
Vulnerability Analysis

Vulnerability
 A defect (bug) in one system component

or in the way the component is used
 By exploiting the bug, a threat agent can

fire an unexpected behavior of the
component

 The behavior allows the agent to violate
the security policy = difference between
bugs and vulnerabilities

Vulnerability vs bug

 A bug may not result in a behavior that
violates the security policy

 A bug that results in such a behavior is
a vulnerability
=
any vulnerability is a bug but not the
other way around

Taxonomies

 Several vulnerability taxonomies have
been defined and may be adopted

 Each taxonomy has a goal (location
discovery, evaluate the effects …)

 Before applying a taxonomy we need to
understand whether such a taxonomy
satisfies with our goals

Location of the vulnerability
 Actions that are executed

 Procedural
 People executing the action

 Organization
 Hardware or software tools

 ICT tools that are used

Some examples

 Action
 A password communicated in an envelope that is not

sealed
 People

 Several administrators for the same machine
 Task assigned to people that are not trained

 Tool
 A password transmitted in clear on a netwok
 No bound controls on a vector index

Taxonomy on tool vulns

A further classification, useful but not very
rigorous
 Specification

 A tool that is more general than required (more
functions, more parameters ...)

 Implementation
 A coding error in the program of the tool

 Structural
 The anomalous behavior arises when several

components are integrated

Examples
 Specification = programming-in-the-large

 A library is used that include more functions than
those that are required

 If someone succeeds in invoking some of the
“useless” functions, anomalous behaviors may
arise

 Code reuse may introduce in a system some
vulns in the code that is reused

Examples
 Implementation =

– Well behaved input
– No control on input parameters
– Data and program confusion = jump into a data

structure = stack /buffer/heap overflow
 These vulnerabilities strongly depend upon the

native control in the language type system and in
the language run time system
= no overflows with strong data types

Examples
 Structural: due to the composition of several

components that are
– Correct in isolation
– Uncorrect when component

 Problems in the TCP/IP stack
 Some components delegate security checks to

other ones, their correctness depends upon
checks in other components

Another classification
 It considers an attack that exploit the

vulnerability
 Who can implement the attack

 Those who own a local account
 Those who can interact with the machine
 …

 What can be achieved by the attack

Searching for vulns
 Any system can be described as the

composition of standard and specialized (not
standard) components

 Most vulns and exploits for standard
components are well known

 The search should focus on
 Not standard components
 Structural vulns due to the composition of standard

components with not standard ones
 Vulns in standard components are the last to be searched

Vulns and vulnerability scanning

 A vulnerability scanner is a tool that returns a set of
vulns for each computer node in a network

 The scanner identifies the OS and the applications
running on the node through a fingerprinting
algorithms

 Then it accesses a database that maps each OS and
application into a set of of pubblic vulns

 Vulnerabity scanning is a proper subset of a
vulnerability analysis, the easiest one

Fingerprint

• The main mechanism to identify the OS and the
application is the transmission of IP packets
that violates the specifications

• All the applications and the OS reply in a
standard way to a standard packet

• Each OS and application has its own reaction to
a wrong packet that violates the TCP/IP
specification

• Several packets may be required to solve any
ambiguity among distinct OSes/Components

Fingerprint and mapping

• The applications are discovered by analyzing
the open ports in the node

• After discovering the OS and the applications
each of them is mapped into a set of
vulnerabilities

• The mapping is implemented by accessing
pubblic databases that store any vulnerabilities
of the OS or of any application

False and true positive

• The scanner will signal a vulnerability even
if the component has been patched

• This is what is called a false positive
• The only strategy to distinguish false and

true positive is to actually implement an
attack that exploits the vulnerability

• Not always possible on production systems

Not a boolean world

Test
outcome

Y

N

Existence (gold standard)

Y N

True
positive
True
positive

True
Negative

False
negative

False
Positive

The problem arises anytime we can only deduce the existence of
an object from some symptoms and do not have a direct access to it

Not a boolean world

Vulnerabilities in non standard
components
• We consider some tools to search for

vulnerabilities in non standard
component

• Not always we have the source code of
the component available

Tainting analysis

• A static analysis of the source code that
computes the set of program variables
that may receive an input variable and so
be overflown

• It returns a larger set than the actual
one, worst case

• It can be improved by taking into
account the procedure to copy the input
value

Tainting analysis

• if x (y=input)
else (y=z);
w=y

• A tainting analysis
tell us that w may
have been tainted
with an input value

• if x (y=input)
else (y=z);
copy (w, y)

• If copy checks the
length of y
before copying it
into w, tainting
but less danger

Discovering overflow

• There is a vulnerability anytime an input
value is copied into a procedure
parameter without checking its length
(bug)

• It is worth attacking a procedure if it is
executed with a large set of rights
(vulnerability)

• A simple tainting analysis is not sufficient
(false positive)

Fuzzing and fuzzer

• Fuzzing is a technique to search for
vulnerabilities in a module

• The basic idea is to send malformed input
to the module

• If the module crash, then the input is not
controlled and a vulnerability is possible

• A fuzzer is a tool that automate this
process by testing a huge number of
inputs even in parallel

Fuzzer Architecture

If not possible=black box fuzzing

Mutation Based Fuzzing

Little or no knowledge of the structure of the inputs is assumed

Anomalies are added to existing valid inputs

Anomalies may be completely random or follow some heuristics

Requires little or no set up time

Dependent on the inputs being modified

May fail for protocols with checksums, those which depend on challenge
response, etc.

Example ToolS : Taof, GPF, ProxyFuzz, Peach Fuzzer, etc.

Mutation Based Example: PDF Fuzzing

Google .pdf (lots of results)

Crawl the results and download lots of PDFs

Use a mutation fuzzer:

Grab the PDF file

Mutate the file

Send the file to the PDF viewer

Record if it crashed (and the input that crashed it)

Mutation-
based

Super easy to
setup and
automate

Little to no
protocol
knowledge
required

Limited by
initial corpus

May fail for
protocols with
checksums, or
other
complexity

Generation Based Fuzzing

Test cases are generated from some description of the format:
RFC, documentation, etc.

Anomalies are added to each possible spot in the inputs

Knowledge of protocol should give better results than random
fuzzing

Can take significant time to set up

Examples

SPIKE, Sulley, Mu-4000,
Codenomicon,
Peach Fuzzer, etc…

Example Specification for ZIP file

Mutation vs Generation

Mutation-
based

Super easy to
setup and
automate

Little to no
protocol
knowledge
required

Limited by
initial corpus

May fail for
protocols with
checksums, or
other
complexity

Generation-
based

Writing
generator is
labor intesive
for complext
protocols

have to have
spec of
protocol
(frequently
not a problem
for common
ones http,
snmp, etc…)

Completeness Can deal with
complex
checksums
and
dependencies

White box vs. black box fuzzing

• Black box fuzzing: sending the malformed input without any
verification of the code paths traversed

• White box fuzzing: sending the malformed input and verifying
the code paths traversed. Modifying the inputs to attempt to
cover all code paths.

Technique Effort Code coverage Defects Found

black box + mutation 10 min 50% 25%

black box + generation 30 min 80% 50%

white box + mutation 2 hours 80% 50%

white box + generation 2.5 hours 99% 100%

Evolutionary Fuzzing

Attempts to generate inputs based on the response
of the program

Autodafe

Prioritizes test cases based on which inputs have reached dangerous
API functions

Evolutionary Fuzzing System

Generates test cases based on code coverage metrics

This technique is still in the alpha stage :)

Fuzzing and fuzzer: Phases

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

Fuzzing and fuzzer: Phases and tools

• Command line arguments

• Environment variables
– Sharefuzz (www.immunitysec.com)

• Web applications
– WebFuzz

• File formats
– FileFuzz

• Network protocols
– SPIKE (www.immunitysec.com)

• Memory

• COM Objects
– COMRaider

• Inter-Process Communication (IPC)

FileFuzz

FileFuzz – Identify Target

• Application vs. file type
– One file type  multiple targets

• Vendor history

– Past vulnerabilities

• High risk targets

– Default file handlers
• Windows Explorer

• Windows Registry

– Commonly traded file types
• Media files

• Office documents

• Configuration files

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

FileFuzz – Identify Inputs
• Proprietary vs. open formats

– Vendor documents

– Wotsit.org

– Google

• Binary files
– e.g. images, video, audio, office

documents, etc.
– Headers vs. data

• Text files
– e.g. *.ini, *.inf, *.xml
– Name/value pairs

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

FileFuzz – Generate Fuzzed Data

• Binary files
– Breadth (All or Range)

• Identify potential weaknesses
 FF FF FF FF 00 00 DB FE 0B 00 C5 00 00 01 E8 03 ;

ÿÿÿÿ..Ûþ..Å...è.

 D7 FF FF FF FF 00 DB FE 0B 00 C5 00 00 01 E8 03 ;
×ÿÿÿÿ.Ûþ..Å...è.

 D7 CD FF FF FF FF DB FE 0B 00 C5 00 00 01 E8 03 ;
×ÍÿÿÿÿÛþ..Å...è.

– Depth
• Determine level of control/influence
D7 CD FD 9A 00 00 DB FE 0B 00 C5 00 00 01 E8 03 ; ×Íýš..Ûþ..Å...è.

D7 CD FE 9A 00 00 DB FE 0B 00 C5 00 00 01 E8 03 ; ×Íþš..Ûþ..Å...è.

D7 CD FF 9A 00 00 DB FE 0B 00 C5 00 00 01 E8 03 ; ×Íÿš..Ûþ..Å...è.

• Text Files
– name = value

file_size = 10
file_size = AAAAA
file_size = AAAAAAAAAA

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

FileFuzz – Execute Fuzzed Data

• Command line arguments
– Windows explorer

• Tools…Folder Options…File
Types

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

FileFuzz – Monitor for Exceptions

• Visual
– Error messages
– Blue screen

• Event logs
– System logs
– Application logs

• Debuggers

• Return codes

• Debugging API

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

• Execute
– Automated and repeated

• Monitor
– Library - libdasm
– Capture

• Memory location
• Registry values
• Exception type

• Kill
– Set timeout

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

FileFuzz – Monitor for Exceptions

FileFuzz – Determine Exploitability

• Skills = Disassembly + Debugging

• Vulnerability types
– Stack overflows

– Heap overflows

– Integer handling
• Overflows

• Signedness

– DoS
• Out of bounds reads

• Infinite loops

• NULL pointer dereferences

– Logic errors
• Windows WMF vulnerability (MS06-001)

– Format strings

– Race conditions

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

WebFuzz

WebFuzz – Identify Target

Server vs. Application
– Targeting applications can

uncover server vulnerabilities

Vendor history
– Past vulnerabilities

High risk targets
– Popular applications
– External applications

• Wikis
• Web mail
• Discussion boards
• Blogs

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

WebFuzz – Identify Inputs
Potential input vectors

– Method
– Request-URI
– Protocol
– Headers
– Cookies
– Post data

Reconnaissance
– Web forms
– Authentication
– Hidden fields
– Client side scripting

Manual Tools
– Proxies
– LiveHTTPHeaders

Automated Tools
– Spiders

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

WebFuzz – Generate Fuzzed Data
Intelligent fuzzing

– Start with legitimate web request
– Build template to mutate requests

Request format

Fuzz Template

Identify target

Identify inputs

Generate fuzzed
data

Execute fuzzed
data

Monitor for
exceptions

Determine
exploitability

[Method] [Request-URI] HTTP/[Major Version].[Minor Version]

[HTTP Headers]

[Post Data]

[Methods] /[Traversal]/page.html?x=[SQL]&y=[XSS] HTTP/1.1

Accept: */*

Accept-Language: en-us

Pragma: no-cache

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1;
SV1; InfoPath.1)

Host: [Overflow]

Proxy-Connection: Keep-Alive

WebFuzz – Execute Fuzzed Data

Fuzz classes
– Directory traversal
– Format strings
– Overflow
– SQL Injection
– XSS Injection

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

WebFuzz – Monitor for Exceptions

Execute
– Automated and repeated

Monitor
– HTML response

• Error messages

– Raw response
• User input

– Status codes

Kill
– Set timeout

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

WebFuzz – Determine Exploitability
Skills

– HTTP
– HTML
– Client side scripting
– SQL

Vulnerability types

– Denial of service
– Cross site scripting (XSS)
– SQL injection
– Directory traversal/Weak access control
– Weak authentication
– Weak session management (cookies)
– Buffer overflow
– Improperly supported HTTP methods
– Remote Command Execution
– Remote Code Injection
– Vulnerable Libraries
– HTTP Request Splitting
– Format Strings

Identify target

Identify inputs

Generate fuzzed data

Execute fuzzed data

Monitor for exceptions

Determine exploitability

Lessons about Fuzzing

• Protocol knowledge is helpful

• Generational beats random, better specification make better
fuzzers

• Using more fuzzers is better
• Each one will vary and find different bugs

• The longer you run (typically) the more bugs you’ll find

• Guide the process, fix it when it break or fails to reach where
you need it to go

• Code coverage can serve as a useful guide

Interesting Fuzzing Results

Fuzzing Maturity Model

Fuzzing Maturity Model

• Level 0: Immature

 If no fuzzing has been performed on any attack vector in
a target, the target is at FTMM Level 0. If minimal
fuzzing has been done, but does not meet the Level 1
requirements, then the target is still at FTMM Level 0.

• Level 1: Initial

 Level 1 represents an initial exposure to fuzz testing.
Either generational or template fuzzing is used on the
known attack vectors of the target, For each tested
attack vector, fuzzing should be performed for at least 2
hours or 100,000 test cases, whichever comes first.

Fuzzing Maturity Model

• Level 2: Defined

 The starting point for Level 2 is an attack surface analysis of the
target. For each attack vector, a generational fuzzer should be
used for 8 hours or 1 million test cases, whichever comes first.
If a generational fuzzer is unavailable for an attack vector, a
template fuzzer can be used instead, for at least 8 hours or 5
million test cases, whichever comes first.

• Level 3: Managed

 Both generational and template fuzzing must be performed for
each attack vector in Level 3. The generational fuzzer must be
run for 16 hours or 2 million test cases, whichever comes first,
while the template fuzzer must be run for 16 hours or 5 million
test cases. Automated instrumentation must be used.

Fuzzing Maturity Model

• Level 4: Integrated

 Level 4 increases the fuzzing time per fuzzer type to one week.
There is no longer a minimum threshold for test cases—for
each attack vector, a generational fuzzer and a template fuzzer
must both be run until the minimum required time is reached.

• Level 5: Optimized

 Level 5 increases testing time to 30 days for each fuzzing type,
and requires the use of at least two different fuzzers per fuzzing
type. Because fuzzing is an infinite space problem, and because
different fuzzers work differently, using two generational and
two template fuzzers increases the probability of locating
vulnerabilities

Fuzzing and the IOT

• Most IOT systems includes sensors and devices that run
proprietary software

• One day the owner of a factory asked this question:

How can I be sure that the sensors in my factory are reliable,
secure and do not send some information to my competitors?

Fuzzing is one of the few techniques that can be applied

Fuzzing and fuzzer

Non standard vulns in general
 To discover other vulns in a component, we

consider that the vulns in a component defines a
systemic property, the robustness of the
component

 Systemic = it depends upon the component and
the relation among components

 There is a relation among
 Search of vulns
 Robustness

Robustness in ICT

Robustness of a module =
 The module ability of avoiding damage to the

overall system even if its specifications are violated

Violation of the specifications =
Inputs differs from the specified one
Available resources differs ...
… (enumerating badness)

A generalization of fuzzing that considers
inputs only

–

Robustness in biology
 Redundancy
 Modularity
 Feedback

 Monitoring of the behavior of a component
 Tuning of the beheavior of a component
 Confinment of anomalous behavior

 Uncorrect components are confined and replaced
 No single point of failure

If any of these features is not satisfied a vulnerability is
possible

Robustness vs Vulnerability

• Any set of rules that defines how to build a
robust module (best solution, best
approaches) also defines a set of rules to
discover vulnerabilities

• If the rules are violated, then the module is
not robust, then there are some
vulnerabilities

• As we have seen in fuzzing a crash
(violation) signals a potential vulnerability

Robustness
 It differs from performance, efficiency,

ease of use,
 It can be increased only by decreasing

performance, efficiency, ease of use, ...

No Free Lunch Theorem

Robustness
 Let us consider a program that given the

name of a worker returns the worker's salary
 The program is

- correct if the salary is correct for any worker
- high performance if the salary is computed in
 a very short time

 - easy to use if you learn ho to use it in a
short time

- robust ????

Robust what happens if
 Wrong record format in the file
 No worker with the name
 The name is 457 characters
 The allocated memory is smaller than

expected
 No file with the worker names
 No file with info to compute the salary
 No disk

How much robustness
 It is almost impossible to define in advance any

violation (this proves the weakness of
enumerating badness)

 Robustness is not a 0/1 property

 A robustness measure lies in the range 0..1

 1 is an asimptotic values

 Robustness depends upon the number of checks in
the module program to discover violations before
using an input or a resource

How much robust?

Number of checks on the specs

R
ob
us
tn
es
s

1

How much robust?
 The value depends upon the number of checks
 Robustness 1 if the number of checks  
 Assuming specs are correct, usually checks are

useless because the probability the specs are violated
is neglectable

 A compromise is required because the number of
checks reduces the overall performance

 they slow downs the component because they are
implemented through instructions as any other
function

Robustness
 It has been experimentally confirmed

that even trivial checks can improve the
component robustness

 This implies that complex checks should
be adopted only after trivial ones

 Most efficient checks are those related
to data types (inputs etc)

Robustness vs Vulns

 In an ideal system all the modules implement any control
 The ideal system is the asymptote of those that apply more

and more checks
 Any difference between the ideal system and the current

one may be a vulnerability
 If it is a vulnerability depends upon the context and the

cost of the control
 Any set of guidelines to build a system also defines the

potential vulns of the system

Robustness vs Vulns

 Some differences between the ideal system and the
current one cannot be avoided if some controls have
not been adopted to satisfy some performance
requirements

 Other differences may be unrelated to performance
and, hence, controls should be introduced

 The key strategy to discover vulnerabilitie evaluates
the cost of missing control and contrasts it against the
required efficiency and the resulting risk

How much robust?

Number of checks

R
ob
us
tn
es
s

1

Largest number of checks
Vs acceptable performance

Current system

Potential vulns

Asymptotic robustness

Safety vs Security

• Robustness may also be adopted to
evaluate the safety of a system

• Security differs because we are
interested in robustness with respect
to intelligent attacks rather than to
random failures

Safety vs Security

• Safety is proportional to the ratio of anomalous
behaviors vs the overall number of behaviours

• A fault results in an anomalous behavior but, if faults
are not related with one another, then the ratio
shows the cases where faults are not controlled and
confined

• In security, the attacker tries to force the system to
behave in an anomalous way by attacking those
components that influence the behavior of interest

• Safety = random faults / Security = intelligent faults

Safety vs Security

• Both applies the notion of probability and of
risk

• Safety is focused on independent probability
distribution (law of large numbers)

• Security is focused on conditional probability
– There are some vulns, hence
– There are some attackers, hence
– The attacker can implement the attacks ...

Design principles for robustness (Saltzer&Schroder)
or rules to discover vulnerabilities

 Economy of mechanisms
 Fail safe default (Default deny)
 Complete mediation
 Open design
 Separation of privilege
 Least Privilege
 Least common mechanism
 Psychological Acceptability
 Work factor
 Compromise recording

8 or 10 principles?
 After introducing the first 8 principles, S&S

say:
 Analysis of traditional physical security

systems have suggested two further
design principles which, unfortunately,
apply only imperfectly to computer
systems

 The principles applies to both a system and
the mechanisms we introduce to secure the
system

P1-Economy of mechanisms
Keep the design as simple and small as
possible = keep it simple stupid = kiss rule

 Simple implies that less things can go wrong
and when errors occur, they are easier to
find, understand and fix

 Vulns are proportional to the complexity of a
mechanisms and to the code to implement it
 cyclomatic number to find software bug

 Complexity can be achieved by composition
 SO Hardening = remove useless OS

functionalities for applications of interest

P1- Economy of mechanism
 Esokernel and microkernel=

Avoid the implementation of complex
functions in the kernel

 A strong integration between the OS
kernel and the applications not only
violates modularity principles but helps
the spreading of errors (cascade
failures)

P1- Economy of mechanisms
 Simplify the interface
 Complex operations should be implemented by

composing simple operations
 If the operations are rather complex (and hence

powerful), we may be forced to allow a user to
invoke a powerful operation even to implement
simple operations and this increases the user
rights (related to the least privilege principle)

P2-Fail safe default (Default deny)
 Base access decisions on permission rather

than exclusion

 Burden of proof is on the principal
seeking permission

 If the protection system fails, then
legitimate access is denied but this
also denies illegitimate access

 The initial state of the system is
correct

P3-Complete Mediation
 Every access to every object must be checked for

authority

 Usually it is done once, on first access, but if
permissions change later one, unauthorized
accesses may be possible

 Performance gains achieved by caching the result
of an authority check should be examined
skeptically

 Each operation that is not controlled is a potential
vulnerability as it may be invoked without authority

 P3 - Access control matrix

subject

object

rights

Which object
operations the
subject is entitled
to invoke

Usage of acm
is a condition
1. necessary
2. not sufficient
for a secure system

Access control matrix

• Security requires this matrix exists for each
system layer

• Furthermore, there is also a matrix for
each application or virtual machine at the
application layer

• Coherency among these matrices
• A matrix may be so large that it has to be

stored on a secondary storage

Rights in acm[i,j] -I
 DAC security policy = assigned by the owner of

the j-th object
 MAC security policy = they also depends on the

levels of the i-th subject and the j-th object
 In both cases the subject may have to actually

satisfy further constraints before using the rights
that the matrix assignes

Rights in acm[i,j] -II
 The access control or protection matrix is a

highly dynamic data structure
 Dynamicity is due to

 Dynamic creation and distruction of subjects
and objects

 Some security policies dynamically updates the
rights of each subject according to the
operations the considered subject has invoked

Acm: a typical implementation

acm

Security
Kernel

Security policy

subject1

subject2

subject3

subjectn

…

object1

object2

object3

objectm

…

The security kernel or reference monitor
(TCB) mediate the subject attempts to
invoke the operations defined by the objects

Access Control Matrix
 This is a logical data structure for which a large

number of concrete implementations is possible
 Sometime the acm is not implemented by a

matrix
 Problems arises when no all the subjects are

known in advance (network services)
 In this case, a row of the acm is paired with a class of

subjects
 Rules to map each subject into a class have to be

defined

Security Kernel o Reference Monitor

 It belongs to the Trusted Computing Base (TCB)
= its correctness is a necessary condition for the
correct implementation of the security policy

 As small as possible to apply formal techniques
to prove its correctness

 A basis for induction proof of security properties
 In some systems it is stored in a tamper proof

memory to prevent illegal updates

Tamper proof

• A component where any physical attack is
– Prevented or at least
– Detected

• All the components are glued with silicone
• Memory chipes are protected by an electrified grid

that cancel any information as soon as an attack
is attempted

Silicone tamper proof

Silicone

Secure Coprocessor

Complete mediation + fail safe
default

• If both principles are applied
– The system starts in a secure state
– Provided that the security kernel is correct,

only secure transictions are enabled
• Induction proofs on reachable states
• If fail safe default does not hold no induction

basis exists

Complete mediation+ fail safe
default

 Let us assume that to grant a right R on an
operation op the object Ob(op) has to be updated
– In the initial state no subject owns the right of

updating Ob(op)
– No subject can grant this right
– Hence no subject can be granted this right

Access control matrix
 An implicit assumption is that the identity of the

subject is checked before accessing the matrix
  how can we control that a subject that

 claims of being A is A

 Explicit check in the security kernel
 Password
 One-time password
 Challenge response
 Electronic signature

One time password

• A function F with at least two parameters
– S a secret value
– N the number of received requests (defined

in an implicit or explicit way)

• The subject to be authenticated computes
and transmits F(S, N)

• The receiver computes again F(S, N) and
checks

• Synchronization on the value of N

Challenge - response

• Partners agree on a function F and keep
it secret

• F has an input parameter x
• One of the partners sends y (challenge)
• The receiver computes F(y) and sends

back the result
• Also the challenger computes F(y) to

check whether the response is correct

Complete mediation: problems

• High performance in the access to acm is
required due to the huge number of checks

• An implementation where a centralized
data structure is shared among all the
subjects and the objects usually cannot
achieve an acceptable performance

• A distributed solution is to be preferred so
that the overhead is independent of the
number of objects

Solutions - 1
 Capability list= a row based organization of

the matrix
– A capability is a pair

<object address , rigths>
 = a generalization of pointer also know as a

protected pointer
– When invoking an operation, the subject

specifies which of its capability has to be used
for the operation

Acm as capability lists

Security policy

subject1

subject2

subject3

subjectn

…

obect1

object2

object3

objectn

…

The capability is transmitted
to the security kernel that checks
whether it enables the operation
The SK does not manage the ACM

Security
Kernel

List1

List2

List3

Listn

Capability -I
 Invocation opi(objj, par, n) = execute the i-th

operation of the j-th object as enabled by the n-
th capability in the subject list

 If S transmits a capability to another subject S'
then S can delegate S' to invoke an operation S'
is not entitled to

 Capability = ticket for an object
 Delegation increases the number of instances of

a given rights that, in turn, increases the
complexity of right revocation

Capability - II
 Capabilities are generated by the security kernel

that distributes them to the subject
 A subject should only be able

– to store
– to read (use)
– to copy (delegation)
– but not to update a capability

 Only the kernel can update a capability
 The probability of a successful attack against the

security policy increases since rights are stored in
the subject

Capability -III
 In some cases the MMU may implement an

efficient hw/fw support for capabilities at
the OS levels

 The capability list is stored in the MMU
 The MMU

– checks the rights in parallel with the
address translation

– prevent a subject from updating its list

Capability -IV
 Address translation exploits a segment/page

table that store the physical address
 For each segment/page some operations are

defined in a predefined set
 (read, write, fetch)

 Some processors do not check the rights if
the segment/page has already be loaded in
the cache or if the address has already been
traslated from logical to physical

Complete Mediation - 2
 Access control list = a column based

organization of the acm
 One list for each object
 Each list element stores the rights of all

the subjects on a distinct object
 Here the control can be implemented by

the Security Kernel or be delegated to
the object

 A centralized structure for each object

ACM: ACL

Security
Kernel

Security Policy

subject1

subject2

subject3

subjectn

…

object1

object2

object3

objectk

…

the security kernel checks through
the object ACL that the security policy
is satisfied
The checks may also be implemented
by the object

Acl1

Acl2

Acl3

Aclk

Access control list
 A more flexible solution may be achieved through

 Partition of the subjects
 The sequential scanning of the list (no direct access is

possible because the subject does not know its position)
If subject  Set1 then {op1, op2}

 else If subject Set2 then {op3, op4} this is an ACL!
else {op5}

 - the subjects are partitioned into three sets
 - this can grant rights even to subjects not known in

advance. This is not possible for capabilities and it may
be adopted to define acls for web services

HW/FW support for ACL

 Associative memory where the key may be
 Subject  set of rights
 Subject, operation  boolean

 FPGA that implements a function that is a
chain of if statements about
 Sets of users
 Priority among sets

ACL vs Unix files

• Each file is paired with a bit array that
defines

Owner rights
Group owner rights
Other users rights

this is an implementation of the file ACL
• It adopts classes of users due to missing

information on all the system users

ACL and file descriptor

struct stat {

mode_t st_mode; // File type & mode access control list + set uid bit

ino_t st_ino; // i-node number

dev_t st_dev; // device number (file system)

dev_t st_rdev; // device n. for special files

nlink_t st_nlink; // number of links

uit_t st_uid; // user ID of owner

gid_t st_gid; // group ID of owner

off_t st_size; // size in bytes, for reg. files

time_t st_atime; // time of last access

time_t st_mtime; // time of last modif.

time_t st_ctime; // time of last status change

long st_blksize; // best I/O block size

long st_blocks; // number of 512-byte blocks

}

Unix/Linux -I
 ACL are defined in terms of process

identifier
 Real user ID  owner
 Effective user ID
 Saved user ID

in Linux we also have
 File system ID

ACL for message routing

Input lines Output lines

Routing rules to
to map packets
with output lines

ACL for both
input and ouput
lines

ACL for message routing
 Router ACLs are built by composing two cases

IP Range1  route
 packets from these nodes are routed

IP Range2  drop
 packets from these nodes are dropped

 A list is built for each input/output connection to
specifies the IP addressed in the packets that can
cross the connection

 List = order is important
 Ranges because some addresses may be unknown
 This protects the network where messages are routed

ACL & Router
 ACL of input 1

 131.114.*.*  route
 131.4.5.6  route
 131.4.*.*  drop

 Traffic from 131.114.*.* is routed and all the traffic from
131.4.*.* is dropped but that from 131.4.5.6

 ACL of output 1
 131.114.*.*  drop
 131.4.*.*  drop

 No address in 131.4.*.* and in 131.4.*.* can send traffic

to the network connected to output 1

swapping two rules
changes everything

Routing in Linux: iptables
 Input chain: rules for the packets addressed to

the node
 Output chain: rules for the packets produced

by the node
 Forward chain: rules for the packets that cross

the node
 Default allow  transform into a default deny

by creating the list of packets to be routed and
add “drop all” at the end

Routing in Linux
 Drop
 Route
 Return – return to the invoking chain
 Queue – transmit to user space
 Log
 Reject
 Dnat/Snat/Masquerade

Nat table
• Prerouting chain= any input packet
• Postrouting chain = any output packet
• NAT may change the addresses in a

packet
• Applied before INPUT and after

OUTPUT/FORWARD

The overall architecture

Examples
 iptables –A INPUT –p UDP drop

A new rule is inserted in the input chain to
drop any UDP packet

 iptables –A INPUT –p TCP –dport 156 drop
Drop any TCP packet addressed to port 156

 iptables – N newcontrol
Create a new chain where new controls can
be later inserted

An important point

• Anyone is aware and agrees on the
importance of controlling the network
traffic that enters a network

• These controls are critical and they are
mostly implemented in the border router
that connects a network to a pubblic one

• Are there any reasons to check the traffic
leaving a network?

Controlling the output traffic

• The control of output traffic is an important
mechanism to discover successful attacks
against the network (egress filtering)

• If someone is controlling a node X and
stealing information in X we can discover
the illegal connections of X to some
outside network

• These controls can discover Zombies to
implement a DDOS

Egress filtering

• It controls the traffic that is attempting to leave
the network.

• Before an outbound connection is allowed, it has
to pass the filter’s rules

• Advantages
– Discover malware
– Stop contributing to attacks
– Block unwanted services

ACMatrix, subjects and objects

• As the number of subjects and objects
increases, the complexity of

– defining the ac matrix
– checking its correctness
– achieving full mediation

 strongly increases
• Some solutions have been proposed to

simplify the definition of this matrix

Role vs subject
 The notion of role is useful when (subject = a final user)
 Role =

– A professional profile and the corresponding rights
– Strongly depends upon the applicative environment

 Any role is paired with
 A set of users that can be assigned that role
 A set of rights

 Role Based Access Control
 Rights are not assigned to users but to roles
 A user U acquires the rights when a role is assigned to U
 When U leaves the role, it loses the role rights

Role- II
 Rules define when

– a role may be assigned
– it is lost

 The rules may consider previous
operations the users execute

 Any role change may require a password
to identify the user and the role

Role hierarchy - I
 Role may be partially ordered
 A role R1 is larger than a role R2 if R1

includes all the rights of R2

Hierarchy II

Other models (defined in the
following)

Attribute Based Access Control

• Each subject is paired with a set of attributes
• The right of invoking an operation is a function of

the current values of the attributes
• Not supported by standard OSes but only at the

application level (database management systems)
• It could be supported at the OS level provided

that a standard set of attributes for all the user is
defined

ABAC

• Attributes =
– Role
– Security level
– IP address of the user system

• As an example the operation can be executed if
– Role= system manager
– (Role= system manager) AND (ip = local)
– (Level > confidential) AND (ip = local) AND

(8 <local time <16)

Risk Based Access Control

• The risk posed to the system because of
the operation is evaluated

• The evaluation takes into account
attributes of the system, of the user etc to
decide whether the rights should be
granted

• No reasonable implementation

P4-Open Design - I

 The design should not be secret
or
 The security should not depend on the

secrecy of the design or of the
implementation

 Popularly misunderstood to mean that
source code should be public

P4-Open Design - II
 A system peer review is fundamental to discover

vulns in the design and/on in the implementation
 An open source implementation is useful only if

– it results in a peer review
– any peer that discovers a vulnerability

communicates it to the owner
 The open design is useless if

– no peer review (no peer) or
– discovered vulns are not revealed to the

owner
 Strength and weakness of open source

Vulns vs open design

P5 - Separation of privilege

 Where feasible, a protection mechanism that
requires two keys to unlock it is more robust and
flexible than one that allows access to the presenter
of only a single key

or

 Require multiple conditions to grant privilege

 Separation of duty
 Defence in depth

P5 – Separation of privilege

 A complex operation should be decomposed into
simpler operations

 Each simple operation is enabled by a proper
rights

 We can control that the subject owns both
– The right of invoking the complex op
– The right of invoking each simple op

Example

• Op = trasfer some money from account1 to account2
• 5 rights

– Transfer money
– Read account1
– Update account1
– Read account2
– Update account2

• Someone can transfer money but not from account1
or to account2

Defence in depth

• Flat network
– any node can interact with any other one
– a hub that connect all the nodes

• Segmented network
– Network is partitioned into subnetwork
– One hub for each subnetwork
– Hub are connected by routers
– Router ACLs determine which traffic can

enter or leave a network

P6 – Least privilege - I
Every subject should operate using the least set of
privileges necessary to complete its job

or

 A subject should be given only those privileges it
needs to complete its task and only for the time to
complete it

 Owning a useless access right is a vuln
 Rights granted as needed, revoked after used
 The ac matrix is a dynamic data structure
 Rights are assigned and revoked as the computation

evolves

P6 – Least privilege - II
 This principle should be applied even if the security

policy is static as it defines how rights should be
managed rather than how they are assigned to
each subject

 If, in a given time interval, a subject does not need
a right then this right should be revoked and the
acm should be updated to prevent the subject from
using the right in the time interval

 The right is granted at the end of the interval
 Extreme version of can know/need to know

 Least Privilege - III
 Protection Domain Switching = the same subject is

executed but the rights in the proper positions of the
acm are updated

 Protection Domain Switching = update of an acm row
 We can have a PD switching even without a context

switching
 The corresponding overhead is a function of the

implementation level and the adopted
implementation of the acm (capability vs acl)

 Revoking a right is not simple with capabilities

Least Privilege - IV
 An alternative definition of this principle

focuses on minimizing the size of the
protection domains

 As the size of the protection domain
decreases, it also decreases the risk due to
an attack against the considered subject

 If the protection domains are not small
then revoke grants when not needed and
grant when needed

Least Privilege - V
 The system designer has to choose the

proper compromise because a full
application of this principle may result in
low performances
 for each command that is executed,

the acm should to be updated
  the asymptotic system is too slow

Least privilege – In principle

When/how the domain switching is fired
1) Through further, proper instructions
2) Some language constructs also fire the

domain switching

Least Privilege – Common solution

 In the classical solution pairs a domain switching
occurs when
 A procedure (method) is called
 A procedure (method) returns

 A new row is created (call) and destroyed (retun)
rather than updating a row
 When the procedure is invoked, a new row that defines

its rights is created
 The row is destroyed when the procedure returns
 Rights are paired with the instance of a procedure

executed by (or on behalf of) a subject rather than with
the procedure code or with the subject

History of the ac matrix

Row paired
with the new instance
subject=new instance

Procedure
called

Procedure ends

Rows created and destroyed
Rather than updated

Least Privilege – Common solution
 The rights in the new row are a function of

 The private variables of the method (they
depends upon the variable types),

 Input parameters (type of the parameters and
the kind of access to the parameters)

 The structure of the program into classes/
methods defines the strategy to manage the
rights granted to the subiects on the program
data structures

 The programmer can choose the size of each
protection domain

 Domain switching is handled in an automatic way

Example
Op(x, y)

a : ….

 If two subjects (programs) invoke this op, each program
has its own row, we have two local copies of a or one copy
if shared variables are supported (depends upon the type
of a)

 Each row enables the program to access its own
parameters and private (non shared) local variables

 If a static acm is adopted, the management of rights is
rather more complex and access of a program to the
parameters of the other program is simplified

Least Privilege – Common solution
 The rights in the new row are a function of

 The private variables of the method (they
depends upon the variable types),

 Input parameters (type of the parameters and
the kind of access to the parameters)

 The structure of the program into classes/
methods defines the strategy to manage the
rights granted to the subiects on the program
data structures

 The programmer can choose the size of each
protection domain

 Domain switching is handled in an automatic way

Least Privilege - Amplification
 It may be useful if the set of rights of the invoked

procedure differs from that of the invoker
 An example is a procedure in the run time

support of an object oriented language that
needs to know an object implementation

 Rights are amplified: provided that some rights
are owned, other may be granted

 Amplification is misleading because we are
interested in granting a distinct set of rights
rather than a larger set

Least privilege vs objects
 The least privilege principle assumes an object

decomposition that is fully coherent with an object
oriented methodology

 A simple object defines a small protection domain
(a few variables) that can be simply managed

 Even if a simple object is successfully attacked, the
impact of this attack is low impact and the attack
can be easily detected

 Sharing among objects should always be
minimized

Least privilege – message passing

 In a message passing environment, subjects are
processes/threads interacting through ports or
channels

 To satisfy the principle
 Distinct ports implement distinct operations,
 Ports can be opened/closed (created/destroyed) for a

set of users
 If an interaction is legal, then the corresponding port is

open/created
 The port is closed/destroyed as soon as the interaction

is no longer possible

Least privilege – message passing

 Closed port  (open port + mechanism to
discard messages)
 The overhead to discard messages is much

lower if the port is closed or if does not exist
 Messages can be discarded as they are

routed
 If discarding is too much expensive, the

subject can do nothing because it is
always busy to discard messages

(Denial of Service)

Least Privilege – Unix - I
 OS like Unix violates this principle because root

owns any right (the target of any attack)
 This strongly simplifies attacks, any procedure

executed by root is a target, 2 steps escalations
 Management countermeasures such as having

distinct administrators for a system
 Further technological countermeasures

– recording (logging) any operation root
invokes (where???)

– 2F authentication

Least Privilege – Recording
 A log is a read + append only file
 This may be guaranteed

– In a physical way = print the file
– Logical way = hash chain

 Blockchain
– Replicated data structure
– Each block includes

• Hash of the records in the block
• Hash of the previous and next block
• Voting or proof of work

Least Privilege – Unix - II
 Chroot constrains the access to the file

system by defining a new root
 Jail (BSD) makes it possible to constrain

other operation such as network
connection

 These are implementation of sandbox =
a minimal environment for untrusted
application

Sandbox

• Definitely a bad idea
• Any sandbox has been violated

– Chrome browser from Oct. 2008 more than 40
sandbox related vulnerabilities out of 1523 total

• When the subject escapes the sandbox, no other
countermeasure exist

• Two distinct problems
– Discover the sandbox
– Escape the sandbox

• Current implementation=virtual machine

 Privileged Access Management

• They help secure, control, manage and monitor
privileged access to critical assets.

• They take the credentials of privileged accounts – i.e.
admin – and put them inside a secure repository (a vault)
 isolating the use of privileged accounts to reduce the risk
of those credentials being stolen.

• System administrators need to go through the PAM
system to access their credentials, at which point they
are authenticated and their access is logged.

• When a credential is checked back in, it is reset to
ensure administrators have to go through the PAM
system next time they want to use the credential.

P7- Least common mechanism

Minimize the amount of mechanisms common
to more than one user and depended on by
all users

 Mechanisms should not be shared
– Information can flow along shared channels
– Covert channels

 Isolation
– Virtual machines
– Host and Network Segmentation

P7- Least common mechanism

 A powerful mechanism, if useful, should be
decomposed into simpler ones

 If just one mechanism is used to implement
several operations
 If several subjects are granted the rights of invoking

the mechanism they are also granted all the rights
 This hides the fact that there are several distinct

operations and several distinct rights
 The least privilege cannot be satisfied

P7 – Least common mechanism
 By decomposing operations into simpler ones we

can better satisfy separation of privilege and least
privilege

 Simpler operations makes it possible to assign to
each subject only the rights it needs and it is
entitled to

 Notice all S&S principles dictate some design rules
if a design cannot satisfy a rule this points out
some weaknesses in the final system

P8 - Psychological Acceptability

The human interface should be designed for ease of
use so that users routinely and automatically accept
the protection mechanisms correctly

or
Do not adopt policies users will surely violate

 Security mechanisms should not increase the
complexity of accessing resource

– Hide complexity introduced by security mechanisms
– Ease of installation, configuration, use

– Human factors critical here

Last two principles

• Recall they have been introduced
because even if the other are satisfied a
vulnerability is possible

• They are useful if some attacks are
successful in spite of the adoption of the
previous principles

• Anticipate the presence of vulnerabilities
and possible failures

P9 – Work factor
Compare the cost of circumventing the mechanism with
the resources of a potential attacker

 The probability of a successful attack increases with the
resources the attacker can access

 The cost of circumventing a mechanism is the attacker
work factor

 A mechanism is better than another if it can be defeated
only through a larger amount of work

 Several mechanisms can be defeated only by indirect
strategies, such as waiting for an hardware failure

 Reliable work estimates are very complex anytime several
attacks (attack chain) are required to violate a system

P9 – Work factor

• Most attacks require a privilege escalation
• The number of attacks in these escalations

and their attributes determine the amount of
work of an attacker

• Attributes
– Success probability
– Automated or not
– Wait for some external condition

P10 – Compromise recording

Mechanisms that reliably record a compromise of
information may replace more elaborate ones
that completely prevent loss

 If they produce a tamperproof record that is
reported to the owner, they support the discover
of unauthorized use.

 In computer systems it is difficult to guarantee
discovery after the system has been attacked.

 Logical damage (and internally stored records of
tampering) can be undone by a clever attacker

P10 – Compromise recording

 Useful to collect information about attacks,
goals and threat

 Any collected information can be used to
evaluate the robustness that a system may
offer as well as to improve the accuracy of
the various analysis in a risk assessment

Compromise recording
 A log file that records, at least, any of

 Login attempt
 Failed login
 Access to critical resources

 Protection of log file
 write once memory (e.g. paper)
 insert a sequence number to discover log manipulation
 insertion in a record of a value that is a function of all

the previous records (hash pointer)
 Forensics = the file should be structured so that it

can be used to prosecute the attacker and as a legal
source of evidence in an investigation

Logging policies
What happen when a file is full?

 Throw away – all the data are
destroyed

 Reset – rotation within a file
 Rotate – rotation among several files
 Compress and archive – stored in a low

cost memory (there are some laws that
require that some data are preserved)

Throwing away log files
 The worst solution

 The files are a source of evidence and of
information about security

 They may also be useful for safety
 Even if the law entitles us to destroy the logs

shortly after they are collected, it is better to
preserve them for some months
 This is the interval of time that is required

to discover any intrusion

Rotating log files
 N distinct files

 logfile.1 , logfile.2, … logfile.n

 Each day a distinct file is used

Compress and archive

 Better solution that takes into account
 Forensics investigation
 Commercial problems with clients,

suppliers
 Log are copied onto low cost,

removable memory devices

Syslog
 A logging system to store information

produced by the kernel and by system
utilities

 It enables a classification of log
messages according to the source and
the critical level of the event

 Messages can be addressed to several
destinations

Syslog: 3 elements
 Syslogd /etc/syslog.conf

 A demon that implement the logging
 It is programmed through a configuration file

 openlog, syslog, closelog
 Procedures to produce event to be logged

 logger
 User command to produce a log

Syslog-aware programs

Entries in the file are produced using
 the functions in the syslog library

 /dev/log

syslogd /etc/syslog.conf

demon
reads Configuration info

Demon routes info to

Log
files

User
terminal

Other machines

Syslog

 Syslogd: configuration
 Configuration info in /etc/syslog.conf
 A text file

 White lines and those beginning with # are
ignored

 Selector <TAB> action
 mail.info /var/log/maillog

Selector
 Identifies

 The source – the program (‘facility’) that is
transmitting the message

 The message severity level
 Sintax

 facility.level
 facility names and severity levels have to

be selected in a predefined set

Facility names
Facility Used by

kern kernel
user user process, default
mail mail system
daemon System daemons
auth Security and authorization

related commands
lpr printer spooling system
news Usenet news system

Facility names
Facility Used by

uucp UUCP
cron cron daemon
mark Timestamps produced with a fixed

frequency
local0-7 local message
syslog syslog internal messages
authpriv Private or system messages
ftp ftp daemon, ftpd
* further facilities

Severity level

Level That means approx.
emerg (panic) Panic situation
alert Urgent situation
crit Critical condition
err other errors
warning warning
notice worth an analysis
info info
debug debugging info

Selector
 Several facilities separated by ‘,’

 daemon,auth,mail.level action
 The composition of several selectors by ‘;’

 daemon.level1; mail.level2 action
 The OR composition of selectors is expressed

through ‘|’ –un a message matches if it
matches at least one selector.

 ‘*’ or ‘none’, (all or none) can be used

 The level defines the lowest level of a logged
message
 mail.warning, matches any message from the mail

system with a level that is, at least, warning
 ‘none’ is used to neglect some facilities .

 *.level1;mail.none action
 Any facility, a level not smaller than level1 but neglect the mail

facility

Selector

Action: message handling

Action That means
filename Append the message to a local file
@hostname send the message to hostname
@ipaddress send the message to the node with the

specified IP address
user1, user2,… write the message on the screen of any

of these users if the user is logged
* write the message on any screen

syslog

Program Facility Levels Description
amd auth err-info NFS automounter
date auth notice Display and set date
ftpd daemon err-debug ftp daemon
gated daemon alert-info Routing daemon
gopher daemon err Internet info server
halt/reboot auth crit Shutdown programs
login/rlogind auth crit-info Login programs
lpd lpr err-info BSD line printer daemon

syslog

Program Facility Levels Description
named daemon err-info Name sever (DNS)
passwd auth err Password setting

 programs
sendmail mail debug-alert Mail transport system
rwho daemon err-notice remote who daemon
su auth crit, notice substitute UID prog.
sudo local2 notice, alert Limited su program
syslogd syslog, mark err-info internet errors,

timestamps

syslog
 openlog (ident, logopt, facility);

 Messages are logged as specified by logopt
 They all begin with ident

 Syslog (priority, message, parameters…);
 message is sent to syslog, that logs it

according to priority level
 close ();

Logopt
 LOG_CONS

Write directly to system console if there is an error while sending to system
logger.

 LOG_NDELAY
Open the connection immediately (normally, the connection is opened when the
first message is logged).

 LOG_NOWAIT
Don't wait for child processes that may have been created while logging the
message.

 LOG_ODELAY
The converse of LOG_NDELAY; opening of the connection is delayed until
syslog() is called. (This is the default, and need not be specified.)

 LOG_PERROR
(Not in POSIX.1-2001.) Print to stderr as well.

 LOG_PID
Include PID with each message.

Blockchain vs Log

• By storing the information on a
blockchain rather than in a file we
increase the complexity of an attack
against the log

• The mechanisms that protect the
blockchain simplify the usage of its
information in a forensics investigation
and in a legal one

Security vs ICT security

 All the principles previously discussed
do not fully characterize ICT security

 The two peculiar features of ICT
security are

– Automatic attack
– The virtual machine hierarchy

Virtual machine hierarchy
 Any ICT system is a hierarchy of virtual

machines
 Each virtual machine

 Defines a set of mechanisms = a programming
language

 The defined mechanism abstracts and hides those
of the underlying machine

 Any machine can be a standard one, with all the
consequent implications on vulns

Why ICT security is difficult?
 Vulns may be discovered in the specs and in the

implementation of a virtual machine VM
 Vulns cannot be abstracted because a vulnerability

in VM results in attacks against any machine of the
stack that runs on top of VM
 a vuln in the hardware architecture makes it
 possible to attack any VM running on it

  a vuln in the OS makes it possible to attack
any application it supports

Going down
 A trend in attack is attacking low level virtual

machine
 By controlling a low level of the hierarchy any

higher level can be attacked
 An interesting attack is the one that inserts a

further virtual machine in the hierarchy
 Difficult to be detected
 High impact from a security perspective

Blue Pill Attack

VMi

VMi-1

VMi

VMi-1

New
Virtual
Machine

Blue Pill Attack

The new machine can
– return fake information about the system

states to upper layer virtual machines
– transmit to the underlying machines

commands that differ from those received
by higher VMs

– Machine in the middle, a generalization of
man in the middle

– A first example in the next slides

Hardware vulnerabilities last
news (13th of March, 2018)

 CTS has been researching the security of AMD’s latest Zen processors
for the past six months and has made concerning discoveries:

1. The AMD Secure Processor, the gatekeeper responsible for the
security of AMD processors, contains critical vulnerabilities. This
integral part of most of products, including workstations and
servers, is currently shipped with multiple vulnerabilities that could
allow attackers to permanently install malicious code inside the
Secure Processor itself. These vulnerabilities could expose
customers to industrial espionage that is virtually undetectable by
most security solutions.

2. A set of security vulnerabilities in the Secure Processor could allow
attackers to steal network credentials – even on systems guarded by
Microsoft’s latest Credential Guard technology. This could allow attackers
to spread through otherwise secure and up-to-date corporate networks

Hardware vulnerabilities last
news (13th of March, 2018)

3. Secure Encrypted Virtualization, a key security feature that AMD
advertises as one of its main offerings to cloud providers could be
defeated as soon as attackers obtain malicious code execution on the
EPYC Secure Processor.

4. The Ryzen chipset, a core system component that AMD outsourced
to a Taiwanese chip manufacturer, ASMedia, is currently being shipped
with exploitable manufacturer backdoors inside.These backdoors could
allow attackers to inject malicious code into the chip. The chipset is a
central component on the motherboard, responsible for linking the
Ryzen processor with hardware devic such as WiFi and network cards,
making it an ideal target for attackers.

Hardware vulnerabilities last
news (13th of March, 2018)

Hardware vulnerabilities last
news (13th of March, 2018)

Industrial Control Systems

 Run automated processes on factory floors, power and
chemical plants, oil refineries, etc.

 Specialized assembly code on PLCs (Programmable Logic
Controllers)

• PLCs are usually programmed from Windows

 Not connected to the Internet (“air gap”)

Industrial Control Systems

 PLC sits inbetween the control network and the actual
devices

 Programmed to control the devices

Control network
Windows

PLC network
Devices

Commands

Status

 Two strikingly different attack vectors

 Overpressure Attack

• Increase centrifuge rotor stress

• Significantly stronger

• More stealthy

• Less documented in literature

 Rotor Speed Attack

• Increase/descrease rotor velocity

• Overpressure centrifuge is dormant in this attack

• Independent from previous attack

• Less concern about detection

Stuxnet Attack Vector

 One of the side effect of the attack was the update of a library

 Every time the operator checks the pressure and the speed of the rotor
the library returns the correct values it has copied before starting the
attack

 In this way the operator has no mechanism to discover the ongoing
attack

 The transmission of erroneous commands continues till the rotors are
completely crashed (their central axes becomes elliptical)

Not only the Attack Vector

In the middle

 Malicious library

 Unreliable interactions

Control network
Windows

PLC network
Devices

Commands

Status

Malicious lib

Hierarchy and robustness - I
 Robustness at any level

 Each VM should include the checks on the subjects and the objects of
the corresponding level

 The distribution of checks at the various VMs is the simplest way to
minimize the overall overhead

 This also guarantees that the checks of a VM cannot be violated by
working at a lover level

If this strategy is not applied then either
 A VM does not execute any checks

or
 The checks of a VM are delegated to another one but this increases

the overall complexity
 Redundancy = checks are repeated in distinct VMs

Example - Capability
 VM(L), the machine at level L adopts a capability

based solution to manage the rights of a subject
 VM(L-1), the underlying machine at level L-1

 Implements the subjects and the objects of VM(L)
 Manages some further objects that implement the

capabilities of VM(L)
 The acm of VM(L-1) should guarantee that the

subjects of VM(L) cannot manipulate their
capabilities

Capability

Subject

program1 data1

program2 data2

program3 data3

programn datan

…

object1

object2

object3

objectn

…

Security
Kernel

Lc1

Lc2

Lc3

Lcn

The implementation of a subject

Hierarchy and robustness - II
 Security policy and mechanism modularity in a hierarchy of

VMs:
 any VM defines a set of mechanisms that may be freely composed

by the user of the VM to implement a security policy


 Each VM exploits some assumptions on the security of these
mechanisms that has to be guaranteed by at least one of the
underlying VMs

 Example: to prevent the manipulation of a capability we can apply
 Encryption
 Protection of a memory segment
 Protection of a data structure
 ….

 A distributed implementation of the TCB by several VMs

Hierarchy and robustness - III
 The robustness of a VM is a function of the robustness

of the underlying VMs
 Even functionally equivalent machines have a very

different robustness because of
 The implementation of the machine
 The implementation of the underlying machines

Robustness does not agree with abstraction 
Robustness can be evaluated only in terms of the
implementation

A common problem: example
 A memory area, in some memory of VMi is

shared among several applications by distinct
users of a VMi+k

 The applications that share the area may be
not know in advance because they depend
upon the users that are sharing VMi

 An application that can access an area can
read in it some values left by another
application or by another user

 This shows why cloud security is a big
problem

Solution
 Any memory area that is either

 released by an application or
 garbage collected

has to be reinitizialed to avoid any illegal
information flow between two applications

 (covert channel)
 This holds for any memory area

 cache,
 main memory,
 secondary storage

Solution
 In a system with severe security requirements, all

the resources are partitioned into pools each with
a distinct level

 The resource in a pool with a given level are
shared only among applications run by users with
the same security level

 Sharing is constrained to minimize unanticipated
flow of information among applications with
distinct security levels

A general principle …
 The previous example shows that sharing should

be avoided or at least minimized to improve the
security of a system

 A secure system
– is as simple as possible
– avoids sharing as much as possible

 This explains why a secure system is more
expensive of a less secure one

Examples
 Memory segments are partitioned into subsets,

each paired with a security level
 Traffic segregation = network channels are

partitioned into subset, security critical
information is transmitted only along some lines
 Switchs rather than hubs
 Partitioning of virtual lines created by tagging or by

encryption
 Distinct transmission frequency but low security

 It is important to understand that any system
manages at least two levels of information

Two security levels
 User information
 Information to implement the security

policy
 Distinct mechanisms have to be applied

to protect the two kinds of information

Example
 A sniffer on a communication line reads any

information transmitted along the line
 If a user information is transmitted the sniffer

can read the information
 If a user password is transmitted and read by

the sniffer then all the user information is lost

Sharing and Cloud

• Cloud archictecure result in large saving is
that they are based upon pools of
resources shared among user

• Elasticity = when a resource is not used it
can be granted to any user that requires it

• What happens when a resource passes
from one user to another one?

Cloud Management

• Intelligent Platform Management Interface (IPMI) is a set of
computer interface specifications for an autonomous computer
subsystem that provides management and monitoring capabilities
independently of the host system's CPU, firmware (BIOS or UEFI)
and operating system.

• IPMI defines a set of interfaces used by system administrators for
out-of-band management of computer systems and monitoring of
their operation.

• IPMI provides a way to manage a computer that may be powered
off or otherwise unresponsive by using a network connection to the
hardware rather than to an operating system or login shell.
Another use case may be installing a custom operating system
remotely.

Cloud Management

Cloud Management

Cloud and Motherboard

• Chinese government agents sneaked spy chips into Super Micro servers
used by Amazon, Apple, the US governmen giving Beijing's snoops access
to highly sensitive data, according to a Bloomberg report today.

• The story had a huge impact on the markets: Super Micro, saw its share
price drop by nearly 50 per cent; Apple's share price dropped by just
under two per cent, and Amazon's dropped by more than two per cent.

• According to the report, tiny microchips that were made to look like
signal conditioning couplers were added to Super Micro data center
server motherboards manufactured by sub-contractors based in China.

• Those spy chips contained enough memory and processing power to
effectively backdoor the host systems so that outside agents could, say,
meddle with the servers and exfiltrate information.

Cloud and Motherboard
• The spy chip could have been placed electrically between the baseboard

management controller (BMC) and its SPI flash or serial EEPROM storage
containing the BMC's firmware. Thus, when the BMC fetched and
executed its code from this memory, the spy chip would intercept the
signals and modify the bitstream to inject malicious code into the BMC
processor, allowing its masters to control the BMC

• The BMC is a crucial component on a server motherboard. It allows
administrators to remotely monitor and repair machines, typically over a
network, without having to find the box in a data center, physically pull it
out of the rack, fix it, and re-rack it.

• The BMC and its firmware can be told to power-cycle the server, reinstall
or modify the host operating system, mount additional storage containing
malicious code and data, access a virtual keyboard and terminal
connected to the computer, and so on. If you can reach the BMC and its
software, you have total control over the box.

 The chip …

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Mutation Based Fuzzing
	Mutation Based Example: PDF Fuzzing
	Generation Based Fuzzing
	Example Specification for ZIP file
	Mutation vs Generation
	White box vs. black box fuzzing
	Evolutionary Fuzzing
	Diapositiva 32
	Diapositiva 33
	FileFuzz
	FileFuzz – Identify Target
	FileFuzz – Identify Inputs
	FileFuzz – Generate Fuzzed Data
	FileFuzz – Execute Fuzzed Data
	FileFuzz – Monitor for Exceptions
	Diapositiva 40
	FileFuzz – Determine Exploitability
	WebFuzz
	WebFuzz – Identify Target
	WebFuzz – Identify Inputs
	WebFuzz – Generate Fuzzed Data
	WebFuzz – Execute Fuzzed Data
	WebFuzz – Monitor for Exceptions
	WebFuzz – Determine Exploitability
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Lessons about Fuzzing
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127
	Diapositiva 128
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131
	Diapositiva 132
	Diapositiva 133
	Diapositiva 134
	Diapositiva 135
	Diapositiva 136
	Diapositiva 137
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140
	Diapositiva 141
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148
	Diapositiva 149
	Diapositiva 150
	Diapositiva 151
	Diapositiva 152
	Diapositiva 153
	Diapositiva 154
	Diapositiva 155
	Diapositiva 156
	Diapositiva 157
	Diapositiva 158
	Diapositiva 159
	Diapositiva 160
	Diapositiva 161
	Diapositiva 162
	Diapositiva 163
	Diapositiva 164
	Diapositiva 165
	Diapositiva 166
	Diapositiva 167
	Diapositiva 168
	Diapositiva 169
	Diapositiva 170
	Diapositiva 171
	Diapositiva 172
	Diapositiva 173
	Diapositiva 174
	Diapositiva 175
	Diapositiva 176
	Diapositiva 177
	Diapositiva 178
	Diapositiva 179
	Diapositiva 180
	Diapositiva 181
	Diapositiva 182
	Diapositiva 183
	Diapositiva 184
	Diapositiva 185
	Diapositiva 186
	Diapositiva 187
	Diapositiva 188
	Diapositiva 189
	Diapositiva 190
	Diapositiva 191
	Diapositiva 192
	Diapositiva 193
	Diapositiva 194
	Diapositiva 195
	Diapositiva 196
	Diapositiva 197
	Diapositiva 198
	Diapositiva 199
	Diapositiva 200
	Diapositiva 201
	Diapositiva 202
	Diapositiva 203
	Diapositiva 204
	Diapositiva 205
	Diapositiva 206
	Diapositiva 207
	Diapositiva 208
	Diapositiva 209
	Diapositiva 210
	Diapositiva 211
	Diapositiva 212
	Diapositiva 213
	Diapositiva 214
	Diapositiva 215
	Diapositiva 216
	Diapositiva 217
	Diapositiva 218
	Diapositiva 219
	Diapositiva 220

