
AI	Fundamentals:	Knowledge	Representation	and	
Reasoning
Maria	Simi

Description	logics
LESSON	6:	SYNTAX	AND	SEMANTICS,	DECISION	PROBLEMS,	
INFERENCE

Categories	and	objects	[AIMA,	Cap	12]
§ Most	of	the	reasoning	takes	place	at	the	level	of	categories rather	than	on	

individuals.
§ If	we	organize	knowledge	in	categories	and	subcategories	(in	a	hierarchy)	it	is	enough	

to	classify	an	object,	according	to	its	perceived	properties,	in	order	to	infer	properties	
of	the	categories	to	which	it	belongs.

§ Inheritance is	a	common	form	of	inference.
§ Ontologies will	play	a	crucial	role,	providing	a	source	of	shared	and	precisely	defined	

terms	that	can	be	used	in	meta-data	of	digital	objects	and	real	world	objects.

Domain	ontologies
§ In	the	80’s	we	assist	to	a	formalization	of	the	ideas	coming	from	semantic	

networks and	frames resulting	in	specialized	logics.
§ These	logics,	called	terminological	logics	and	later	description	logics	find	an	

important	application	in	describing	“domain	ontologies” and	represent	the	
theoretical	foundations	for	adding	reasoning	capabilities	to	the	Semantic	web.

§ Ontology:	a	formal	model	of	an	application	domain	(a	conceptualization)	
§ Subclass	relations	are	important	in	defining	the	terminology	and	serve	to	

organize	knowledge	in	hierarchical	taxonomies	(like	in	botany,	biology,	in	
library	sciences	…	but	also	electronic	commerce,	cultural	heritage	…)

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 4

The	Semantic	Web
§ The	Semantic	Web	is	the	vision	of	Tim	Berners-Lee	(1998)	to	gradually	

develop	alongside	the	“syntactic	web”	(or	web	of	documents),	for	
communication	among	people,		a	“semantic	web”	(or	web	of	data)	for	
communication	among	machines.

§ The	semantic	web	is	a	huge	distributed	network	of	linked	data	which	can	be	
used	by	programs	as	well,	provided	their	semantics	is	shared	and	made	clear
(this	is	the	role	of	formal	ontologies).

§ These	data	comply	with	standard	web	technologies:	Unicode	encoding,	XML,	
URI,	HTTP	web	protocol.

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 5

The	technological	stack	of	Semantic	Web

The	technologies	of	the	Semantic	Web
§ Unicode	and	URI	(Universal	Resource	Identifier)
§ XML	for	syntactic	interoperability
§ RDF	(Resource	Description	Framework):	a	language	to	describe	binary	

relations	between	resources		(subject,	predicate,	object)
§ RDF	schema	(RDFS):	to	define	classes,	relations	between	classes,	to	constrain	

domains	and	co-domains	of	relations.	This	is	basic	language	for	ontologies.
§ OWL:	the	web	ontology	language,	one	among	many	description	logics	

elected	as	standard	by	the	W3C.

§ The	Web	Semantic	course	will	tell	you	more	about	all	this.

Description	logics
Can	be	seen	as:
1. Logical	counterparts	of	network knowledge	representation	schema,	frames

and	semantic	networks.	
§ In	this	formalization	effort,	defaults and	exceptions	are	lost
§ The	ideas	and	terminology	(concept,	roles,	inheritance	hierarchies)	are	very	
similar	(to	KLOne in	particular).

2. Contractions of	first	order	logic	(FOL),	investigated	to	obtain	better	
computational	properties.
§ Attention	to	computational	complexity/decidability	of	the	inference	mechanisms

Example
The	following	is	a	typical	proposition,	expressed	in	the	syntax	of	DL	(“paper3	has	exactly	
two	authors”):

(and Paper	(atmost 2	hasAuthor)
(atleast 2	hasAuthor))	[paper3]	

Alternative,	mathematical,	notation	(that	we	will	use):
paper3:	Paper ⨅	(≤	2	hasAuthor)	⨅ (≥	2	hasAuthor)	

Corresponding	in	FOL:
Paper(paper3)	Ù
$x hasAuthor(paper3,	x)	Ù
$y hasAuthor(paper3,	y)	Ù x ¹ y Ù
hasAuthor(paper3,	z)	Þ (z = x)	Ú (z = y)

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 9

Concepts,	roles,	individuals
Each	DL	is	characterized	by	operators	for	the	construction	of	terms.	
Terms are	of	three	types:
§ Concepts,	corresponding	to	unary	relations
with	operators	for	the	construction	of	complex	concepts:	and	(⨅),	or	(⨆),	not	(¬),	all	
("),	some	($),	atleast (³ n),	atmost (£ n),	…

§ Roles,	corresponding	to	binary	relations
possibly	together	with	operators	for	construction	complex	roles

§ Individuals:	only	used	in	assertions
Assertions are	kept	separate	and	can	be	only	of	two	types:
§ i :	C,	where	i an	individual	and	C is	a	concept
§ (i,	j)	:	R ,	where	i and	j	are	individuals	and	R is	a	role

A	KB	based	on	description	logic

journalist Þ author

article ≡
(and (a-not book)

(all author journalist))

author Þ creator

author[Eco, l1]

author[Biagi, l2]

journalist[Biagi]

(and book
(all author

journalist))[a2]

KB T-BOX

A-BOX

Top

scrittore

libro
giornalista

(and libro
(all autore

giornalista))

bottom a2

Top

creator
book

author

journalist (and book
(all author

journalist))

bottom

The	logic	AL :	the	syntax	of	terms
<concept>	® A

|	⊤ (top,	universal	concept)
|	⊥ (bottom)
|	¬ A (atomic	negation)
|	C ⨅	D (intersection)
|	" R	.	C (value	restriction)
|	$ R	.	⊤	 (weak	existential)

<role>	® R

A,	B primitive	concepts
R primitive	role
C,	D concepts

Examples:
Person	⨅ Female
Person	⨅ ¬Female
Person	⨅ $ hasChild. ⊤	
Person	⨅ " hasChild .	Female
Person	⨅ " hasChild .	⊥

Semantics	of	AL
DI interpretation	domain,	a	set	of	individuals	
I interpretation	function,	assigning:

§ Atomic	concepts	A:	AI Í DI

§ Atomic	roles	R:	RI Í DI ´ DI

§ Individual	constants	a:	aIÎ DI

⊤I	=	DI		 the	interpretation	domain
⊥I =	Æ the	empty set
(¬A)I=	DI \ AI					 the	complement	of	AI	to	D
(C ⨅	D)I = C	IÇ D	I	 the	intersection	of	the	sets

(" R .	C)I =	{a Î DI		|	"b	.	(a,	b)	Î RI® b Î CI	}
($ R .	⊤)I =	{a Î DI |	$b	.	(a,	b)	Î RI }

Examples
1. Persons with	a	child

Person ⨅	$ hasChild . ⊤

2. Persons with	only female children
Person ⨅	" hasChild .	Female

3. All	articles	that	have	at	least	one	authors	and
whose	authors	are	all	journalists.
Article ⨅	$ hasAuthor .⊤ ⨅ " hasAuthor .	Journalist

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 14

Person

$hasChild.T
p1

p2

hasChild

<p1, p2>
<p1, p3>
<p2, p4>
<p2, p5>

…

Person

"hasChild.Female

p1

Female
p2 p3

p4

More	expressive	logics
U :	union,	(C		⨆	D)I	=	(CIÈ DI)
E :	full	existential

($ R	.	C)I	=	{a Î DI	½$ b	.	(a,	b)	Î RI Ù b Î CI	}
N :	numerical	restrictions

(³ n R)I	=	{a Î DI	½ |{ b½(a,	b)	Î RI}| ³ n}	(atleast)
(£ n R)I	=	{a Î DI	½ |{ b½(a,	b)	Î RI}| £ n}	(atmost)
n,	integer	number | . | set	cardinality

C :	full	complement,	(¬C)I=	DI \ CI	

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 15

§ Different description logics are	
obtained by	adding other costructors
to	AL
AL[U][E][N][C]

§ Not	all	of	them	are	distinct
§ ALUE = ALC given that (C		⨆	D)	º

¬(¬C	 ⨅	¬D)
and $R .	C	º ¬"R .	¬C

§ ALCN =	ALUEN

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 16

© Paolo Buongarzoni & Rossella

The	lattice	of	the		AL family

The	language	for	T-BOX	terminology
§ Terminological	axioms	T

C ⊑	D inclusion	of	concepts,	CI Í DI

R	⊑ S inclusion	of	roles	RI Í SI

C	º D equality	of	concepts,	CI º DI

R	º S equality	of	roles,	RI º SI

Definitions:	equalities introducing a	symbol on	the	left
Mother	ºWoman	⨅	hasChild.Person

Terminology:	symbols	appear	on	the	left	not	more	than	once
Primitive	symbols:	appear	only	on	the	right
Defined	symbols:	may	appear	also	on	the	left
We	assume	acyclic	T .

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 17

An	acyclic	terminology

Man
Father Mother

Mother
Mother

Mother
Woman Man

Woman

Parent

¬ Woman
Woman

Expansion	of	a	terminologyT
If	a	terminology	is	acyclic,	it	can	be	expanded	by	substituting	to	defined	symbols	their	
definitions.
In	the	case	of	acyclic	terminologies	the	process	converges	and	the	expansion	Te is	
unique.
Properties	of	Te:
§ in	Te each	equality	has	the	form	C	º De where	De contains	only	primitive	symbols	
§ Te contains	the	same	primitive	and	defined	symbols	of	T
§ Te is	equivalent	to	T

Expanded	terminology

Specializations
Inclusion	axioms	are	called	specializations.	For	example:.

Woman	⊑ Person
A	generalized	terminology	[with	inclusion	axioms],	if	acyclic,	can	be	transformed	
in	an	equivalent terminology	with	just	equivalence	axioms:

A ⊑	C® A º A’ ⨅ C	
where	A'	 is	a	new	primitive	symbol

This	also	means	that	specializations	do	not	add	expressive	power	to	the	
language,	at	least	in	the	case	of	acyclic	terminologies.

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 21

The	language	of	assertions:	A-BOX
An	A-BOX	is	a	set	of	assertions	of	the	following	type:

a : C,	assertion	over	concepts,	meaning	aI Î CI

(b, c)	: R,	assertions	over	roles,	meaning	(bI , cI) Î RI

a, b, c, d …	are	individuals
In	description	logic	we	make	an	assumption	that	different	individual	constants	refer	to	
different	individuals:	the	Unique	Name	Assumption	(UNA)
A-Box	example:

Mary:	Mother Peter:	Father
(Mary,	Peter):	hasChild (Peter,	Harry):	hasChild
(Mary,	Paul):	hasChild

DL	are	a	contraction	of	FOL
It	is	always	possible	to	translate	DL	
assertions	in	FOL.
We	define	a	translation	function	t(C,	x)	
which	returns	a	FOL	formula	with	x	free:

t(C,	x)	↦		C(x)
Translation	rules	for	assertions:
t	(C ⊑	D) ↦ ∀x .	t	(C,	x)	⇒	t(D,	x)	
t (a	:	C) ↦	 t	(C,	a)
t	((a,	b)	:	R) ↦	 R(a,	b)

Translation	rules	for	terms:
t (⟙,	x)	 ↦ true
t	(⟘,	x)	 ↦ false
t (A,	x)	 ↦ A(x)
t (C	⨅	D,	x)	 ↦	 t (C,	x)	⋀	t (D,	x)	
t (C	⨆	D,	x)	 ↦	 t (C,	x)	⋁	t (D,	x)	
t (¬C,	x)	 ↦ ¬t (C,	x)	
t (∃R	.	C,	x)	 ↦	 ∃y	.	R(x,	y)	⋀	t (C,	y)	
t (∀R	.	C,	x)	 ↦	 ∀y	.	R(x,	y)	⇒	t (C,	y)	

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 23

SKIPPED

Translation	examples
t	(HappyFather ⊑	Man	⨅	∃hasChild .	Female)	=
∀x .	t	(HappyFather,	x)	⇒	t (Man	⨅	∃hasChild .	Female,	x)	=
∀x .	HappyFather(x)	⇒	t (Man,	x)	⋀	t (∃hasChild .	Female,	x)	=
∀x .	HappyFather(x)	⇒	Man(x)	⋀	t (∃hasChild .	Female,	x)	=
∀x .	HappyFather(x)	⇒	Man(x)	⋀∃y	.	hasChild(x,	y)	⋀	Female(y)

t (a	:Man	⨅	∃hasChild .	Female)	=	Man(a)	⋀	(∃y	.	hasChild(a,	y)	⋀	Female(y))

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 24

Alternative	syntax	(Lisp	like)

The	knowledge	base	in	description	logics
K =	(T,	A)
T (T-BOX),	terminological	component
A (A-BOX),	assertional component
An	interpretation	I satisfies	A and	T (therefore	K)	iff it	satisfies	any	assertion	in	A
and	definition	in	T (I is	a	model	of	K).

Reasoning	services	for	description	logics
Design	and	management	of	ontologies
§ Consistency	checking	of	concepts	and	support	for	the	creation	of		hierarchies	

Ontology	integration
§ Relations	between	concepts	of	different	ontologies
§ Consistency	of	integrated	hierarchies	

Queries
§ Determine	whether	facts	are	consistent	wrt ontologies
§ Determine	if	individuals	are	instances	of	concepts
§ Retrieve	individuals	satisfying	a	query	(concept)
§ Verify	if	a	concept	is	more	general	than	another	(subsumption)

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 27

Basic	decision	problems	in	DL
Classical	decision	problems
§ Satisfiability of	a	KB:	KBS(K)	if there is a	model	forK =	(T,	A)?
§ Logical	consequence	of	a	KB:	K ⊨ a	:	C		also called instance checking
Typical	decision	problems
§ Concept	satisfiability	[CS(c)]:	is	there	an	interpretation	different	from	the	empty	set?

(father),	a	primitive	concept,	is satisfiable
(father ⨅ ¬father)	is unsatisfiable

• Subsumption:	K ⊨ C ⊑D (D subsumes C)	if for	every model	I di T,		CI Í DI
structural	subsumption:	person subsumes (person	⨅ $hasChild.T)	
hybrid	subsumption:
person ⨅	$hasChild.T subsumes student ⨅	$hasChild.T if student ⊑	person Î T-BOX

§ Concept	equivalence:	K ⊨ C ºD

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 28

Other	inferential	services
§ Disjointness:	C	IÇ D	I =	Æ for	any	model	I of	T
§ Retrieval:	find	all	individuals	which	are	instances	of	C	,	i.e.	compute	the	set	

{	a | K ⊨ a	:	C }
§ Most	Specific	Concept	(MSC)

Given	a	set	of	individuals,	find	the	most	specific	concept	of	which	they	are	
instances.	Used	for	classification.

§ Least	Common	Subsumer (LCS)
Given	a	set	of	concepts,	find	the	most	specific	concept	which	subsumes	all	of	them.	
Used	for	classification.

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 29

Reduction	between	decision	problems
Decision	problems	are	not	independent.
§ Structural	subsumption can	be	reduced	to	concept	satisfiability	
§ C is	unsatisfiable iff C is	subsumed	by	^
§ C and	D are	disjoint	iff C ⨅D	 is	not	consistent.
§ …

All	problems	can	be	reduced	to	KB	satisfiability.
1. Concept	consistency:	C is	satisfiable iff KÈ {a :	C	}	is	satisfiable

with	a new	individual	constant.	Note:	{a :	C	}	is	added	to	A.
2. Subsumption:	K ⊨ C ⊑	D (D subsumes C)	iff KÈ {a	:	C ⨅¬D}	is	unsatisfiable
3. Equivalence: K º C	 iff K ⊨ C	⊑	D	and	K ⊨ D	⊑	C	
4. Instance checking:	K ⊨ a	:	C iff KÈ {a:¬C}	is	unsatisfiable

Examples	of	problem	reduction
1. Are	rich	people	happy?

§ Happy subsumes	Rich?	K ⊨ Rich	⊑	Happy
§ KÈ {a:	Rich	⨅ ¬Happy}	is	unsatisfiable?

2. Being	rich	and	healthy	is	enough	to	be	happy?
§ K ⊨ Rich	⨅	Healthy ⊑	Happy
§ KÈ {a:	Rich	⨅	Healthy ⨅ ¬Happy}	is	unsatisfiable?

3. Given that:	To	be	happy	one needs to	be	rich and	healthy (and	it is not enough)
Can	a	rich person be	unhappy?
§ T-BOX:	Happy ⊑ Rich	⨅	Healthy
§ (Rich	⨅	¬Happy)	is satisfiable?
§ KÈ {a:	Rich	⨅ ¬Happy}	is satisfiable?

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 31

Deductive	systems	for	DL
Algorithm	for	structural	subsumption
§ Used	for	not	very	expressive	languages	(without	negation)	→	Your	turn

The	most	used	method	is	a	technique	for	verifying	satisfiability	of	a	KB	(KBS).
§ It	is	a	technique	of	constraint	propagation,	a	variant	of	a	method	for	natural	deduction,	called	
semantic	tableaux

§ Basic	idea:	each	formula	in	KB	is	a	constraint	on	interpretations	for	them	to	be	models	of	KB

§ Complex	constraints	are	decomposed	in	simpler	constraints	by	means	of	propagation	rules	
until	we	obtain,	in	a	finite	number	of	steps,	atomic	constraints,	which	cannot	further	
decomposed.

§ If	the	set	of	atomic	constraints	contains	an	evident	contradiction	then	the	KB	is	not	satisfiable,	
otherwise	a	model	has	been	found.

§ The	technique	is	simple,	modular,	useful	for	evaluating	complexity	of	decision	algorithm.

The	logic	ALC
We	will	apply	the	technique	to	ALC = AL +	full	complement	(and	union).	
<concept>	® A

|	⊤ (top,	universal	concept)
|	⊥ (bottom)
|	¬ C (atomic	negation)
|	C ⨅	D (intersection)
|	C ⨆ D (union)
|	" R	.	C (value	restriction)
|	$ R	.	⊤	 (weak	existential)

<role>	® R
A primitive	concepts
R primitive	role
C,	D concepts

Preliminary	steps	before	KBS
1. Terminology	expansion:	a	preliminary	step	

consisting	in	resolving	specializations,	getting	rid	
of	the	terminology	by	substituting	defined	
concepts	in	A with	their	definitions.
This	results	in	a	K =	({	},	A’) with	
assertions	only.

2. Normalization:	assertions	are	transformed	
in	negation	normal	form,	by	applying	the	
following	rules	until	every	occurrence	of	
negation	is	in	front	of	a	primitive	concept.
These	transformed	assertions	constitute	the	
initial	set	of	constraints	for	the	KBS	algorithm

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 34

Constraint	propagation	algorithm
A	constraint	is	an	assertion	of	the	form	a	:	C or	(b,	c)	:	R,	where	a,	b and	c	 are	
constants	(distinct	individuals)	or variables (x, y …)	referring	to	individuals	but	
not	necessarily	distinct	ones.
A	constraint	set	A is	satisfiable iff there	exists	an	interpretation	satisfying	all	the	
constraints	in	A.	
Each	step	of	the	algorithm	decomposes	a	constraint	into	a	simpler	one	until	we	
get	a	set	of	elementary	constraints,	or	a	contradiction	(clash)	is	found.
ForALC a	clash is one of	the	following types:

§ {a :C,	a:¬C}

§ {a:	^}

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 35

Completion	trees
Completion	forest:	data	structures	for	supporting	the	execution	of	the	algorithm
For	each	individual	a appearing	in	assertions	in	A, a	labelled	tree	is	initialized.	

§ if	A contains a :	C,	we	add	the	constraint	C	to	the	label	of	a
§ if	A contains (a,	b)	:	R,	we	create	a	successor	node	of	a for	b	to	represent	the	R	

relation	between	them

a		L(a)={C} label of a

b

R

Rules	forALC

neither one is in L(x)

not both in L(x)

Comments	about	rules
Most	rules	are	deterministic
The	rule	for	disjunction	is	non	deterministic:	its	application	results	in	alternative	
constraints	sets.:	we	have	a	fork	in	the	proof.
A is	satisfiable iff at	least	one	of	the	resulting	constraints	set	is	satisfiable.	
A is	unsatisfiable iff all	the	alternatives	end	up	with	a	clash.

Example	1
All	the	children	of	John	are	females.	Mary	is	a	child	of	John.	
Tim	is	a	friend	of	professor	Blake.	Prove	that	Mary	is	a	female.

A =	{john	:	"hasChild.female,	(john,	mary)	:	hasChild,				
(blake,	tim)	:	hasFriend,	blake :	professor}

Prove	that:		A ⊨mary :	female	or	equivalently	that	A È mary :	¬female is	unsatisfiable

Example	1
All	the	children	of	John	are	females.	Mary	is	a	child	of	John.	
Tim	is	a	friend	of	professor	Blake.	Prove	that	Mary	is	a	female.

A =	{john	:	"hasChild.female,	(john,	mary)	:	hasChild,				
(blake,	tim)	:	hasFriend,	blake :	professor}

Prove	that:		A ⊨mary :	female	or	equivalently	that	A È mary :	¬female is	unsatisfiable

Completion	forest

Example	1
All	the	children	of	John	are	females.	Mary	is	a	child	of	John.	
Tim	is	a	friend	of	professor	Blake.	Prove	that	Mary	is	a	female.

A =	{john	:	"hasChild.female,	(john,	mary)	:	hasChild,				
(blake,	tim)	:	hasFriend,	blake :	professor}

Prove	that:		A ⊨mary :	female	or	equivalently	that	A È mary :	¬female is	unsatisfiable

Completion	forest

Example	1
All	the	children	of	John	are	females.	Mary	is	a	child	of	John.	
Tim	is	a	friend	of	professor	Blake.	Prove	that	Mary	is	a	female.

A =	{john	:	"hasChild.female,	(john,	mary)	:	hasChild,				
(blake,	tim)	:	hasFriend,	blake :	professor}

Prove	that:		A ⊨mary :	female	or	equivalently	that	A È mary :	¬female is	unsatisfiable

Completion	forest

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x)	=	{$R	.C	 ⨅ "R.	(¬C	⨆¬D) ⨅	 $R.D}
x

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x)	=	{$R	.C	,	 "R.	(¬C	⨆¬D), $R.D}
x

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x)	=	{$R	.C	,	 "R.	(¬C	⨆¬D),		 $R.D}
x

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1) = {C	} y1

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x)	=	{$R	.C	,	 "R.	(¬C	⨆¬D),		 $R.D}
x

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1) = {C	,	¬C ⨆¬D} y1

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬C	,¬C	⨆¬D} y1
Clash!

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬D,¬C	⨆¬D} y1

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬D,¬C	⨆¬D} y1 y2	L(y2)={D	}

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬D,¬C	⨆¬D} y1 y2	L(y2)={D,	¬C	⨆¬D }

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬D,¬C	⨆¬D} y1 y2	L(y2)={D, ¬C	,¬C	⨆¬D }

Example	2
A = {x : $R	.C	⨅ "R.(¬C	⨆¬D) ⨅	$R.D	} satisfiable?

L(x) = {$R	.C,			"R.(¬C	⨆¬D), $R.D}
x

L(y1)={C	,¬D,¬C	⨆¬D} y1 y2	L(y2)={D, ¬C	,¬C	⨆¬D }

A	is	satisfiable
Model	found:	DI =	{x, y1, y2} CI =	{y1}	 DI =	{y2} RI =	{(x, y1),(x, y2)}

Example	3

A = {x	:$R.C	 ⨅	"R.¬C}	satisfiable?

L(x) = {$R.C, "R.¬C}
x

Example	3

A = {x	:$R.C	 ⨅	"R.¬C}	satisfiable?

L(x) = {$R.C, "R.¬C}
x

L(x) = {$R.C	,		 "R.¬C}
x

L(y1)	=	{C}								y1

Example	3

A = {x	:$R.C	 ⨅	"R.¬C}	satisfiable?

L(x) = {$R.C, "R.¬C}
x

L(x) = {$R.C	,		 "R.	¬C}
x

L(y1)	=	{C,	¬C}		y1
Clash!

Example	3

A = {x	:$R.C	 ⨅	"R.¬C}	satisfiable?

L(x) = {$R.C, "R.¬C}
x

L(x) = {$R.C	,		 "R.	¬C}
x

L(y1)	=	{C,	¬C}		y1
Clash!

§ A is	not	satisfiable
§ There	are	no	models

Correctness	and	completeness	of	KBS
1. The	result	is	invariant	with	respect	to	the	order	of	application	of	the	rules.
2. Correctness: if	the	algorithm	terminates	with	at	least	one	primitive	

constraint	set	and	no	clashes,	then	A is	satisfiable and	from	the	constraints	
we	can	derive	a	model.	

2. Completeness:	if	a	knoweldge base	A is	satisfiable,	then	the	algorithm	
terminates	producing	at	least	a	finite	model	without	clashes.

3. KBS	is	decidable forALC and	also	forALCN.

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 57

Additional	constructors
H : inclusion	between	roles

R		⊑		S	iff RI	 Í SI	
Q : qualified	numerical	restrictions	

(³ n R.C)I	=	{a Î DI	½ |{ b½(a,	b)	Î RI	Ù b Î CI }| ³ n}
(£ n R.C)I	=	{a Î DI	½ |{ b½(a,	b)	Î RI	Ù b Î CI }| £ n}

O : nominals	(singletons)		{a}I		=	{aI}
I : inverse	roles,	(R −)I	 =	{(a,	b)½(b,	a)	Î RI	}
F : functional	roles	

fun(F)	iff "x,	y,	z	(x,	y)ÎFI	Ù (x,	z)ÎFI	Þ y=z
R+: transitive	role

(R+)I	 =	{(a,	b)½$c	 such	that	(a,	c)	Î RI	Ù (c,	b)	Î RI	}

S: ALC + R+
SKIPPED

OWL	– Ontology	Web	Language
OWL-DL is	equivalent	to	
SHOIN =
S :	 ALC + transitive	roles	R+

H :	 roles	specialization
O :	 nominals/singletons
I :	 inverse	roles
N :	 numerical	restrictions

OWL-Lite is	equivalent	to
SHIF =
S :	 ALC + transitive	roles	R+

H :	 roles	specialization
I :	 inverse	roles
F :	 functional	roles

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 59

SKIPPED

OWL	syntax
Constructor DL Syntax Example
A (URI) A Conference
thing ⊤
nothing ⊥

Reference ⨅ Journal
Organization ⨆ Institution
¬MasterThesis
{WISE, ISWC, …}
"date.Date
$date.{2005}
(£ 1 location)
(³ 1 publisher) SKIPPED

OWL	axioms

SKIPPED

XML	syntax
()

SKIPPED

Complexity	and	decidability	for	DL’s

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 63

Tractable Decidable Undecidable

ALN ALCNR FOL
AL ALC KL-One

ALR NIKL
ALNO ALE

PROP OWL-Lite OWL-DL

P Í NP Í PSPACE Í EXPTIME Í NEXPTIME

tractability decidability
threshold threshold

Conclusions
ü Complexity	studies	on	DL’s	allowed	to	explore	a	wide	spectrum	of	

possibilities	in	the	search	of	the	best	compromise	between	expressivity	and	
computational	complexity.	

ü They	promoted	the	implementation	of	systems	which	are	both	efficient	and	
expressive	(even	if	from	the	theoretical	point	of	view	they	have	worst-case	
exponential	complexity)

ü The	semantic	web	is	laid	on	solid	theoretical	foundations.	

Your	turn
ü Structural	subsumption algorithm	for	Description	logic	(from	the	handbook).
ü Complexity	results	for	Description	Logics
ü Reasoning	systems	based	on	Description	Logics	(LOOM,	BACK,	KRIS,	FaCT,	DLP,	

Racer	…)

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 65

References
ü Franz	Baader,	Werner	Nutt,	Handbook	of	Description	Logics	PDF	Ch	2

26/10/17 AI	FUNDAMENTALS	- M.	SIMI 66

