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Knowledge	and	beliefs
LESSON	4:REASONING	ABOUT	KNOWLEDGE	AND	BELIEFS



Multiple	agents	and	their	“attitudes”
Human	intelligence	is	intrinsically	social:	humans	need	to	negotiate	and	
coordinate	with	other	agents.
To	predict	what	other	agents	will	do	we	need	methods	for	one	agent	to	model	
mental	states	of	other	agents:	high	level	representations	of	other	agent’s	belief,	
intentions	and	goals	may	be	relevant	for	acting.	
Propositional	attitudes	that	an	agent	can	have	include	Believes,	Knows,	Wants,	
Intends,	Desires,	Informs … so	called	because	the	argument	is	a	proposition.
Propositional	attitudes	do	not	behave	as	regular	predicates.
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Referential	transparency
Suppose	we	try	to	assert	that	“Lois	knows	that	Superman	can	fly”:
Knows(Lois,	CanFly(Superman))
1. What	is	‘CanFly’	?	A	predicate?	A	term?	
2. If	we	also	have	Superman	=	Clark,	then	we	must	conclude	that	

“Lois	knows	that	Clark	can	fly”
(Superman	=	Clark)	∧	Knows(Lois ,	CanFly(Superman))	⊨	
Knows(Lois,	CanFly(Clark ))		by	the	substitution	of	equal	terms

This	property	is	called	referential	transparency:	what	matters	is	the	object	that	the	term	
names,	not	the	form	of	the	term.	Important	property	for	reasoning	in	classical	logic.
Propositional	attitudes	like	believes and	knows,	require	referential	opacity	—the	terms	
used	do	matter,	because	an	agent	may	not	be	aware	of	which	terms	are	co-referential.
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Three	approaches
1. Reification.	We	remain	within	FOL,	as	we	did	for	the	situation	calculus,	using	

terms	to	represent	propositions	[Mac	Carthy].	Example:	Bel(a,	On(b,	c)).	
Referential	transparency	problem.

2. Meta-linguistic	representation.	We	remain	within	FOL	and represent	
propositions	as	strings.	Example:	Bel(a,	“On(b,	c)”).

In	1	and	2	problems	are	connecting	the	reified	version	of	the	proposition	(a	
function	o	a	string)	and	the	proposition	itself.
3. Modal	logics.	Propositional	attitudes	are	represented	as	modal	operators	in	

specialized	modal	logics,	with	alternative	semantics.	Modal	operators	are	an	
extension	of	classical	logical	operators.	
Example:	B(a,	On(b,	c))	or	BA(On(b,	c)),	KA(On(b,	c)).
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Modal	logic
Strictly	speaking	modal	logic	is	about	necessity and	possibility.	However,	the	
term	is	used	more	broadly	to	cover	logics	with	different	modelling	goals.
□ A It	is	necessary	that	A …
◊ A It	is	possible	that	A …
They	are	related	by	◊A =	¬□ ¬A

The	simplest	logic	is	called	K (after	Saul	Kripke). K results	from	adding	the	
following	to	the	principles	of	propositional	logic.	

Necessitation	Rule:	 If	A is	a	theorem	of	K,	then	so	is	□A.
Distribution	Axiom:	 □(A	⇒B)	⇒ (□A ⇒	□B)

Note:	
□ some	sort	of	universal	quantification	over	interpretations
◊ some	sort	of	existential	quantification	over	interpretations
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Other	stronger	modal	logics
Logic	T adds	axiom
(M)	 □A	⇒ A	
may	be	relevant	for	some	modal	operators	and	not	for	others

Example:	Modelling	knowledge	and	beliefs
Knows	A	⇒ A	 seems	plausible	
Bel	A	⇒ A is	not	

Logic	S4	adds:
□A⇒	□□A

Logic	S5	adds:
◊A ⇒	□◊A
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Possible	world	semantics
Semantics	for	modal	logics	is	defined	by	introducing	a	set	W of	possible	worlds	
and	an	accessibility	relation	R between	worlds.	The	interpretation	of	a	formula	is	
now	with	respect	to	a	possible	world	w.
(~)	I(~A,	w)=T iff I(A,	w)=F
(⇒)	I(A ⇒B,	w)=T iff I(A,	w)=F or	v(B,	w)=T
…
(□)	I(□A,	w)=T iff for	every world	w′	inW	such	that	wRw’,	I(A,	w′)=T
(◊)	I(◊A,	w)=T iff for	some world	w′ in	W	such	that	wRw’,	I(A,	w′)=T
Different	modal	logics	are	defined	according	to	the	properties	of	the	accessibility	
relation	R.
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Modal	logics	and	referential	transparency
Modal	logics	address	the	problem of	referential	transparency,	since	the	truth	of	
a	complex	formula	does	not	depends	on	the	truth	of	the	components	in	the	
same	world/interpretation.
Under	possible	worlds	semantics	it	may	be:

(Superman	=	Clark)	is	true	in	the	current	interpretation
Knows(Lois ,	CanFly(Superman)),	i.e.	CanFly(Superman)	in	all	the	worlds	
accessible	to	Lois	but	not	necessarily	Knows(Lois ,	CanFly(Clark)),	i.e.	
CanFly(Clark)	in	all	the	worlds	accessible	to	Lois

Modal	operators	are	not	compositional:	the	truth	of	K(A,	P) cannot	simply	be	
determined	by	the	properties	of	K,	the	denotation	of	the	agent	and	the	truth	value	of	P.
Modal	logics	for	knowledge	are	easier	than	those	of	beliefs.	We	start	with	these.
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Syntax	of	modal	logic	for	knowledge
1. All	the wff of	ordinary	FOL	are	also	wff of	the	modal	language
2. If	𝛷 is	a	closed	wff of	the	modal	language	and	a is	an	agent,	then	K(a,	𝛷)	is	a	

formula	of	the	modal	language.	[wff is	an	abbreviation	for	well	formed	formula]
3. If	𝛷 and	𝛹 are	wff so	are	the	formulas	that	can	be	constructed	from	them	with	the	

usual	logic		connectives.
Examples:
K(A1,	K(A2,	On(B,	C))	 A1	knows	that	A2 knows	that	B is	on	C.
K(A1,	On(B,	C))	∨	K(A1,	On(B,	D))	 A1	knows	that	B is	on	C or	it	knows	that	B is	on	D.
K(A1,	On(B,	C)	∨	On(B,	D))	 A1	knows	that	B is	on	C or	that	B is	on	D.
K(A1,	On(B,	C))	∨	K(A1,	¬On(B,	C))	 A1	knows whether	B is	on	C.
¬K(A1,	On(B,	C))	 A1	does	not	know	that	B is	on	C.
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Properties	of	knowledge
Properties	of	knowledge:
§ One	agent	can	hold	false	beliefs	but	cannot	hold	false	knowledge;	if	an	agent	knows	

something	than	this	must	be	true.	Knowledge	is	justified	true	belief.
§ An	agent	does	not	know	all	the	truths:	something	may	be	true	without	the	agent	

knowing	it.	
§ If	two	formulas	𝛷 and	𝛹 are	equivalent	not	necessarily	K(A,	𝛷) implies	K(A,	𝛹)
The	semantics	of	modal	logic	is	given	in	terms	of	possible	worlds and	specific	
accessibility	relations	among	them,	one	for	each	agent.
An	agent	knows	a	proposition	just	when	that	proposition	is	true	in	all	the	worlds	
accessible	from	the	agent’s	world (those	that	the	agent	considers	possibile).
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Possible	world	semantics
Possible	worlds	play	a	key	role	in	the	semantics	of	modal	logics	for	knowledge	and	
beliefs.	Possible	worlds	roughly	correspond	to	interpretations.
An	accessibility	relation	(k for	knowledge)	is	defined	between	agents	and	possible	
worlds:	
if	k(a,	wi,	wj)	is	satisfied,	then	world	wj is	accessible from	world	wi,	for	agent	a.

Semantics:
1. Regular	wffs (with	no	modal	operators)	are	not	simply	true	or	false	but	they	are	true	

or	false	wrt a	possible	world.
I(w1,	𝛷)	may	be	different	from	I(w2,	𝛷)	

2. A	modal	formula	K(a,	𝛷)	is	true	in	w		iff 𝛷 is	true	in	all the	worlds	accessible	from	w	
for	agent	a.	

3. The	semantics	of	complex	formulas	is	determined	by	regular	truth	recursive	rules.
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Possible	worlds	semantics:	visualization
K(A,	𝛷)	means	that	agent	A knows	the	proposition	denoted	by	𝛷.
“Not	knowing	𝛷”	in	w0 (a	specific	world)	is	modelled	by	allowing	worlds,	accessible	from	
w0 ,	in	which 𝛷 is	true and	some	worlds	in	which	𝛷 is	false
Example:	in	the	the	scenario	represented	below,	where	arrows	represent	accessibility,

K(A,	P)	and K(A,	¬R)	in	w0	 since	P	 and	¬R	are	true	in	worlds	w0,	w1,	w2 andw3

but K(A,	Q)	is	false	inw0
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Nested	knowledge	statements
The	accessibility	relation	also	accounts	for	nested	knowledge	statements.
K(A,	K(B,	P))	holds	in	w0	since	K(B,	P)	holds	in	w0,	w1,	w2 andw3
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Properties	and	axioms	for	knowledge	- 1
Many	of	the	properties	that	we	desire	for	knowledge	(and	belief)	can	be	achieved	by	
imposing	constraints	to	the	accessibility	relation.
1. Agents	should	be	able	to	reason	with	the	knowledge	they	have

K(a,	𝛷 ⇒	𝛹)	⇒	(K(a,	𝛷)	⇒	K(a,	𝛹)) (Distribution	axiom)
This	is	implicit	in	possible	world	semantics.

2. Agents	cannot	have	false	knowledge	(different	for	beliefs):
K(a,	𝛷)	⇒	𝛷 (Knowledge	axiom)

The	knowledge	axiom	is	satisfied	if	the	accessibility	relation	is	reflexive,	i.e.														
k(a, w,	w)	for	every	a and	every	w.		An	implication	is	that:¬K(a,	false).	
Moreover	reflexivity	implies	that		there	is	at	least	a	world	accessible	from	w	,	i.e.	the	
relation	is	also	serial.
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Knowledge	axioms	- 2
3. It	is	also	reasonable	to	assume	that	if	an	agent	knows	something,	than	it	knows	that	

it	knows
K(a,	𝛷)	⇒	K(a,	K(a,	𝛷))	 (Positive	introspection)

The	accessibility	relation	must	be	transitive, i.e.	k(a,	w1,	w2)	and	k(a,	w2,	w3)		
implies k(a,	w1,	w3)	

4. In	some	axiomatization	we	also	assume	that	if	an	agent	doesn't	know	something,	
than	it	knows	that	it	doesn't	know	it.
¬	K(a,	𝛷)	⇒	K(a,	¬K(a,	𝛷))	 (Negative	introspection)

The	accessibility	relation	must	be	Euclidean,
i.e.	k(a,	w1,	w2)	and	k(a,	w1,	w3)		
implies k(a,	w2,	w3)	
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Knowledge	axioms	- 3
5. We	also	would	like	that	an	agent	knows	all	the	logical	theorems	including	the	ones	

characterizing	knowledge.
From	⊢	𝛷 infer K(a,	𝛷)	 (Epistemic	necessitation	rule)
Note:	this	is	necessary	in	possible	world	semantics.

6. From	1	and	5,	in	the	propositional	case	we	also	get	the	rule:
From	𝛷 ⊢	𝛹 and	from	K(α,	𝛷)	infer	K(α,	𝛹) (Logical	omniscience)
From	 ⊢	𝛷 ⇒	𝛹 infer	K(α,	𝛷)	⇒ K(α,	𝛹) (Logical	omniscience)
Logical	omniscience	is	considered	problematic:	we	are	assuming	unbounded	
reasoning	capabilities.	As	a	corollary:

K(α,	𝛷 ∧	𝛹)	≡	K(α,	𝛷)	∧	K(α,	𝛹) (K distribution	over	and)	

It	is	not	the	case	however	that	K(α,	𝛷 ∨	𝛹)	≡	K(α,	𝛷)	∨	K(α,	𝛹)
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Modal	logics	of	knowledge
Modal	epistemic	logics	are	obtained	with	various	combinations	of	axioms	1-4	plus	
inference	rule	5:
§ System	K:	axiom	1	
§ System	T:	axioms	1-2	
§ Logic	S4:	axioms	1-3	
§ Logic	S5:	axioms	1-4	(perfect	reasoner)
Not	any	combination	is	possible	since	the	properties	of	accessibility	relations	are	
interdependent.	For	example:
• Reflexive	implies	serial.
• If	a	relation	is	reflexive	and	Euclidian	it	is	also	transitive:	axiom	2	and	4	imply	3.
• …
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The	wise-men	puzzle
There	are	three	wise	man	who	are	told	by	
their	king	that	at	least	one	of	them	has	a	
white	spot	in	his	forehead;	actually	all	
three	have	white	spots.
Each	wise-man	can	see	the	other’s	
foreheads	but	not	his	own.
The	first	wise	man	says	“I	don’t	know	
whether	I	have	a	white	spot”.
The	second	wise	man	says	“I	don’t	know	
whether	I	have	a	white	spot”.
The	third	wise	man	can	then	conclude	that	
he	has	a	white	spot.
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The	proof	for	two wise	men
The	two	wise	men	are	called	A	and	B.	The	following	facts	are	given,	after	B	speaks:
1. KA(¬White(A)	⇒	KB(¬White(A))		 B	can	see	A’s	forehead,	and	A	knows	it.
2. KA(KB(¬White(A)	⇒White(B))) At	least	one	is	white
3. KA(¬KB(White(B))) B	does	not	know	the	color	on	his	forehead

4. ¬White(A)	⇒	KB(¬White(A)) 1	and	Knowledge	axiom
5. KB(¬White(A)	⇒White(B)) 2	and	Knowledge	axiom
6. KB(¬White(A))	⇒	KB(White(B)) 5	and	Distribution	axiom
7. ¬White(A)	⇒	KB(White(B)) from	4	and	6,	transitivity
8. ¬KB(White(B))	⇒	White(A) 7,	contrapositive
9. KA(¬KB(White(B))	⇒	White(A)) 1-5,	8,	Logical	omniscience
10. KA(¬KB(White(B)))	⇒	KA(White(A)) 9,	Distribution	axiom
11. KA(White(A)) 3,	10,	Modus	Ponens
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Properties	and	axioms	for	beliefs
Since	an	agent	can	hold	wrong	beliefs	the	knowledge	axiom	is	not	appropriate.
We	include	as	axiom	the	following	instead:
¬B(α,	False) (lack	of	contradictions)

The	distribution	axiom	and	the	necessitation	rule	are	controversial,	since	an	agent	
cannot	realistically	believe	all	the	logical	consequences	of	its	beliefs	but	only	those	that	
he	is	able	to	derive	(limited/bounded	rationality).
B(α,	𝛷)	⇒	B(α,	B(α,	𝛷))	 (Positive	introspection)
B(α,	𝛷)	⇒	K(α,	B(α,	𝛷)) also	reasonable

Negative	introspection	is	problematic.	While	the	following	special	case	of	the	knowledge	
axioms	is	safe:

B(α,	B(α,	𝛷))	⇒	B(α,	𝛷)	
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Autoepistemic logic	for	nonmonotonic reasoning
One	disadvantage	of	default	logic	for	nonmonotonic reasoning	is	that	rules	
cannot	be	combined	or	reasoned	about,	for	example:

α	:	𝛽 /	𝛾 does	not	derive		α	:	𝛽 /	(𝛾 ∨	𝛿)
A	different	approach	is	to	reason	about	defaults	within	a logic	with	a	belief	
operator	B.	Bα says	“I	believe	α”:	autoepistemic logic
We	could	then	represent	the	default	about	birds,	for	example,	as	follows:

 ∀x	 Bird(x)	∧ ¬B¬Flies(x) ⇒	Flies(x)
Any	bird	not	believed	to	be	unable	to	flight,	does	fly.

Note	that:	 B¬Flies(x) is	different	from	¬Flies(x)
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Autoepistemic logic
Given	a	KB	that	contains	sentences	using	the	B “auto-epistemic”	operator,	what	is	a	
reasonable	set	of	beliefs	to	hold?	
Minimal	properties	for	a	set	of	beliefs	E to	be	considered	stable:
1. Closure	under	entailment:	if	E ⊨	α,	then	α	∈	E
2. Positive	introspection:	if	α	∈	E ,	then	Bα	∈	E
3. Negative	introspection:	if	α	∉	E,	 then	¬Bα	∈ E
This	leads	to	the	following	definition	of	stable	expansion	of	a	KB:
Stable	expansion	of	the	KB [Moore]:	 A	set	E is	a	stable	expansion	of	KB if	and	only	if	
for	every	sentence	π, it	is	the	case	that:

π	∈	E iff KB ∪	{Bα	|	α	∈	E}	∪	{¬Bα	|	α	∉	E}	⊨	π
The	implicit	beliefs	E	 are	those	sentences	that	are	entailed	by	KB	plus	the	assumptions:	
those	arising	from	the	introspection	constraints.

23/10/17 AI	FUNDAMENTALS	- M.	SIMI 23



Stable	expansions	cases
1. Example:	
Bird(chilly),	Bird(tweety),	(tweety ≠	chilly),	¬Flies(chilly),
∀x Bird(x)	∧	¬B¬Flies(x)	⇒ Flies(x)
¬Flies(tweety) cannot	be	derived;	a	stable	expansion	would	include	the	assumption	
¬B¬Flies(tweety).	Hence Flies(tweety)	and	also	B Flies(tweety)

2. The	KB	consisting	of	the	sentence	(¬Bp ⇒	p)	has	no	stable	expansion:	If	Bp is	false,	
then	the	expansion	entails	p;	conversely,	if	Bp is	true,	then	the	expansion	does	not	
include	p .

3. The	KB	consisting	of	the	sentences	(¬Bp ⇒ q )	and	(¬Bq ⇒ p)	has	exactly	two	stable	
expansions
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Conclusions
ü In	multi-agent	environments	there	is	a	need	to	represent	and	reason	about	

other	agents	propositional	attitudes.	
ü We	have	reviewed	modal	logics,	based	on	possible	world	semantics,	and	

discussed	the	properties	that	are	appropriate	for	knowledge	and	beliefs.
ü Auto-epistemic	logic	can	be	regarded	as	an	approach	to	nonmonotonic

reasoning.
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Your	turn
ü Discuss	the	properties	of	modal	logics	for	other	modelling	tasks:	

Examples:	deontic	logic	(obligation	and	permission);	temporal	modal	logic	…
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