
ICT Risk Assessment
(and Management)

(of networks+Cloud Computing+IOT+ …)

Fabrizio Baiardi
f.baiardi@unipi.it

Why this course … :-)

Any logical structure that humans can conceive will be susceptible
to attacks, and the more complex the structure, the more certain that
it can be attacked

John Mc Afee speaking about the defects in AI software

If you don’t know how “it” works then you won’t manage its risks.
Or, as they say in the poker world, if after ten minutes at the table
you don’t know who the patsy is—you’re the patsy.

Daniel E. Geer, Jr.

Syllabus
•Introduction to ICT Security

–Risk Analysis

–Countermeasures

•Cloud Computing:

– Supporting Technologies

• Virtualization

• Elasticity

– Properties and Rules

– Security of Cloud Computing

• Threat Model

• Attacks (Classic + Spectre...)

• Countermeasures

• IOT

Fully general

The corse structure is updated
according to

- new vulnerabilities
- new attacks

Clouds are interesting!!!

Exam

One of
• Written test :-(
• Project work (even in a group)
• Lecture
– You choose a topic
– You choose some papers
– You prepare the slide
– You present your lecture

IOT and Cloud are related

6

 The beginning of “Cloud Computing”

•John McCarthy opined that “Computing may someday be
organized as a public utility” - John McCarthy, MIT Centennial in
1961

•“Comes from the early days of the Internet where we drew the
network as a cloud… we didn’t care where the messages went… the
cloud hid it from us” – Kevin Marks, Google

•First cloud around networking (TCP/IP abstraction)

•Second cloud around documents (WWW data abstraction)

•The emerging cloud hides details to final users by abstracting
infrastructure complexities of servers, applications, data, and
heterogeneous platforms

7

Utility vs Cloud Computing

Utility computing
●customers receive computing resources from a service provider (hw and/or sw)
and “pay by the drink,” as for electric service at home
●requires a cloud-like infrastructure
●focused on better economics. Corporate data centers are usually underutilized,
with resources often idle = overprovisioning = more hardware to handle peaks
●allows companies to only pay for the computing resources they need, when they
need them.

Cloud computing is a broader concept that relates to the underlying
architecture where services are designed. It may be applied equally
to utility services and internal corporate data center

8

Fog vs Cloud Computing

•Fog Computing should extends Cloud computing and services to the
edge of the network. Its distinguishing characteristics are its
proximity to end-users, its dense geographical distribution, and its
support for mobility. Services are hosted at the network edge or even
end devices such as set-top-boxes or access points.
•Fog aims to reduce service latency and to improve QoS, resulting in
superior user-experience.
•Fog Computing supports emerging Internet of Everything (IoE)
applications that demand real-time/predictable latency
•Unlike traditional data centers, fog devices are geographically
distributed over heterogeneous platforms, spanning multiple
management domains.
•

•
•

•

9

A Working Definition of Cloud Computing

Cloud computing is a model for enabling
convenient,
on-demand
network access
to a shared pool of configurable and geographically distributed

resources (e.g., networks, servers, storage, applications,)
that can be rapidly provisioned and released with minimal

management effort or service provider interaction.

This cloud model promotes availability and is defined in terms of

five essential characteristics,
three service models,
four deployment models.

Design space

10

5 Essential Cloud Characteristics

•On-demand self-service
•Broad network access = web access
•Resource pooling = Location independence through
web / broad band access
•Rapid elasticity
•Measured service
•

•Cloud computing is possible only because of
web+broadband and it is not available
if/when/where internet access is not available
•

•

11

Common Cloud Characteristics

• Massive scale
• Homogeneity
• Virtualization
• Resilient computing
• Low cost software
• Geographic distribution
• Service orientation
• Advanced security technologies

NIST framework and terms

This course adopts and follows a framework
developed by the National Institute of Standard
and Technologies
This framework has been and is used in the
USA to drive the adoption of cloud computing
in most of federal and state offices
Focused on
 the kind of access to the cloud system (service model)

 the underlying architecture (deployment model)

The NIST Cloud Definition Framework

13

CommunityCommunity
CloudCloud

Private Private
CloudCloud

Public CloudPublic Cloud

Hybrid Clouds

Deployment
Models

Service
Models

Essential
Characteristics

Common
Characteristics

Software as a
Service (SaaS)

Platform as a
Service (PaaS)

Infrastructure as a
Service (IaaS)

Resource Pooling

Broad Network Access Rapid Elasticity

Measured Service

On Demand Self-Service

Low Cost Software

Virtualization Service Orientation

Advanced Security

Homogeneity

Massive Scale Resilient Computing

Geographic Distribution

Cloud and Security - I

Economy and flexibility

Economy and flexibility

Cloud and Security - II

Complexity of security problems

Complexity of security problems

IOT

IOT = Smart Thing
Anything that is “smart” is smart because it has a
computer and the computer can be attacked
An important component of the IOT are sensors
Several attacks against sensors exploit the physics a
sensor exploits

– attacks using ultrasound against a microphone

– attacks sending fake information to GPS sensors

– …
 Complexity of security increases because of the lack

of computational resources in the computer

ICT Security & Risk
A topic at the intersection of three areas
Computer Science
Human Resources and Management
Economy

From ICT security to ICT risk assessment and management
“Kids speaks about security real women/men about risk
assessment and management ” :-)
Risk =Risk(probability, damage (or impact))
Risk management = an approach strongly related to
probability, impact, cost effectiveness of solutions

ICT Security & Risk
Largest risks in this year

ICT Security & Risk
A topic at the intersection of three areas
Computer Science
Human Resources and Management
Economy

From ICT security to ICT risk assessment and management
“Kids speaks about security real women/men about risk
assessment and management ” :-)
Risk =Risk(probability, damage (or impact))
Risk management = an approach strongly related to
probability, impact, cost effectiveness of solutions

Why security is important
Any organization strongly depends upon
Its private ICT resources
The ICT resources of its partners
The ICT systems that connect its private resources with the
partners' resources

Any organization should be able to prove to other ones
that it controls its ICT resources
Security = the owner controls the resources
Anytime an organization has to show to someone that it
satisfies some standards (not only an ICT one) it has to
give some assurance it controls its ICT resources

Information Security
Confidentiality
An information can be read only by those that are
entitled
Integrity
An information can be updated only by those that are
entitled
Availability
An information can be read and updated by those that
are entitled when they require the operation
An ICT resource should be available to those that are
entitled to use it

Other properties
Autenthication = you are who you say you are
Traced = who has invoked an operation
Accountability = pay for what you have used
Auditability = evaluate the effectiveness of

security solutions
Forensics = information to prove that that some

laws have been violated
(authentication + integrity)

Privacy = protection of personal information
(stronger requirements, no

inference)

Vulnerability

A first key concept for security
A vulnerability is a defect (an error, a bug) in a
person, a component, a set of rules that makes it
possible to violate a security property = it enables
an attack
While all vulnerabilities are bugs (errors...) not
all bugs are vulnerabilities

Threat agent

A second key concept for security
A source of attacks = actions that exploits
vulnerabilities to violate some security property
An agent may be natural (flooding, earthquake)
or man-made
Man-made may be random or malicious
We can assess risk only if we know both
vulnerabilities and threat agents for a system

Attack against an ICT system
An attack is a sequence of actions to (illegally) gain the
control of (a subset of) an ICT system
The actions can be implemented by a program (exploit)
Each attack is possible because of some vulnerabilities
(defect) of the target system or of its user
Who controls an ICT (sub)system can
Collect any information in the (sub)system
Update any information in the (sub)system
Prevent someone from accessing any resource/information in the
(sub)system

Our perspective
Attack focused= a cost effective defense from
attacks against an ICT system
Why/Which/When attacks may be successful
How the risk due to attacks can be managed
(prevented, reduce their frequence or their
damage …)
Selection and deployment of cost effective
countermeasures (changes to the system)
Cost, return, investment,

Alternative approaches

Unconditional security
Any vulnerability in the system will be exploited
by the attackers irrespective of cost and complexity
Conditional security (risk management)
Discover which vulnerabilities are convenient to
exploit by those interested in attacking the system
Some vulnerabilities will not be exploited due to
the high cost/complexity of the attacks they enable
(they pose too large a risk or are too complex for
the attacker)

Risk analysis
A modern approach to security:

1.Asset analysis (resources to be protected)
2.Vulnerability analysis
3.Attack analysis
4.Threat analysis (sources of attacks)
5.Impact analysis (damages)
6.Risk management =
– Classify risk
– Define acceptable risk
– Select and implement countermeasures

Asset Analysis

• Which logical and physical resources of the ICT
system we want to protect

• Who is entitled to access these resources and
which operation they are entitled to invoke

– Who is entitled to read an information
– Who is entitled to update an information
– Who is entitled to run a given application
–

• The analysis defines the goal of our strategy:
which resources are we going to defend

Risk analysis and management
Not all the attacks are worth preventing
Economy driven solution = Which attacks
– can be prevented

– is worth preventing = defence cost less than impact

A complete and standard methodology is not
currently available but several proposals in
development
Quantitative approaches are needed
Several partial solutions to be integrated

The steps of an intrusion (kill
chain)
1.Collection of information about a system
2.Discovery of system vulnerabilities (can be automated)
3.Search or build of a program (=exploit) to implement
the attack (even partially)
4.Implementation of the attack

Execution of the exploit +
 Execution of human action

1.Install tools to control the system
2.Remove any attack trace on the system
3.Access, update, control a subset of the system
information

Local vs remote attack

An attack is
Local if it can be executed provided that
the attacker can access a system account
Remote if it can be executed even if the
attacker cannot access a system account
A remote attack is obviously more
dangerous

Automated attack

No human action is required, the
implementation of the attack is the execution of
the exploit
This is the most dangerous kind of attacks
Automated attacks characterize ICT security
with respect to security in other fields
The time to execute an automated attack is
neglectable
No know how or abilities are required to the attacker
to execute an exploit

Automated Attack and Malware

A malware is a software designed to attack a
system after being installed on the system
Sometimes this installation requires the user
cooperation (phishing)
A particular kind of exploit because it has to be
executed on the system it attacks
A computer worm is a malware that tries to
replicate itself onto other nodes

 Description of the seven steps

Step 1: Reconnaissance. The attacker gathers information on the target

Step 2: Weaponization. The attacker creates a malicious payload .

Step 3: Delivery. The attacker sends the malicious payload to the victim
by email or other means.

Step 4: Exploitation. The actual execution of the exploit, which is, again,
relevant only when the attacker uses an exploit.

Step 5: Installation. Installing malware on the infected computer is
relevant only if the attacker used malware. The installation is a point
that takes months to operate.

Step 6: Command and control. The attacker creates a command and
control channel in order to operate his internal assets remotely.

Step 7: Action on objectives. The attacker performs the steps to achieve
his actual goals inside the victim’s network.

Terminology and relations ...

Vulnerability

Attacks

Attackers

Impact

Countermeasures

Risk

enable

take
advantage of

results in

related to
the probability of

implement

prevent

may
remove

are interested
in

Threat, threat agents

Partial points view on sec– I
Security = Confidentialy Cryptography
A set of algorithms to hide information so that only
those who know another information (the key) can read
it
A fundamental but partial property because it cannot
guarantee availability
It simplifies but not solves a problem
 If you think cryptography by itself solve your problem
either you do not understand cryptography
or you do not understand your problem

Partial points of view – II
•Several security problems are related to the triple

<user, resources, rights=operations on the res>
•that determines who can execute what
•Several security mechanisms are related to the
solution of these problems
1.Identifying the user
2.Identifying the resource
3.Discover the user rights on the resources
•Sophisticated identification system (biometrics etc.)
can solve 1 but neither of the other ones

Partial point of view - III

• Security is not safety that consider random events

• In a system with 10n -1 safe states and 1 unsafe state
were the state is randomly chosen,

– the probability of an unsafe behavior = 1/10n

– system safety increase with n

• If a system has one state out 10n that is not secure, the
threat agent will force the system to enter that state

• Security depends upon the success probability of the
agent rather than on the overall number of states

• Attackers are intelligent, adaptive and not random

•

Partial point of view - IV

• Red team exercises aka penetration test

• You pay someone for attacking your system

– If the attack fails, you assume your system is ok

– If the attack is successful you improve it

• Inconsistent approach because you cannot be sure that

– Your improvement is effective (Braess paradox)

– The red team has find all the possible attack

– A red team failure has a large number of reasons ...

•

•

Safety vs Security

• Triple modular redundancy is a standard strategy to
increase safety that introduces three instances of each
module

– Any input is copied to each module

– The modules compute in parallel

– Vote on the ouput and selection of the output with the
largest number of votes

• If a module is affected by a vulnerability then the
attacker has two more oppurtunities to be successful

Safety vs Security

• To make thing worst in the IOT you cannot have safety
without security or a lack of security results in a lack of
safety

• If terrorist controls a smart semaphore the traffic can
become rather unsafe and result in several security
problem

• A robot that is not secure can kill workers and so on

Some examples
Vulnerability
Attack
Some countermeasures

We describe a stack overflow, a
popular attack that is an instance of
buffer overrun

Buffer overflow

• The buffer overflow problem

– the most common problem among all the vulnerability of C code

– it does not arise in high level languages where the programmer is not involved
in memory management or with strong data types

– The most important security issue in the last 10 years (not replaced by web
vulnerabilities)

– based on a forced write of some data with a size larger than
expected. If the program type system does not discover this
inconsistency, then some data is replaced in memory.

• In this way, some program can be inserted (code injection) into a system that
can, among other execute some shell command. If the program is executed at
root level, then it fully control any system function.

• A buffer overflow can exploit any of the following areas stack, heap e bss
(block started by symbol) static variables that are allocated by the compiler.

Text

Data

Stack

Low memory addresses0x00000000

0xFFFFFFFF

A process memory

•To understand buffer overflow, we have to recall the structure of a process
memory.
•A process memory is partitioned into three segments: text, data and stack.
•The text segment is fixed, stores the program code and it is read only. Any write
attempts results in a segmentation error (segmentation fault – core dump)
•The data segment stores the process static and dynamic variables
•The stack segment stores the data to manage function calls and returns

High memory addresses

Low addresses

High addresses

Text

Dati

BSS

Heap

Stack

code

costants

Static and global variables

Dynamic variables

Local variables
Return addresses etc

A process memory

c
b

a

push(x)x=pop

1) x=a, 2) x=b, 3) x=c1) x=c, 2) x=b, 3) x=a
Stack

 Stack

•A Lifo (Last In First Out) data structure that stores a dynamic
amount of information
•It is used to manage function calls and returns (call assembly
instruction).
•The stack memory area is logically partioned into records (stack
frame) one for each call

Stack and system registers

• The memory address of the instruction to be executed is stored
in the EIP (Extended Instruction Pointer) register

• EBP (Extended Base Pointer) points to the beginning of a stack
frame while ESP (Extended Stack Pointer) points to the end of
the stack frame

• When a function is called, the system

– pushes onto the stack

• the return address = EIP+4,

• the base address of the current frame = EBP

– copies ESP into EBP to initialize the new stack frame.

Stack and system registers

 New frame

activation
record

extended base pointer

extended stack pointer

Stack and system registers

Old New

C: an example

This is a simple example to see how all the stuff works

SFP = saved frame pointer = it is used to restore the original
value of EBP on a return

Return addressReturn address

Return addr

buffer

flag

SFP*

Return address (ret)

a

b
High
addr

Low add

EBP

The stack frame

•Local variable of test_function are
addressed by subtracting a displacement
from EBP while the function parametes
are addressed by a positive displacement

•When a function is called EIP points to
the function code.

•The stack stores both local variables and
parameters of a function. When the
function ends, the whole stack frame is
removed before returning (ret).

This C code results in a stack overflow:

void overflow_function (char *str) {
 char buffer[20];

 strcpy(buffer, str); // This function copies str into bufferr
}

int main() {
 char big_string[128];
 int i;

 for(i=0; i < 128; i++)
 {
 big_string[i] = 'A';
 }
 overflow_function(big_string);
 exit(0);
}

This results in an overflow!

Overflow: an example

buffer

SFP

Return address (ret)

*str (parameters)
high

low low
addresses

A
A
...
A
A

A

A

A

} 20 byte

} 108
 byte

1)The first call to overflow_function
correctly initializes the stack frame

2) When overflow_function ends, the return
address has been overwritten by the character
A (segmentation fault!)

Segmentation fault

The previous code results in a segmentation fault

What happens if the return address (ret) stores a valid memory
address?

• In this case no exception is signalled and the process
continues by executing the instruction pointed by ret.

•
• A stack based buffer overflow exploits this opportunity by

replacing ret with a pointer to some code injected by the
attacker maybe into the stack itself

• How can we update the return address and inject some code
 in the system?

Buffer (stack) overflow

A Buffer Overrun

•It occurs when some variable is larger than expected and it
overwrite other variables
•It may be implemented if the language lacks a typing system
• Four kinds:

• Stack based buffer overrun
• Heap based buffer overrun
• V-table and function pointer overrun
• Exception handler overrun

• Rather popular among computer worm (malware)

Stack Overflow
 By copying x into the stack we destroy (update ??)

The return address
Other values on the stack

 The values that are copied codify a program
 The new return address points to the program we

have copied onto the stack
 Overall result: an administrative shell
 This is possible only if the procedure that is

attacked is executed in root mode

A local fully automated attack

Stack overflow

Vulnerability = alternative perspectives
1. Lack of control on the size of program
variables

2. Bad type system
3. Incorrect memory operation
4. Growth direction of the stack
5.…

Overflow: countermeasures

 Strong typing
 Controls on string lengths
 Insert a “canary” into the stack
 Not executable memory
 Ad hoc checks in the compiler
 ASLR: address space layout

randomization

Canary
 A value that differs at each invocation
 Inserted into the stack before any

parameter
 Before returning we check that the

canary has not been updated
 Randomly chosen at each invocation so

that the attacker cannot know its value

Not executable stack
 Controls when fetching an instructions,

they can be supported by the MMU
 No data structure can store instructions
 NX bit (the last one) introduced in AMD

processors
 It does not work with Linux that stores

some drivers in the stack to manage i/o
devices

Address Space Layout
Randomization ASLR

 The starting point of the various segment
is selected randomly

 The attacker cannot know in advance the
 starting address of data structures of

interest
 The first step of the attack has to

compute the starting address
 Attack more complex and slower

 ASLR – entropy

Cost of the countermeasures
 Each countermeasure has a distinct cost

 Strong typing = 10-30% run time overhead
 Checks on string length = large cost but

lower than the previous one
 Canary = specialized control, low cost
 ASLR supported by MMU translation low cost
 Not executable stack = lowest cost because it

exploits an hardware/firmware support

Stack vs heap

Structural vulnerability TCP/IP

• When the TCP/IP stack has been defined, the
• main goals was resilience against physical
• attack against the network (attack = bombing)
• Main goal = availability
• Some mechanism defined to discover

which nodes are alive and reachable
• No mechanism is available to guarantee \

(authenticate) the source of a message

Structural vuln: an Example

1. A node can send an ECHO message to check
whether another node is alive and reachable,
The receiver replies by returning the same
message.

2. The sender can specify a partial IP address to
broadcast a message to check a set of other
nodes

3. There is no control on the fields of an IP
packet a node sends

All toghether now ..
1. R is a network with 1000 node, X is a partial IP

address that matches the addresses of all nodes of R
2. A sends a ECHO message to the address X but it

specifies the address of B as the packet sender
address

3. Any node in R replies to B
4. B cannot interact with other nodes because its

communication lines are overflown by the ECHO
messages

Distributed Denial of Service

All toghether now +IOT
OVH France-based hosting provider, was the victim of a wide-scale DDoS
attack carried via network of over 152,000 IoT devices.
According to OVH the DDoS attack reached nearly 1 Tbps at its peak. Of
those IoT devices participating in the DDoS attack, they were primarily
comprised of CCTV cameras and DVRs. Many of these types devices'
network settings are improperly configured, which leaves them ripe for the
picking for hackers that would love to use them to carry our destructive
attacks. OVH originally stated that 145,607 devices made up the botnet,
but recently confirmed that another 6,857 cameras joined in on the attack.
The DDoS peaked at 990 Gbps on September 20th thanks to two
concurrent attacks, and according to OVH, the original botnet was capable
of a 1.5 Tbps DDoS attack if each IP topped out at 30 Mbps.

Security as an holistic property

• A system security is not implied by
(cannot be deduced from) the one of
each of its modules

• The overall system may be unsecure even
when each module is secure

• In a virtual machine hierarchy the security
of a machine may be destroyed by a
vulnerability in an underlying machine

Impact and countermeasures
 The DDOS impact

– depends upon the numbers of nodes, zombies,
whose address matches that in the message

– may be amplified by further messages
 Very few effective countermeasures because B is

aware of the attack when it starts to receive
messages

 This is structural vulnerability, it depends not upon
the building blocks but upon the composition

Design approaches vs vulns

 When designing and building a system we
may adopt one of two approaches

a) pretend there are no vulnerabilities in
the components (penetrate and patch)

b) be aware that there are vulnerabilities
and try to anticipate them even if we still
do not know which vulnerabilities
(proactive approach)

Penetrate and patch

 Vulnerabilities have not been anticipated
 Since we have assumed there are no

vulnerabilities, we should remove (patch)
a vulnerability as soon as it is discovered.

 There is a competition between
– discovering and exploiting vulnerabilities
– patching the system to remove them

Security Patch (wikipedia)

•A security patch is a change applied to an asset (OS, application, ...) t
correct the weakness described by a vulnerability.

•This corrective action will prevent successful exploitation and
remove or mitigate a threat’s capability to exploit the vulnerability to
attack an asset.

•Security patches are the primary method of fixing security
vulnerabilities in software. Currently Microsoft releases its security
patches once a month, and other operating systems and software
projects have security teams dedicated to releasing the most reliable
software patches as soon after a vulnerability announcement as
possible.

•Security patches are closely tied to responsible disclosure.

•

Patches: problem

 Any patching updates a software
component and changes its behaviour

 The change may influence the users
 A patch can be applied only after checking

that the changes can be accepted
 Sometime a patch cannot be applied, eg

certification of a system where the
software is just one component

Number of vulnerabilities
discovered

Number of vulnerabilities
discovered

How dangerous (not risk)

Top 10 Vulnerabilities - Windows Systems

1. Internet Information Services
2. Microsoft SQL Server
3. Windows Authentication
4. Internet Explorer
5. Windows Remote Access Services
6. Data Access Components(MDAC
7. Windows Scripting Host
8. Outlook and Outlook Express
9.Peer to Peer File Sharing
10. Simple Network Management

Top 10 Vulnerabilities - Unix Systems

1. BIND Domain Name System
2. Remote Procedure Calls (RPC)
3. Apache Web Server
4. Accounts with No Passwords or Weak Passwords
5. Clear Text Services
6. Sendmail
7. Simple Network Management Protocol
8. Secure Shell (SSH)
9. Misconfiguration of NIS/NFS
10. Open Secure Sockets Layer (SSL)

Other lists - I
Top Vulnerabilities in Windows Systems
W1. Windows Services
W2. Internet Explorer
W3. Windows Libraries
W4. Microsoft Office and Outlook Express
W5. Windows Configuration Weaknesses
Top Vulnerabilities in Cross-Platform Applications
C1. Backup Software
C2. Anti-virus Software
C3. PHP-based Applications
C4. Database Software
C5. File Sharing Applications
C6. DNS Software
C7. Media Players
C8. Instant Messaging Applications
C9. Mozilla and Firefox Browsers
C10. Other Cross-platform Applications

Other lists - II
Top Vulnerabilities in UNIX Systems
U1. UNIX Configuration Weaknesses
U2. Mac OS X
Top Vulnerabilities in Networking Products
N1. Cisco IOS and non-IOS Products
N2. Juniper, CheckPoint and Symantec Products
N3. Cisco Devices Configuration Weaknesses

Hippa vulnerabilities
Firewall and System Probing
Network File Systems (NFS) Application
Electronic Mail Attacks
Vendor Default Password Attacks
Spoofing, Sniffing, Fragmentation and Splicing
Social Engineering Attacks
Easy-To-Guess Password
Destructive Computer Viruses
Prefix Scanning (Illegal Modem)
Trojan Horses

Life cycle of a vulnerability in a
penetrate and patch world

State of a vulnerability - 1

1. The vulnerability has been discovered
2. Both the vulnerability and an exploit that

takes advantage of the vulnerability have
been discovered

3. Both the vulnerability and a patch that
removes the vulnerability have been
discovered (a race with 2)

4. The vulnerability, the exploit and the patch
have been discovered

Time for an exploit

State of a vulnerability - 2
 Sometimes a system is attacked even if a

vulnerability is in the last status
 It is well known that sometimes the

owner of a system does not apply a
patch even if it is available

 Asymmetry between the owner and the
software supplier (applying the patch is
the owner responsibility rather than the
supplier one)

Zero day exploit
 An exploit for a vulnerability that has been

discovered but not disclosed to all the
users

 Sometimes those who discover a
vulnerability sell it to those interested in
attacking the system (black market of
vulnerabilities)

 Can we design a system that resists attacks
even when a vulnerability is discovered?

Potential impact of a vulnerability

Potential
impact

 unknown discovered exploit patch apply

If the patch is not applied because of the owner
= organization vulnerability = window of exposure

Zero day?

Potential impact

 In the best case, a patch is available
before an attack is known

 If the owner does not apply the patch,
then any benefit of discovering the
patch before the attack is lost

 It is the application of the patch not its
definition that reduces the danger

Time to develop a patch

Window of exposure

Other buyer …

Number of vulnerability vs quality

 The number of vulnerabilities discovered (= known) in a
module is always lower than existing ones

 This number depends upon
 the availability of the source code
 the number of applications and of people using the

module
 the expected benefit of an attack against the module

 If a module is scarcely used, very few vulnerabilities are
known but this does not imply they do not exist
 The number of disclosed vulnerability cannot be

used to evaluate the quality of the module code

Genetic difference
 A system is more robust if it composes

components from distinct suppliers
 The joint existence of vulnerabilities and

a monopoly in the component supplying
can results in several problems because
all the instances of a component are
affected by the same vulnerabilities

 How much configuration influences
vulnerabilities (??!!)

Defence in depth
 Any system component can be affected by a

vulnerability
 A security expert

 Does not need to know any vulnerability
 Can design a system so that the discovery of a

vulnerability in a component does not make the
whole system useless

 Layered defence or defence in depth = redundancies
and diversities in the controls

 Alternative approach from the application of a
patch

Adopted Approach - I
 A solution that tries to anticipate any vulnerability

in any component has an huge cost
 Hence some vulnerabilities cannot be anticipated
 According to their potential impact we want to

understand which vulnerabilities
– should be accepted
– should be anticipated
– should be patched asap

 Problem: how to classify each vulnerability

Adopted Approach - II
 A vulnerability classification (handling)

depends upon the corresponding risk
 Risk

1) Average impact if the vulnerability is
successfully exploited

2) Risk of a vulnerability = F(Pattsucc, Imp)

 Pattsucc = probability of a successful
attack

 Imp = impact due to a successful
attack

Adopted Approach - III
Pattsucc is a function of several parameters

 Threat agents that
• are interested in implementing the attack
• have the know how and the resources to

implement the attack
 Complexity of the implementation (automated ?)
 Are there other vulnerabilities that can be exploited

to reach the same goal?
 Are these attacks more or less complex?

Probability and impact
 A detailed evaluation of the probability an

attack is attempted and is successful is
extremely complex

– No historical information available
– Quick hardware/software evolution
– Human factor

 Similar problems are faced for the impact
because of loss of new clients, damage to
the reputation etc

Probability - II
 Sometimes both the success probability

and the impact are approximated
 {low, medium, high} or

{low, medium-low, medium …}
 We also need a risk matrix to compute the

risk given the approximated input values

Risk Matrix

Prob
Impact VL L M H VH

VH H H H VH VH

H M H H H H

M L L M M M

L L L L M M

VL VL L M H VH

A critical problem

 Any probability assumes some information about
the past behavior of a system and of attackers

 From this information we can estrapolate the
future behavior under a continuity assumption

 A breakthrough in the technology for the
attacker or the owner can invalidate the
continuity assumption and results in distinct
probabilities

Summing Up
• A risk attitude is defined by two parameters

• Penetrate and patch/Proactive (choose one)
• Conditional/Unconditional (choose one)

• In penetrate and patch
• each vulnerability may be critical, in proactive is

critical if it has not been anticipated
• the number of critical vulnerabilities (there is a risk) is

much higher than in proactive
• If a vulnerability is critical

• conditional sec = assess the risk and remove only if
• there is a non zero risk (Probsucc, Impact)
• if it is cost effective

• unconditional security: remove

Evaluating risk with no data

• Current research is focused on risk
evaluation even if no data is available

• Solutions exist to produce accurate and
realistic data to replace historical one
that, in general, is not available or is
not pubblic

Risk Based Approach
The formalization of the approach we have
described, it includes:

1. Asset analysis
2. Vulnerability Analysis
3. Attack Analysis Risk Assessment
4. Threat Analysis
5. Impact Analysis
6. Risk Evaluation
7. Risk Management = which countermeasures are to
 be adopted

Risk Assess & Management

 The most modern approach to ICT security
 It consider the overall risk for an

organization and it frames the risk due to
ICT system with other risks

 A larger context has to be considered
because ICT security should not be seen as
a technological problem only

Return on investement ROI
 The security analyst should be able to justify the

cost of the countermeasures that are selected to
be implemented (deployed)

 A countermeasure should be adopted only for
those vulnerabilities that enable attacks that
have both/at least one of

– A large success probability
– A large impact
– = they have a large risk

 An interesting debate about both/at least one

Return of investment

• It is the difference between
– The overall risk before the countermeasures
– The overall risk after the adoption of

countermeasures
• The difference arises because decrease the

success probability or the impact of an attack
• The case where a vulnerability is removed or

patched (0 = success probability) is a particular
one

Return of investment=Earning

• It is the difference between the
potential impact and the cost of
countermeasures

• The difference should be at most zero
• An alternative definition consider the

ratio between the ROI and the
countermeasure cost

• The ratio should be larger than 1

Next steps
Asset analysis
Security policy
Vulnerability Analysis
Possible countermeasures
Attack Analysis
Risk Management = countermeasure selection

Next Steps - II
 In principle, the security policy is a

countermeasure
 In practice, it is defined independently of,

and before, risk assessment because it
defines the goals of an organization and the
rules for its ICT resources

 Its satisfaction is an assessment goal
 Without a policy you do not know if you are

secure

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	page59
	page60
	page61
	page58
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122

