Logica per la Programmazione

Lezione 7

- Semantica della Logica del Primo Ordine
 - Interpretazioni
 - ► Formalizzazione

Interpretazione e Semantica

- ► Come in Calcolo Proposizionale la semantica di una formula chiusa di LPO si determina rispetto ad una interpretazione
- Una interpretazione assegna la semantica ad una formula chiusa fissando il significato dei simboli che compaiono:
 - ▶ Il dominio di interesse (un insieme)
 - ightharpoonup A quali **elementi** del dominio corrispondono i simboli di costante in ${\mathcal C}$
 - lacktriangle A quali **funzioni** sul dominio corrispondono i simboli di funzione in ${\mathcal F}$
 - lacktriangle A quali **proprietà** o **relazioni** corrispondono i simboli di predicato in ${\mathcal P}$
- ► Componendo i valori delle formule atomiche nelle formule composte si arriva a stabilire il valore di verità della formula complessiva
- Procedimento simile a quello del calcolo proposizionale, ma reso più complesso dalla necessità di calcolare funzioni e predicati, e dalla presenza dei quantificatori

Esempio: Semantica di Formula dipende da Interpretazione

Consideriamo la formula chiusa:

$$(\forall x.p(x) \lor q(x))$$

- Intepretazione 1:
 - ► Il dominio è quello degli esseri umani
 - Il predicato p significa "essere maschio"
 - Il predicato q significa "essere femmina"

La formula è vera

- ► Intepretazione 2:
 - ► Il dominio è quello dei numeri naturali
 - ▶ Il predicato p significa "essere numero primo"
 - Il predicato q significa "essere numero pari"

La formula è falsa

Interpretazione: Definizione Formale

Dato un linguaggio del primo ordine, ovvero fissato un alfabeto \mathcal{V} , \mathcal{C} , \mathcal{F} e \mathcal{P} , una **intepretazione** $\mathcal{I} = (\mathcal{D}, \alpha)$ è costituita da:

- ▶ Un insieme D, detto dominio dell'intepretazione
- ▶ Una funzione di interpretazione α che associa:
 - ▶ ad ogni **costante** $c \in C$ del linguaggio un **elemento** del dominio D, rappresentato da $\alpha(c)$
 - ▶ ad ogni **simbolo di funzione** $f \in \mathcal{F}$ di arietà n una funzione $\alpha(f)$ che data una n-upla di elementi di \mathcal{D} restituisce un elemento di \mathcal{D} . Ovvero

$$\alpha(f): \mathcal{D}^n \to \mathcal{D}$$

- ▶ ad ogni **simbolo di predicato** $p \in \mathcal{P}$ di arietà zero (un simbolo proposizionale) un **valore di verità** indicato da $\alpha(p)$
- ▶ ad ogni **simbolo di predicato** $p \in \mathcal{P}$ di arietà n (un **predicato** n-**ario**), una funzione $\alpha(p)$ che data una n-upla di elementi di \mathcal{D} restituisce un valore di verità. Ovvero

$$\alpha(p): \mathcal{D}^n \to \{\mathsf{T}, \mathsf{F}\}$$

Formalizzazione di Enunciati: Linee Guida (1)

- Finora abbiamo associato un valore di verità alle formule in modo informale: vedremo in seguito la definizione formale della semantica
- ▶ Per formalizzare un enunciato E dobbiamo fornire:
 - un alfabeto $\mathcal{A} = (\mathcal{C}, \mathcal{F}, \mathcal{P}, \mathcal{V})$ e un'interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$
 - ▶ una formula del primo ordine che, per l'interpretazione I, sia vera se e solo se l'enunciato E è vero

Formalizzazione di Enunciati: Linee Guida (2)

Dato un enunciato **E**, per identificare l'alfabeto \mathcal{A} e l'interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$

- ▶ individuiamo il dominio D di cui parla l'enunciato
- ▶ per ogni individuo $d \in \mathcal{D}$ menzionato in **E**, introduciamo un simbolo di **costante** $c \in \mathcal{C}$ e fissiamo $\alpha(c) = d$
- ▶ per ogni operatore **op** menzionato in **E** che applicato a elementi di \mathcal{D} restituisce un individuo di \mathcal{D} , introduciamo un simbolo di **funzione** $f \in \mathcal{F}$ e fissiamo $\alpha(f) = \mathbf{op}$
- ▶ per ogni proprietà di individui o relazione tra individui $\mathbf R$ menzionata in $\mathbf E$, introduciamo un simbolo di **predicato** $p \in \mathcal P$ e fissiamo $\alpha(p) = \mathbf R$

Formalizzazione di Enunciati: Esempio

"Tutti i numeri pari maggiori di due non sono primi"

- ▶ Dominio: numeri naturali: N
- Elementi del dominio menzionati: "due"
 - ▶ Introduciamo la costante $\mathbf{2} \in \mathcal{C}$ con $\alpha(2) = \underline{\mathbf{2}} \in \mathbb{N}$
- Proprietà o relazioni tra naturali menzionate:
 - "n è pari": introduciamo pari $\in \mathcal{P}$ con arietà 1 e $\alpha(\mathbf{pari})(n) = \mathbf{T}$ se $n \in \mathbb{N}$ è pari, \mathbf{F} altrimenti
 - "n è primo": introduciamo **primo** $\in \mathcal{P}$ con arietà 1 e $\alpha(\mathbf{primo})(n) = \mathbf{T}$ se $n \in \mathbb{N}$ è primo, \mathbf{F} altrimenti
 - ▶ "n è maggiore di m": introduciamo $> \in \mathcal{P}$ con arietà 2 e $\alpha(>)(n,m) = \mathbf{T}$ se n è maggiore di m, \mathbf{F} altrimenti
- Formula:

$$(\forall x. pari(x) \land x > 2 \Rightarrow \neg primo(x))$$

Formalizzazione di Enunciati: Esempi

- ► Alberto non segue LPP ma va al cinema con Bruno o con Carlo
- ► Tutti gli studenti di LPP vanno al cinema
- ► Tutti gli studenti di LPP tranne uno vanno al cinema

Alfabeto ed Interpretazione

Alberto non segue LPP ma va al cinema con Bruno o con Carlo

- ▶ Dominio: l'insieme delle persone
- ▶ Costanti: le persone Alberto, Bruno e Carlo. Introduciamo le costanti $A, B, C \in \mathcal{C}$ tali che $\alpha(A)$ ="la persona Alberto", $\alpha(B)$ ="la persona Bruno" e $\alpha(C)$ ="la persona Carlo"
- Operatori sul dominio menzionati: nessun simbolo di funzione
- Proprietà o relazioni tra persone:
 - ▶ introduciamo un simbolo di predicato $vaCinema \in \mathcal{P}$ con arietà 1 e $\alpha(vaCinema)(d) = \mathbf{T}$ se d va al cinema, \mathbf{F} altrimenti
 - ▶ introduciamo un simbolo di predicato $segueLPP \in \mathcal{P}$ con arietà 1 e $\alpha(segueLPP)(d) = \mathbf{T}$ se d segue LPP, \mathbf{F} altrimenti
 - ▶ introduciamo un simbolo di predicato = $\in \mathcal{P}$ con arietà 2 con il significato standard

Formalizzazione di Enunciati: Formule

▶ Alberto non segue LPP ma va al cinema con Bruno o con Carlo:

$$\neg segueLPP(A) \land (vaCinema(A) \land (vaCinema(B) \lor vaCinema(C)))$$

▶ Tutti gli studenti di LPP vanno al cinema:

$$(\forall x.segueLPP(x) \Rightarrow vaCinema(x))$$

► Tutti gli studenti di LPP tranne uno vanno al cinema:

$$(\exists x.segueLPP(x) \land \neg vaCinema(x) \land \\ (\forall y.segueLPP(y) \land \neg(x = y) \Rightarrow vaCinema(y))$$

Formalizzazione di Enunciati: Esercizio (1)

Formalizzare l'enunciato: "Due persone sono parenti se hanno un antenato in comune"

- ► Dominio: l'insieme delle persone
- Costanti, operatori sul dominio menzionati: nessuno
- Proprietà o relazioni tra persone:
 - " d_1 e d_2 sono parenti": introduciamo parenti $\in \mathcal{P}$ con arietà 2 e $\alpha(parenti)(d_1, d_2) = \mathbf{T}$ se d_1 e d_2 sono parenti, \mathbf{F} altrimenti
 - ▶ " d_1 è antenato di d_2 ": introduciamo antenato ∈ \mathcal{P} con arietà 2 e $\alpha(antenato)(d_1, d_2) = \mathbf{T}$ se d_1 è antenato di d_2 , \mathbf{F} altrimenti
- Formula:

$$(\forall x.(\forall y.(\exists z.antenato(z,x) \land antenato(z,y)) \Rightarrow parenti(x,y)))$$

Formalizzazione di Enunciati: Esercizio (2)

"Se un numero naturale è pari allora il suo successore è dispari"

- Dominio: numeri naturali: N
- Operatori sul dominio menzionati: "successore"
 - ▶ Introduciamo il simbolo succ ∈ \mathcal{F} con arietà 1 e $\alpha(\operatorname{succ})(n) = n+1$
- Proprietà o relazioni tra naturali menzionate:
 - "n è pari": introduciamo **pari** $\in \mathcal{P}$ come prima
 - "n è dispari": introduciamo **dispari** $\in \mathcal{P}$ con arietà 1 e $\alpha(\mathbf{dispari})(n) = \mathbf{T}$ se $n \in \mathbb{N}$ è dispari, \mathbf{F} altrimenti
- Formula:

$$(\forall x.pari(x) \Rightarrow dispari(succ(x)))$$