KB ⊨c¬b. Thus,	KB ⊨c¬(a	∨	b).
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Query	evaluation
With	CWA	we	can	reduce	queries	(without	quantifiers)	to	atomic	queries,	by	
repeated	applications	of	the	following	properties:
1. KB ⊨c (a ∧	b) iff KB ⊨c a and	KB ⊨c b
2. KB ⊨ c	¬¬a iff KB ⊨ c a
3. KB ⊨ c ¬(a ∨	b) iff KB ⊨ c	¬a and	KB ⊨ c	¬b
4. KB ⊨c (a ∨	b) iff KB ⊨c a or	KB ⊨c b for	KB	completeness
5. KB ⊨c¬(a ∧	b) iff KB ⊨ c	¬a or	KB ⊨ c	¬b for	KB	completeness
If	KB+ is	consistent,	any	query	reduces	to	a	set	of	atomic	queries:	
KB ⊨c p,	 where	p is	an	atom

If	atoms	are	stored	as	a	table,	deciding	if	KB ⊨c	α	 is	like	DB-retrieval.
Much	more	efficient	than	ordinary	logic	reasoning	(e.g.	no	reasoning	by	cases).
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Consistency	of	KB+
Is	KB+	always	consistent	when KB	 is consistent?	NO.
Problem	with	disjunctions:	when	KB ⊨ (α	∨	𝛽), but	KB ⊭ α	 and	KB ⊭ 𝛽

e.g.	KB =	{p ∨q} KB+ =	KB	∪ {¬p, ¬q}
KB+ is	inconsistent	and	so	for	every	α, KB+⊨	α!
Solution:	restrict	CWA	to	atoms	that	are	“uncontroversial”

Def	Generalized	CWA	(GCWA):
KB	*	=	KB	∪ {¬p	|	if	KB ⊨ (p ∨ q1 ∨ ...	∨ qn)	then	KB ⊨ qi }
For	every	positive	ground	literal	clause	(p ∨	q1 ∨	...	∨	qn)	entailed	by	KB,	at	least	one	
ground	literal	qi	is	also	entailed.

Theorem:	KB is	consistent	iff the	augmentation	under	GWCA,	KB	*,	is	consistent.			(2)
Moreover	everything	entailed	under	GCWA	is	entailed	under	CWA	
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Application	of	GCWA
The	application	of	the	theorem	of	consistency	of	GCWA	(Theorem	2)	depends	on	the	
terms	that	we	allow	as	part	of	the	language.

Example:	KB =	{P(x)	∨	Q(x),	P(A),	Q(B)}	and	the	only	constants	are	A	and B,	then
KB*	is	consistent.	If	we	admit	C,	then	it	is	not.

The	Domain	Closure	Assumption	(DCA)	may	be	used	to	restrict	the	constants	to	those	
explicitly	mentioned	in	the	KB.
∀x	.	[x=c1 ∨	...	∨	x=cn]	where	ci	 are	all	the	finite constants	appearing	in	KB

Under	this	restriction	quantifiers	can	be	replaced	by	finite	conjunctions	and	disjunctions.

The	Unique	Names	assumption (UNA)	applied	to	term	equality	is	a	consequence	of	the	
CWA	:	(ci ≠	cj),	for	i ≠	j
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Since	it	may	be	difficult	to	test	the	conditions	of	Theorem	2 the	following	
corollary,	which	restricts	the	application,	is	also	of	practical	importance:
Corollary:	If	the	clause	form	of	KB	is	Horn	and	consistent,	them	KB*	is	consistent.

Remember
Any	FOL	formula	can	be	transformed	into	a	set	of	clauses,	preserving	satisfiability.
Clause:	a	disjunctions	of	atomic	formulas	(positive	and	negative	literals)

{l1,	l2,	… lk}
Horn	clause:	at	most	one	of	the	literals	is	positive.	Horn	clauses	take	one	of	two	forms:

{l1,	¬l2,	… ¬lk} or	{¬l2,	… ¬lk}	
A	KB	of	Horn	clauses	corresponds	to	a	set	of	rules.

Horn	KB	consistency	under	GCWA
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Predicate	completion
The	CWA	is	too	strong	for	many	applications,	We	do	not	want	to	assume	that	any
ground	atom	not	provable	from	the	KB	is	false.
Predicate	completion	has	been	proposed	to	address	this	issue.	Certain	
predicates	are	considered	complete,	others	are	not.
CWA	wrt to	a	predicate	P [set	of	predicates	P]:	the	set	of	assumed	beliefs is	only	
for	ground	atoms	in	P	[predicates	in	P].
The	theory	accounting	for	if	and	when	this	leads	to	consistent	augmentation	is	
quite	complex,	but	this	is	an	option	to	consider.	See	for	example	
[Genesereth&Nillson,	ch 6.2].
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Circumscription:	minimizing	abnormality
§ Circumscription can	be	seen	as	a	more	powerful	and	precise	version	of	the	

CWA,	working	also	for	FOL.	The	idea	is	to	specify	special	abnormality	
predicates	for	dealing	with	exceptions	to	defaults.
For	example,	suppose	we	want	to	assert	the	default	rule	“birds	fly”:
Bird(tweety),	Bird(chilly),	¬Flies(chilly),	chilly	≠	tweety
Bird(x)	∧ ¬Abnormal1(x)	⇒	Flies(x) all	normal	birds	fly

We	want	to	derive	Flies(tweety),	but	Tweety could	be Abnormal1 in	some	model

§ The	solution	is	to	make	abnormality	predicates	“as	false	as	possible”
Circumscription:	Given	the	unary	predicate	Ab,	consider	only	interpretations	where	
I[Ab]	is	as	small	as	possible,	relative	to	KB.
Note:	Circumscription	is	a	semantic	notion based	on	minimal	models	(a	kind	of	
model	preference	logics)	due	to	MacCarthy 1980.
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Minimal	entailment
Let	P be	a	set	of	unary	abnormality	predicates.
Let	I2 and I2 two	interpretations	that	agree	on	the	values	of	constants	and	
functions.	
Ordering	on	interpretations:

I1 <	I2 iff same	domain	and	for	every	P∈ P I1[P	]	⊂ I2[P	]	holds
Minimal	entailment:
KB ⊨≤ α iff for	every	interpretation	I, if	I[KB]	=	true and	such	that	there	is	
no	other	interpretations	 I’ < I such	that	I’[KB]	=	true,	 then	α	is	true	in	I.
In	simpler	words,	α must	be	true	in	all	interpretations	satisfying	KB	that	
minimize	abnormalities,	those	that	most	normal.
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Example
Going	back	to	the	example:
Bird(tweety),	Bird(chilly),	¬Flies(chilly),	chilly	≠	tweety
Bird(x)	∧	¬Ab(x)	⇒	Flies(x) all	normal	birds	fly
KB ⊭ Flies(tweety).	However,	KB ⊨≤ Flies(tweety)	

The	reason	is	this:	
If I[KB] = true		but	I[Flies(tweety)]=	false,	then I[Ab(tweety)]=true.	
So	let	I‘	be	exactly	I except	that	we	remove	the	denotation	of	tweety from	the	
interpretation	of	Ab.	Then	I‘	<	I (assuming	P =	{Ab}),	and	 still	I’ [KB]	=	true.	
Thus,	in	the	minimal	models	of	the	KB,	Tweety is	a	normal	bird:	
KB ⊨≤ ¬Ab(tweety),	and	KB ⊨≤ Flies(tweety).

We	cannot	do	the	same	for	chilly and	in	fact	¬Flies(chilly).
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Minimal	models	and	CWA/CGWA
Circumscription	need	not	produce	a	unique	interpretation
Suppose	KB	=	{… ,	Bird(c),	Bird(d),	(¬Flies(c)	∨	¬Flies(d)}
Because	we	need	to	consider	what	is	true	in	all	minimal	models,	we	see	that	
KB ⊭≤ Flies(c)	and	KB ⊭≤ Flies(d)	
In	other	words,	we	cannot	conclude	that	c is	a	normal	bird,	nor	that	d		is,	but	
only	that	one	of	them	is	normal:	KB ⊨≤ Flies(c)	∨Flies(d)

With	CWA	we	would	add	the	literal	¬Ab(c),	and	by	similar	reasoning	¬Ab(d),	
leading	to	inconsistency.
Thus	circumscription	is	more	cautious	than	the	CWA	in	the	assumptions	it	makes	
about	“controversial”	individuals,	like	c and	d.
The	GCWA	would	not	conclude	anything	about	either	the	denotation	of	c or	d.
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Circumscription	and	quantified	sentences
Circumscription	works	equally	well	with	unnamed	individuals.	Suppose:
 ∃x	[Bird(x)	∧	(x ≠	chilly)	∧	(x	≠	tweety)	∧	InTree(x)]	
We	can	conclude:
 	∃x	[Bird(x) ∧	(x ≠	chilly)	∧	(x	≠	tweety) ∧	InTree(x) ∧	Flies(x)]
In	the	minimal	models	there	will	be	a	single	abnormal	individual,	Chilly.	If:
 	∃x	[Bird(x) ∧	(x ≠	chilly) ∧	(x	≠	tweety) ∧	¬Flies(x)]
a	minimal	model	will	have	exactly	two	abnormal	individuals.
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Open	issues	with	circumscription
Although	the	default	assumptions	made	by	circumscription	are	usually	weaker	than	
those	of	the	CWA,	there	are	cases	where	they	appear	too	strong.	
Suppose,	for	example,	that	we	have	the	following	KB:

∀x [Bird(x)	∧	¬Ab(x)	⇒	Flies(x)]	
Bird(tweety)
∀x [Penguin(x)	⇒	(Bird(x)	∧	¬Flies(x))]

From	this	follows:
∀x [Penguin(x)	⇒	Ab(x)]

Minimizing	abnormalities	leads	to:
KB	 ⊨≤ ¬∃x Ab(x)
KB	 ⊨≤ ¬ Penguin(tweety)	
KB	 ⊨≤ ¬∃x	Penguin(x)								 i.e.	there	are	no	penguins,	too	strong
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Partial	fix
McCarthy's	definition	related	to	predicate	completion.	Let	P and	Q be	sets	of	predicates
Ordering	on	interpretations:
I1 ≤	I2 iff same	domain	and
1. for	every	P ∈	P I1[P	]	⊆	I2[P	] holds P	variable	predicates
2. for	every	Q ∈	Q I1[P	]	=	I2[P	]	holds Q	fixed	predicates

so	only	predicates	in	P are	allowed	to	be	minimized.
Previous	example:	 P =	{Ab}	and Q	= {Penguin};	minimize	Ab,	keeping	Penguin fixed.	
Problems:	
§ need	to	decide	what	to	allow	to	vary:	what	about	Flies?
§ cannot	conclude	¬Penguin(tweety)	by	default!	

(only	get	default	(¬Penguin(tweety)	⇒ Flies(tweety))
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Default	logic	[Reiter]
Beliefs	as	deductive	theory
§ explicit	beliefs =	axioms
§ implicit	beliefs	=	theorems	=	least	set	closed	under	inference	rules

Default	logic	KB	uses	two	components:	KB	=	‹F,	D›
§ F is	a	set	of	sentences	(facts)

§ D is	a	set	of	default	rules:	α	∶	𝛽𝛾
read	as	“If	you	can	infer	α,	and	it	is	consistent	to	assume	𝛽,	then	infer	𝛾”
α	: the	prerequisite,	𝛽: the	justification, 𝛾:	the	conclusion

e.g.	Bird(tweety)	∶	Flies(tweety)Flies(tweety)	 	 also	 	Bird(x)	∶	Flies(x)Flies(x)	
Default	rules	where	𝛽 =	𝛾 are	called	normal	defaults
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Extensions
Problem:	how	to	characterize	theorems/entailments
§ cannot	write	a	derivation,	since	do	not	know	when	to	apply	default	rules
§ no	guarantee	of	unique	set	of	theorems
Extensions:	sets	of	sentences	that	are	“reasonable”	beliefs,	given	explicit	facts	and	
default	rules
E is	an	extension of	‹F,	D	›	iff for	every	sentence	𝜋,	E	 satisfies	the	following:

𝜋 ∈	E iff F ∪	∆⊨	𝜋 where	∆ =	{𝛾 | 	α	∶	𝛽𝛾 	∈	D, α ∈	E,	¬𝛽 ∉	E}

So,	an	extension	E is	the	set	of	entailments	of	F ∪	{𝛾},	where	the	𝛾 are	a	“suitable”	set	
of	assumptions	given	D.	Note	that	α	has	to	be	in	E,	not	in	F.	This	has	the	effect	of	
allowing	the	prerequisite	to	be	believed	as	the	result	of	other	default	assumptions.
Note	that	this	definition	is	not	constructive.
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Example:	single	extension
SupposeKB is:

F =	{Bird(chilly),	¬Flies(chilly),	Bird(tweety)}

D =	{Bird(x)	∶	Flies(x)Flies(x)	 	}

then	there	is	a	unique	extension,	where ∆ =	{Flies(tweety)}
§ This	is	an	extension	since	Bird(tweety) ∈	E and¬Flies(tweety)	∉	E.
§ No	other	extension,	since	Flies(tweety)	in	any	estension and	no	extension	has	Flies(chilly).
If	E	 is	inconsistent we	can	conclude	anything	we	want.	
Theorem:	An	extension	of	a	default	theory	is	inconsistent	iff the	original	F is	inconsistent.	In	this	
case	the	extension	is	unique.

But	in	general	a	default	theory	can	have	multiple	extensions.
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Example:	multiple	extensions
The	Nixon	diamond:
F =	{Quacker(nixon),	Republican(nixon)}
D =	{Quacker(x)	:	Pacifist(x)	/	Pacifist(x),	
Republican(x)	:	¬Pacifist(x)	/	¬Pacifist(x)}

Two	extensions:	
E1 has	∆ =	¬Pacifist(nixon)
E2 has	∆ =	Pacifist(nixon)

Which	to	believe?	Two	possible	approaches:
1. credulous:	choose	an	extension	arbitrarily
2. skeptical:	believe	only	what	is	common	to	all	extensions
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Properties
1. If	a	default	theory	has	distinct	extensions,	they	are	mutually	inconsistent.

F	=	{A	∨B} D={:¬A/¬A,	:¬B/¬B}			E1=	{A	∨B,	¬A}	 E2=	{A	∨B,	¬B}	
2. There	are	default	theories	with	no	extensions.	

Consider	the	default:	:A/¬A.		If	F	={	}	then	E={	}	
2. Any	normal default	theory	has	an	extension.
3. Adding	new	normal	default	rules	does	not	require	the	withdrawal	of	beliefs,	

even	if	adding	new	beliefs	might.	Normal	default	theories	are	semi-
nonmonotonic.
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Grounded	extensions
We	have	a	problem	that	leads	to	a	more	complex	definition	of	extension.
Suppose	F	=	{	} and	D	=	{:	p /p}
Then	E =	entailments	of	{p} is	an	extension	since	p ∈	E and	¬p ∉ E.
However,	we	have	no	good	reason	to	believe	p	!	Only	support	for	p is	the	default	rule,	
which	requires	p itself	as	a	prerequisite.	So	the	default	should	have	no	effect.	
Desirable	extension	is	only:	E =	entailments	of	{	}
A	revision	of	the	definition	of	extension	is	necessary.	Reiter's	definition:
Grounded	extension:	For	any	set	S,	let	𝛤(S)	be	the	least	set	containing	F,	closed	under	
entailment,	and	satisfying

if	α	:	𝛽 /	𝛾 ∈	D,	α	∈	𝛤(S), and	¬𝛽 ∉	S,	then	𝛾 ∈	𝛤(S)				[instead	of	¬𝛽 ∉	∆(S)	]

A	set	E is	an	extension	of	‹F,	D›	iff E =	𝛤(E),	i.e.	E	 is	a	fixed	point	of	the	𝛤 operator.
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Reason	Maintenance	
Systems
TMS,	ATMS



Belief	revision
Many	of	the	inferences	drawn	by	a	knowledge	representation	system	will	have	only	default
status	or	tentative nature.	Inevitably,	some	of	these	inferred	facts	will	have	to	be	retracted.	
This	process	is	called	belief	revision.	

Suppose:		{P,		P	⇒ Q}	∈	KB and	TELL(KB,	¬P).	
How to avoid a	contradiction?	RETRACT(KB,	P)?	What about inferred facts such	as Q?
Suppose:		{P,		P	⇒ Q,	R,	R	⇒ Q}	∈	KB.		What about Q?

One	simple	approach	to	belief	revision	is	to	number	sentences	according	to	the	order	of	
assertion:	P1,	P2 … Pn.

When	the	call	RETRACT(KB,	Pi ) is	made,	the	system	reverts	to	the	state	just	before	Pi was	
added,	removing	both	Pi and	any	inferences	derived	from	Pi.	
Sentences Pi+1 through Pn can then be added again if it is the case.

Reason maintenance systems (JTMS,	ATMS),	are reasoning mechanisms designed to handle	
these problems efficiently.
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Architecture

§ The	problem	solver	communicates	facts,	rules,	assumptions	along	with	their	
justifications to	the	RMS.	It	may	retract	assertions.

§ The	RMS	maintains	beliefs,	detects	contradictions,	performs	beliefs	revision,	
generates	explanations	and	provides	the	PS	current	beliefs.	
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Reason	Maintenance	Systems
Rational	thought	is	the	process	of	finding reasons	for	attitudes.	(Doyle	1979]:	justified	
belief	or	reasoned	argument,	rather	than	truth.
The	RMS	handles	nodes	as	propositional	variables,	representing	propositions,	rules	and	
justifications.
Nodes	are	of	different	types:	premises,	assumptions,	contradictions	and	have	different	
support according	to	the	type	of	RMS.
We	will	look	at	two	of	them:
1. JTMS	(Justification-based Truth	Maintenance	Systems)	

John	Doyle	“A	Truth	Maintenance	System”,	Artificial	Intelligence	12:231-272,	1979.
2. ATMS	(Assumption-based Truth Maintenance Systems)

Johan de	Kleer, “An	assumption-based TMS”,		Artificial Intelligence,	28:127–162,	
1986.
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JTMS:	adding	justifications
JTMS:	Justification-based Truth Maintenance	System

Each assertion in	the knowledge base is represented as a	node in	the TMS	
annotated with a	justification consisting of the set of sentences from which it
was	inferred.
{P	⇒ Q}	∈	KB	;		TELL(KB,	P)
will	cause	Q	to	be	added	as	node	with	justification {P,		P	⇒ Q}
Justifications	can	be	more	than	one	set.

Justifications	can	be	used	to	make	retraction	efficient	…
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Maintenance	with	justifications
With	JTMS,	RETRACT(KB,	P)	will	delete	exactly	those	sentences	for	which	P is	a	
member	of	every	justification.	
• If	a	sentence	Q had	the	single	justification	{P,	P	⇒ Q},	then Q	would	be	removed;	
• if	it	had	the	additional	justification	{P,	P	∨R	⇒ Q},	then	Q	would	still	be	removed;	
• if	it	also	had	the	justification	{R,	P	∨R	⇒ Q},	then	Q would	be	spared.
Ins	and	outs:	

The	JTMS,	rather	than	deleting	a	sentence	from	the	knowledge	base	entirely	
when	it	loses	all	justifications,	marks	the	sentence	as	being	“out”.	
If	a	subsequent	assertion	restores	one	of	the	justifications,	then	the	sentence	
is	marked	as	“in” again.	No	need	to	re-compute	inferences.
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Justifications
Proposition	P ca	be	in	one	of	two	states.	Either
a) P has	at	least	one	currently	acceptable	(valid)	reason,	or
b) P has	no	currently	acceptable	reasons	(either	no	reasons	at	all,	or	only	unacceptable	ones).
If	P	 falls	in	state	a),	we	say	that	P	is	in the	current	set	of	beliefs,	otherwise	that	P is	out.	
A	reason (or	[nonmonotonic]	justification)	for	a	belief	is	a	pair	of	sets	of	beliefs	(inlist,	
outlist),	the	set	of	propositions	that	should	be	in	(or	out)	for	the	beliefs	to	be	in.
A	node	can	have	more	than	one	justification	in	its	support	list	(SL).	
Examples:	

R SL: ({	}	{	}) premise,	empty	support	lists,	always	valid
Q SL: ({P,	P	⇒ Q},	{}) normal	inference,	valid	if	inlist elements	are	in
P	 SL: ({	}	{¬P}) assumption because	outlist not	empty,	valid	if	outlist

elements	are	out
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Example
Propositions Justifications Context	In Context	Out

A:	Temperature	>=	25 ({	},	{B}) assumption A B
B:	Temperature	<	25
C:	Not	raining ({	},	{D}) assumption A,	C B,	D
D:	Raining
E:	Day ({	},	{F}) assumption A,	C,	E B,	D,	F
F:	Night
G:	Nice	weather ({A,	C},	{	}) A,	C, E,	G B,	D,	F
H:	Swim ({E,	G},	{	}) A,	C,	E,	G,	H B,	D,	F
I:	Contradiction ({C},	{	})						backtracking
X:	Handle ({	},	{	})							premise
D:	Raining ({X},	{	})	 A,	D,	E B,	C,	F,	D,	H,	I
J: Read ({D, E},	{	}) A,	D,	E,	J B,	C,	F,	D,	H,	I
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Hypothetical	reasoning	with	JTMS
JTMSs	can	be	used	to	speed	up	the	analysis	of	multiple	hypothetical	situations.
Example:	2048	Olympic	Games	in	Romania.	Which	sports	in	which	towns?
Site(Swimming,	Pitesti	),	Site(Athletics,	Bucharest ),	Site(Equestrian,	Arad)
Compute	all	the	consequences.
Now	try	Site(Athletics,	Sibiu),		the	JTMS	takes	care	of	all	the	revisions.

In	a	JTMS,	the	maintenance	of	justifications	allows	you	to	move	quickly	from	one	
state	to	another	by	making	a	few	retractions	and	assertions,	but	at	any	time	
only	one	contexts	is	represented.

Taking	the	idea	one	step	forward	we	could	let	multiple	contexts	to	co-exhist.
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Assumption-based	Truth	Maintenance	Systems
An	Assumption	based	Truth	Maintenance	System	(ATMS)		represents	all	the	
contexts	been	considered	at	the	same	time.	Alternative	contexts	are	explicitly	
stored.
An	ATMS-node is	characterized	by	a	label and	justifications
1. In	an	ATMS	each	sentence/node	maintains	a	label consisting	in	a	number	of	

assumption	sets	(environments).	
2. ATMS	justifications are	Horn	formulas	of	the	form:

L1 ,	L2 ,	…	 Ln® C
where	L1,	L3,	…,	Ln	 are	the	antecedents,	and	 C	is	the	consequent	of	justification,	
corresponding	to	the	node	being	justified.
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ATMS
Three	types	of	nodes:
§ Premise	nodes.	Always	true.	With	label	{{	}}.	True	in	every	consistent	environment.
§ Assumption	nodes.	Assumptions	are	never	retracted.
§ Contradictions.	Every	environment	which	allows	a	contradiction	is	inconsistent.	

These	environments	are	called	nogoods.
The	fundamental	operation	is	deciding	whether	a	proposition	holds	in	a	given	
environment:

A	node	n holds in	a	given	environment	E,	iff it	can	be	derived	from	E given	the	set	of	
justifications	J:	E,	J	⊢ n .
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ATMS	and	explanations
ATMS	allow	for	quickly	generating	explanations:
An	explanation	of	a	sentence	P is	a	set	of	sentences	E such	that	E	 ⊨ P,	usually	we	prefer	
a	minimal	one
Explanations	can	only	be	assumptions:	e.g.	different	causes	for	the	car	not	starting	
(battery	dead,	no	gas	in	car	…).	
ATMS	can	generate	explanations	by	making,	even	if	some	assumptions	are	contradictory.	The	
label	for	the	sentence	“car	won’t	start”	contains	the	assumptions	that	would	justify	the	sentence
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Conclusions
We	have	seen	three	ways	of	deal	with	defaults:
1. CWA:	we	try	to	complete	the	KB	adding	negative	facts	and	use	normal	

entailment.	Nice	computational	properties	for	subsets	of	FOL.
2. Circumscription:	tries	to	restrict	the	possible	interpretations	to	the	minimal	

ones,	for	certain	predicates	that	we	define	as	“abnormal”.
3. Default	logic:	tries	to	characterize	a	new	form	of	tentative	inference	through	

default	rules	and	the	notion	of	extensions.	
4. TMS,	ATMS	are	computational	mechanisms	to	support	defeasible	reasoning	

and	belief	revision.
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Your	turn
• Theory	of	belief	revision	(AGM	postulates).
• Algorithms	for	TMS.
• Algorithms	for	ATMS.
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