
Attack analysis

A system model

●The discovery of attacks against a system
requires the definition of a system model that
describes

● System components
● System interconnection structure
● Component vulnerabilities
● Attacks (simple steps)

●The level of description and of detail obviously
depends upon the accuracy we aim to achieve

A system model

●The discovery of attacks against a system
requires the definition of a system model that
describes

● System components
● System interconnection structure
● Component vulnerabilities
● Attacks (simple steps)

●The level of description and of detail obviously
depends upon the accuracy we aim to achieve

Modelling an attack - I
Any attack can be modelled through (at least) six
attributes

1. Precondition

●rights on system objects

● resources

● competences and info

2. Post condition

●rights on system objects

●

3. enabling vulns (component, vulnerabilities)

4. actions to be executed

5. success probability

6. noise

Modelling an attack - II
The attack post condition is the set of rights the
attacker owns if the attack is successful
The postcondition always include the preconditon
(monotone right acquisition)
The actions to be executed include
Human actions

Program execution

Fully automated attack = no human action is required

Noise = events the attack generates and that enable
the detection of the attack

Example -I

●To implement a buffer overflow, one needs
● To invoke a procedure (rights)
● To write a parameter that includes the

program to be executed (know how)
● To know the memory map to determine the

size of the parameter to overflow the stack
(info)

● Fully automated attack
● Success probability = depends on controls in

the attacked system

Example -II

●If the attack is successful, the injected program is
executed as root and it can access any system
resource
●The attack noise is a function of the checks that
the target system executes and that make it
possible to detect the attack
●The checks influence both the success probability
and the noise as they can only discover (log) or
also prevent (type -canary) the attack

Attack taxonomies

●Several alternative taxonomies that are focused on
just one feature/attribute

● Enabling vuln
● The agent that can implement the attack
● The impact produced by the attack
● The target component

●All these properties are important but a risk
assessment may be focused on other properties or
on several of these features

An example of an elementary attack taxonomy

1.Buffer/stack/heap overflow
2.Exchanged information is illegally read (sniffing)
3.Some of the legal messages of a legal user are repeated (replay attack)
4.Interface operations are invoked in an unexpected order (interface attack)
5.Interception and manipulation of information exchanged between two
entities (man-in-the-middle)
6.Information flows are diverted
7.Time-to-use Time-to-check (Race condition)
8.XSS (cross site scripting)
9.Covert channel
10.Impersonating
A user

A machine (IP spoofing, DNS spoofing, Cache poisoning)

A connection (connection stealing/insertion)

Covert Channel

Attack against Bell – La Padula security policy

Cryptographic attacks

 A dedicated taxonomy
a) Brute force attack h) Known-plaintext attack

b) Differential cryptanalysis i) Power analysis

c) Linear cryptanalysis j) Timing attack

d) Meet-in-the-middle attack k) Man-in-the-middle attack

e) Chosen-ciphertext attack

f) Chosen-plaintext attack

g) Ciphertext-only attack

h)

i)

Attacks against the TCB

• bypassing

• tampering

• direct attack (by exploiting vulns in TCB)

• misused

How dangerous is an attack?

The danger of an
attack decreases
as the value
increases

An open framework for communicating characteristics and impacts of IT

vulnerabilities in a context indipendent way

Consists three metric groups: Base, Temporal, and Environmental

 Base metric : constant over time and with user
environments

 Temporal metric : change over time but constant with user
environment

 Environmental metric : unique to user environment

Recently added the
Authorization metrics

Personalization metrics

Common Vulnerability Scoring System

CVSS (Cont’d)

CVSS metric groups

Each metric group has sub-matricies
Each metric group has a score associated with it

Score is in the range 0 to 10

Access Vector

This metric takes into account the proximity
condition to exploit a vulnerability

●Local
●Adjacent Network
●Network

Access Complexity

This metric measures the complexity of the
attack to exploit the vulnerability

●High: Specialized access conditions exist
●Medium: The access conditions are

somewhat specialized
●Low: Specialized access conditions do

not exist

Authentication

This metric measures the number of times an
attacker must authenticate to a target to
exploit a vulnerability

●Multiple: The attacker needs to authenticate
two or more times

●Single: One instance of authentication is
required

●None: No authentication is required

Confidentiality Impact

This metric measures the impact attack on

confidentiality
●None: No Impact
●Partial: There is a considerable

information disclosure
●Complete: There is total information

disclosure
●Similar metrics for the Integrity Impact and
Availability Impact

Base Score

Base Score = Function(Impact, Exploitability)

Impact = 10.41 * (1-(1-ConImp)*(1-IntImp)*(1-
AvailImpact))

Exploitability =
20*AccessV*AccessComp*Authentication

Base Score Example CVE-2002-
0392

●Apache Chunked Encoding Memory Corruption

BASE METRIC EVALUATION
SCORE

Access Vector [Network] (1.00)

Access Complex. [Low] (0.71)

Authentication [None] (0.704)

Availability Impact [Complete] (0.66)

Impact = 6.9

Exploitability = 10.0

BaseScore = (7.8)

Another metrics

●The model assumes that the 5 coordinates are
orthogonal, eg independent
●This maps each attack into a point in a 5
dimension space

● Technology competence
● Info on the target system
● Attack experience
● Probability of opportunity
● Devices

Danger decreases with
the distance from the
origin of the space

A context dependent approach

●It is meaningless to evaluate how dangerous
an attack may be independently of the target
system
●Any evaluation should consider the pair with
the attack and the system
●Let us analyze systems. ...

A pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

Higher levels also have to
face the attacks of the lower
ones

To understand the possible
attacks first of all you have
To classify your system

Economic impact

social impactstate security

A pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

Initially we describe attacks
Against these systems

Elementary vs complex attacks

●An elementary attack is the one previoulsy described and
characterized by the previous elements

●In a complex system a threat cannot achieve one goal (set of
rights) through just one elementary attack

●Elementary attacks have to be composed into a complex one
(attack plan, privilege escalation) to increase the rights of the
attacker till reaching one of the goals of interest

●Intelligent attackers design a plan of action = an attack chain

●The precondition of each attack in the plan has to be included
in the rights the attacker acquires through the previous attacks
in the plan (the union of the postconditions of these attack plus
any initial rights)

Complex Attack

Initial Compromise Establish Foothold Escalate Privileges Internal Recon Complete Mission

Attackers Move Methodically to Gain
Persistent & Ongoing Access to Their Targets

At organizations in the last year, the typical target attack
 went undetected for 273 days.

Move
Laterally

Maintain
Presence

•Custom malware

•Command and control

•3rd party application
exploitation

•Credential theft

•Password cracking

•“Pass-the-hash”

•Critical system recon

•System, active directory & user
enumeration

•Social engineering

•Spear phishing e-mail with
custom malware

•Net use
commands

•Reverse shell
access

•Backdoor variants

•VPN subversion

•Sleeper malware

Complex Attacks - I
Alternative points of view on a complex attack
Program (elementary attack = instruction)
Planning (steps to achieve a given goal)

Fundamental difference = coverage
In planning or programming we are interested in one
program/strategy (optimal or suboptimal) to reach a given
goal (consider one robot moving in a space)
Several attacks can be selected (several robots move
simultaneously)
A risk assessment has to discover all the programs/
strategies an attacker can implement to achieve a given
goal (we have to stop all the robots)

Complex attacks - II

Elementary attacks are composed to increase the
rights of the attackers (privilege escalation)
Elementary attacks can
target the same system = increase the attacker
rights on the system resources
target another system = increase the attacker
rights by exploiting the trust relation among
systems

Complex attack: An example

Some other example

C:\Users\X\CloudMe\didattica\1617\BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

file:///C:/Users/X/CloudMe/didattica/1617/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf

Attack graph

●It shows how a threat can compose elementary attacks
to achieve a given goal

●Node=set of access rights

●It is a function of current vulns and of the goals of the
attackers

●The graph is acyclic because of the monotone right
acquisition process

●It consider the worst case where attacks are successful

●In each node the threat can execute all the attacks that
are possible in the previous states – the executed one +
those granted by the rights granted by the last attack

Evolution of a user state

legal

illegal

State= set of rights

Attack1, c1
Attack3, c2

A goal is achieved
= some resources are controlled

Some states are useful only to reach a final state

The same attack
can laber several
arcs of the graph

Attack2, c3

Attack2, c1

Attack2, c2

System evolution

●We can draw a graph that represents the
evolution of the global system state
●The global system state is the cartesian product
of the states of any attacker (user)
●Cycles are possible in the graph that describes
the system evolution because a threat may
reduce the rights of other ones by implementing
a DOS

State explosion

●There is a huge number of states that strongly
increases the complexity of any analysis
●It is not practical to build this graph and then
analyze it due to state explosion
●Two main reasons for the explosion

● Several attacks in a plan may commute
● Distinct attackers can implement their

attacks
– Sequentially
– In parallel

System architecture

Attack Graph

One goal of one user

Attack Graph

One goal of one user

Monte Carlo Analysis

●The number of paths/links/nodes of the graph can
be strongly reduced by focusing on an attacker
behaviour
●Starting from the attack surface, we discover and
build only the paths an attacker may select by
simulating its behaviour according to its
preferences and priorities
●Multiple executions to handle

● Non determinism in the behaviour
● Handling of attack failures

Monte Carlo Analysis

●The approach is based upon the joint executions of
the system model and the attacker one
●Multiple joint executions build a subset of the
attacker attack graph
●The accuracy of the subset depends upon the
accuracy of

● System model
● Attacker model
● Number of executions = confidence level

Elementary vs complex attacks

●The problem of discovering elementary attacks is
rather different from discovering how the attacks
are to be composed to reach a goal
●The discovery of elementary attacks depends
upon both system vulns and on the components of
the system that is available
●The composition of elementary attacks may be
considered as an instance of a well known
optimization problem = how to reach some nodes
of a graph

Attack surface

●The system attack surface includes any elementary attack that is the
starting points of complex attacks, the initial elementary attacks of a
complex one

●An elementary attack outside the surface can be stopped by
preventing the execution of some attacks in the surface

●The ratio r between the number of attacks in the surface and the
overall number of attacks in attack plans may be seen as an
approximated evaluation on the system security

● r1 there are several ways to compose the attacks into
 plans, so increasing the overall security is complex

and expensive due to the large number of initial
attacks

● r0 by stopping a few attacks in the surface we stop all
the plans

Attack Tree Analysis – I
A top down approach to discover

how a complex attacks can be implemented
How decompose a complex attack into simpler ones
till we reach elementary attacks

The top down decomposition ends when its frontier
include elementary attacks only

Two alternative decompositions
AND = all the attacks are required
OR = just one of the attacks is required

Attack Tree Analysis - II

ATM attack

The ATM is stolen The user is attacked

and

The card is
cloned

Monitor the
user to discover
the PIN

Attack Tree Analysis -III
Thinking of a tree may be misleading because
elementary attacks may be shared among subtrees
How to discover problems shared among subtrees?
A model based on a finite state automata may simplify
the recognition of equivalent states and, hence, of
common problems
States = set of access rights that have been acquired
Automata = attack graph

Attack tree vs graph (automata)

●The attacks in an AND relation in the tree belongs
to the same path of the graph
●An OR nodes implies that several paths can be
defined and do exist in the graph
●A tree represents one or more complex attacks

● Consider the subtree rooted in the root of the
tree

● This subtree includes all the sons of an AND
node and one son of an OR node

● The complex attack composes all the leaves
(elementary attacks) of the subtree

Attack tree vs graph

or

and

graph path

and

graph path

Two complex attacks that are represented as two paths

Attack tree vs graph

and

or

graph path

or

graph path

Nine complex attacks that include one descendant of each or node

Countermeasure

●Any change to a system that decrease the
success probability of an attacker
●Static countermeasure = it changes the
system that is deployed for all its life
●Dynamic countermeasure = it changes the
system only when it is under attack. Requires
some monitoring tool to discover ongoing
attacks

Complex attacks and
countermeasures

●We stop a complex attack by stopping any of its
elementary attacks

●A countermeasure of an elementary attack A stops all the
complex attacks where A appears

●Cut set of an attack graph = a set of arcs (= of elementary
attacks) such that no goal can be reached if they are cut (if
the attacks are stopped)

●A cut set includes at least one elementary attack for each
complex one that enables a threat to reach one goal (you
have to discover all the complex attacks)

●Shared attacks are the key to cost effectiveness

Selecting the countermeasures
Several cut sets may exist, each with a distinct cost
Cost effective solutions stop
the most shared elementary attacks

attacks with cheapest countermeasures

Betweeness = how many paths to a goal shares an
arc that corresponds to the same attack

A pyramid

Mass Attack

Targeted Attack

Critical
Infrastructure

National
Security

We consider now
attacks that can be automated
and implemented against any system

Mass Attack = Automated Attack

Risk of automatic attacks

Original features of ICT security are
Fully automated attacks = fully programmable attacks
Automatic tools to implement attacks (execute the program)

The existence of tools that implement the attacks
Simplify the implementation of attacks
Strongly enlarge the pool of potential attackes

 The risk strongly depends upon the
feasibility of automating an attack

Fully automated attacks
Exploit = the program that exploit the vulnerability to implement

the attack to control some components
 = executed against the instances of a standard

comp.
All the instances of a standard component
Are affected by the same vulns
Can be attacked by the same exploit
Fully automated attack= no further actions, information, abilities
are required besides the ability of running the exploit
In the dangerous evaluation that applies five dimensions, the first
3 are equal to zero and the fifth one is outside the control of the
defender
Currently, several exploit databases are available that store exploit
that can be tested against a system

Fully automated remote attacks
A fully automated attack that can be launched from another node
The attack grants an account on the target node
These attacks are the starting point to write code that
replicates itself on an attacked node
A threat can write a worm using the exploits of these attacks
A worm can sequentially execute any number of exploits

How dangerous is an attack?

The danger of an
attack decreases
as the value
increases

All zero if fully
Automated attack

Fully automated attacks

K
n

o w
 h

o
w

 &
 i n

fo

time

attacker

attack

now

Fully automated attacks
The functions show how really dangerous attacks may
be implemented through tools that are distributed and
accessed through the web
It is more and more critical the window of exposure = the
time interval between
The time an exploit is pubblicly available
The vuln is removed from the system

 even a complex organization has to apply the
patches to remove a vuln in a very short

time

(good point to remember with the next slide)

Patch adoption

Fully automated attacks: an example
Thu Feb 24 09:45:47 HTTP request from 202.109.114.209: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 09:45:54 possible overflow attempt via HTTP from 202.109.114.209 (request line is 65552
bytes long)
Thu Feb 24 09:45:54 HTTP bogus request from 202.109.114.209: SEARCH
/HH
HHH...

Thu Feb 24 15:48:21 possible overflow attempt via HTTP from 81.30.200.55 (request line is 65552 bytes long)
Thu Feb 24 15:48:21 HTTP bogus request from 81.30.200.55: SEARCH
/HH
HHH...
Thu Feb 24 15:48:23 HTTP request from 81.30.200.55: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 15:57:37 possible overflow attempt via HTTP from 218.43.229.149 (request line is 65552 bytes long)
Thu Feb 24 15:57:37 HTTP bogus request from 218.43.229.149: SEARCH
/HH
HHH...
Thu Feb 24 15:57:41 HTTP request from 218.43.229.149: POST /_vti_bin/_vti_aut/fp30reg.dll

Thu Feb 24 16:00:34 HTTP request from 61.54.219.101: GET /default.ida?
XX
XX
XX
%u9090%u685...

Three attacks in two seconds

The ICT zoo (malware)

Virus
Worm
Trojan Horse
Hybrid
Autonomous Hybrid

Most important problem
In the future

Ransomware Attack
Impacts Aluminum Production

https://www.nozominetworks.com/blog/breaking-research-lockergoga-ransomware-impacts-norsk-hydro/
●According to media reports, the malware attack began on the evening
of Monday, March 18th, Oslo time (UTC + 1). On March 19th, the
company’s website was not available and production impacts had been
reported:
●Potlines, which monitor molten aluminum, and need to be kept running
24 hours a day, had been switched to manual mode
●Some factories have been forced to halt production
●Several metal extrusion plants have been closed
●At certain facilities, some computer systems are unavailable, and
printed orders are being fulfilled
●Power plants are functioning normally
●No safety-related incidents have been reported

https://www.nozominetworks.com/blog/breaking-research-lockergoga-ransomware-impacts-norsk-hydro/

Some statistics

Virus
A program that
Hides itself in other program or data
It is transmitted together with such a program or
such data (parasite)
Can be activated at a prefined time
The behaviour is fully dependent upon the
programmer of the virus
Currently USB keys and devices are the main
diffusion mechanisms

Fully automated and mobile attacks
Worms and virus implement automated attacks and can
replicate onto attacked nodes
Worm=a program that after successfully attacking another
node, creates a copy of itself onto this node

Attack vector = the code to attack (infect) other nodes
A payload (send spam, steal/update/modify node info)
Connect to a C&C and download the payload
Domain flux

The worm attacks any node the infected one can reach

Genetic diversity is important but multiple versions of a
worm may exist

Command&Control

●Some nodes under the control of the worm writer

●They can update the worm attack vector and payload

●Domain flux = generation of alternative domains
nodes or aliases for these nodes to increase the
complexity of a shut down (detection
mechanism)

●Botnet= overlay network including the nodes that
have been attacked and controlled by the worm
creator rather than by the legal owner

Sapphire/Slammer worm

376 byte in one UDP packet
It exploits a vuln in the SQL server
An infected node can infect from 100 to 10000 further
node in one second

The number of infected nodes (worm metric doubles
in 8.5 seconds
 100 times faster than previous worms
More than 75.000 infected nodes

Sapphire/Slammer worm …

In 10 minutes it has infected 90% of nodes that may
have been infected =
worm attacks will be successful
Not sure this is a “good” feature
It creates a lot of “noise” that strongly simplifies attack
detection
“Stealth worm” = slow attack, low amount of noise,
difficult detection

Conficker: an hybrid

●Can attack:
●Windows 2000, Windows XP, Windows Vista, Windows
Server 2003, Windows Server 2008, e Windows Server
2008 R2 Beta

●Hybrid as it can exploit: USB device, share and
email
●9 milions system attacked (e.g. English defence
dept, french air army, hospitals) in jan. 2009
●30% of nodes is currently vulnerable
●It can download updates, 5 versions

Conficker vs p2p

●Let us assume that an infected node is attacked
again
●The infected node

● understands that the attacker is a peer (is
infected)

● connects to the attacker and downloads any
update

Conficker

●It implements Domain flux to download the
updates
●Input/output connessions are encrypted
●Payload = information collection + creation of a
botnet
●

An important point

“Whereas a missile comes with a return
address, a computer virus (or worm)
generally does not.”

Deterrence and Dissuasion in Cyberspace,
J.Ney

The general structure of a worm

Generate
random IP
address

Generate
random IP
address

“Probe”
that

address

“Probe”
that

address

Machine
Exists?

Machine
Exists?

Infect the
machine

Infect the
machine

No

Yes Vulnerable
Service?

Vulnerable
Service?

Yes

No Search for more

The program is stored in one
UDP packet

The fundamental program is the local
vs global ratio and how to exploit
available information on infected
nodes

Multiple exploits

Conficker

Domain flux

Version A Version B

Conficker

Generation of IP addresses in an infected nodes

Address generation
Two disjoint subsets
Local (high density) = subnet of the infected node
Global (low density)
Density = the probability that a random address
belonging to the set corresponds to a real node
If the ratio of local vs global addresses is too low the
worm may be detected and removed before spreading, eg
infecting other nodes
If the percentage is too large, then after infecting all
nodes resources are wasted because one node may be
infected several times
Even low changes in the ratio may be very critical, non
linear effects

The influence of the ratio

A detection strategy

●Some proposals aim to detect infected nodes by the
anomalous behavior resulting from the random generation
of addresses

●High rate of failed connections

●Two thresholds can be introduced
● Distance on the scanned hosts
● Frequency of the scanning

●Further features to discover worms
● New host contacted
● Unused addresses used

A theoretical spreading model

●Let us discuss a theoretical model to study the
spreading of a worm
●The model is epidemiological = it has been
defined to evaluate the number of people
infected overtime

● because of a contagious illness
● in a closed population
● fully connected population

A finite state model of individual
to study the spreading

S I R

Model states

•susceptible = Host that may
be infected

•Infected = Infected host

•Recovered = Host that cannot
be infected

Typical transition sequences (red arrows)

•The host runs the software that is
vulnerable (potential).

•The worm has exploited the vuln and
successfully attacked the node (infected).

•The infection is detected and the system
reconfigured (recovered).

A set of diff equations
Classic epidemiology

●[Kermack and McKendrick, 1927]

●Alll the nodes follows the red paths in the automata
(P tlo I, I to R)

s = potentially infected

i = infected

r = recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected
in the case of worms
because the time to spread
is very litte

s = potentially infected

i = infected

r = recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected
in the case of worms
because the time to spread
is very litte

 Kermack and McKendrick model
 is a function of

 The function to generate the IP
addresses

 The number of the system affected
by the vulns

It increase with the virulence
The model assume that a node can infected
any other node =

complete connection and no
defence
 should not be neglected anytime
The spreading is rather slow
There are some automatic components to
detect and remove the infected nodes

Epidemiological threshold

R0= s /

s= percentage of nodes that may be infected

It is the average number of nodes infected by

an infected node

If R0 1 the worm spreads, otherwise it will

be defeated

Solution of the system of diff
equations

No exact solution can be computed
Anytime the initial number of infected may be
neglected (I(0)0) then

Solution = logistic function

Time

Number of
Infected nodes

Epidemic

Slow-Finish

Slow-Start

A worm should be
detected and
removed in the
slow start phase

A worm should be
detected and
removed in the
slow start phase

A model that consider patching
dS(t)/dt = - S(t)I(t) - dP(t)/dt
dR(t)/dt = I(t)
dP(t)/dt = S(t)I(t) patched
dI(t)/dt = + S(t)I(t)
S(t) + I(t) + R(t) + P(t) = N

There are two reasons why a node is no longer susceptible

1.It has been infected
2.It has been patched
3.
The number of patched nodes is proportional to the susceptible and of infected ones

A more complex model

A more complex model - II

Further interesting models

Let suppose that there is a partial connection
among nodes (scale free, small world, …)
Initially some nodes are infected
We would like to know

 How the connection structure influences the
spreading and the parameter R0

How patching (=vaccination) influences the spreading
Alternative vaccination strategies

Several topologies may be be considered to
discover how they influence the spreading

Scale free

●Scale free
● When a connection is created, nodes with a

larger number of connections are preferred
● The rich becomes richer
● There are some network hubs with an

exponential increase in the number of their
connections

●Very robust with respect to random node attacks,
highly fragile with respect to intelligent attacks

Interconnection Topology

RG=random, SF=scale free, 2D= two dimensions lattice,
1D= one dimension lattice 2DR= two dimensions lattice rewired ,
1DR= one dimension rewired

Other interesting values

Average time
to max
infected

Max infection
rate

Number of
infected

Computing a worm b

Alpha

Tau

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine

Code red

Tau = 19 seconds

Alpha = 100

Good approximation

Spreading - I

10 parallel threads and conflicts on nodes to
be infected are neglected

Spreading - II

Optimization of the time out to detect that no
node has the IP address that has been generated

Spreading - III

Local bias in the generation

Spreading - IV

Spreading - V

• prescan to find better subspaces to generate IP addresses
• and with a large number of susceptible nodes
• Infected nodes are remembered and neglected
• multithread

Local vs global

Fig. 5. Comparison of Code Red, a /8 routing worm, a local
preference worm with different preference probabilities p.
(a) Local preference scan on “/8” network level (K=256, m=116).
(b) Local preference scan on “/16” network level (K=65,536,

m=29,696).

Extreme optimization

The time scale has changed

Which address space?
Some worms consider IP addresses
Any node can infect any other nodes
The addresses that are generated depend upon the adopted
function and not upon the interconnection
Highly effective but high error rate
Some worms consider logical addresses, ie the
email addresses
A node can infect only nodes it already knowns
The interconnection structure that has to be considered is
the logical one

Trojan horse

A program that has a different goal from the
expected one
Its main goal is to implement a backdoor to
enable illegal accesses to the system
Governmental to acquire information and
defeat encryption
Malware

Trojan horse defence (wikipedia)
This defense (SODDI, some other dude did it) typically involves
defendant denial of responsibility for
(i) the presence of cyber contraband on the defendant's computer
system;

(ii) commission of a cybercrime via the defendant's computer, on
the basis that a malware or on some other perpetrator using such
malware, was responsible for the offence in question.

A modified use of the defense involves a defendant charged with a
non-cyber crime admitting that whilst technically speaking the
defendant may be responsible for the commission of the offence,
he or she lacked the necessary criminal intent or knowledge on
account of malware involvement.

slide 105

“Reflections on Trusting Trust”

Ken Thompson’s 1983 Turing Award lecture
1. Added a backdoor-opening Trojan to login program
2. Anyone looking at source code would see this, so changed the

compiler to add backdoor at compile-time
3. Anyone looking at compiler source code would see this, so

changed the compiler to recognize when it’s compiling a
new compiler and to insert Trojan into it

“The moral is obvious. You can’t trust code you
did not totally create yourself. (Especially
code from companies that employ people like
me).”

slide 106

Viruses

Virus propagates by infecting other programs
• Automatically creates copies of itself, but to propagate, a human

has to run an infected program
• Self-propagating viruses are often called worms

Many propagation methods
• Insert a copy into every executable (.COM, .EXE)
• Insert a copy into boot sectors of disks

• PC era: “Stoned” virus infected PCs booted from infected floppies,
stayed in memory, infected every inserted floppy

• Infect common OS routines, stay in memory

slide 107

First Virus: Creeper

Written in 1971 at BBN

Infected DEC PDP-10

 machines running TENEX OS

Jumped from machine to machine over ARPANET
• Copied its state over, tried to delete old copy

Payload: displayed a message

 “I’m the creeper, catch me if you can!”

Later, Reaper was written to hunt down Creeper

slide 108

Polymorphic Viruses

Encrypted viruses: constant decryptor followed by
the encrypted virus body

Polymorphic viruses: each copy creates a new
random encryption of the same virus body

• Decryptor code constant and can be detected
• Historical note: “Crypto” virus decrypted its body by brute-force

key search to avoid explicit decryptor code

slide 109

Virus Detection

Simple anti-virus scanners
• Look for signatures (fragments of known virus code)
• Heuristics for recognizing code associated with viruses

• Example: polymorphic viruses often use decryption loops
• Integrity checking to detect file modifications

• Keep track of file sizes, checksums, keyed HMACs of contents

Generic decryption and emulation
• Emulate CPU execution for a few hundred instructions, recognize

known virus body after it has been decrypted
• Does not work very well against viruses with mutating bodies and

viruses not located near beginning of infected executable

slide 110

Virus Detection by Emulation

Virus body

Randomly generates a new key
and corresponding decryptor code

Mutation A

Decrypt and execute

Mutation C

Mutation B

To detect an unknown mutation of a known virus ,
emulate CPU execution of until the current sequence of
instruction opcodes matches the known sequence for virus body

slide 111

Metamorphic Viruses

Obvious next step: mutate the virus body, too

Apparition: an early Win32 metamorphic virus
• Carries its source code (contains useless junk)
• Looks for compiler on infected machine
• Changes junk in its source and recompiles itself
• New binary copy looks different!

Mutation is common in macro and script viruses
• A macro is an executable program embedded in a word processing

document (MS Word) or spreadsheet (Excel)
• Macros and scripts are usually interpreted, not compiled

slide 112

Obfuscation and Anti-Debugging

Common in all kinds of malware

Goal: prevent code analysis and signature-based
detection, foil reverse-engineering

Code obfuscation and mutation
• Packed binaries, hard-to-analyze code structures
• Different code in each copy of the virus

• Effect of code execution is the same, but this is difficult to detect by
passive/static analysis (undecidable problem)

Detect debuggers and virtual machines, terminate
execution

slide 113

Mutation Techniques

Real Permutating Engine/RPME, ADMutate, etc.

Large arsenal of obfuscation techniques
• Instructions reordered, branch conditions reversed, different

register names, different subroutine order
• Jumps and NOPs inserted in random places
• Garbage opcodes inserted in unreachable code areas
• Instruction sequences replaced with other instructions that have

the same effect, but different opcodes
• Mutate SUB EAX, EAX into XOR EAX, EAX or

 MOV EBP, ESP into PUSH ESP; POP EBP

There is no constant, recognizable virus body

slide 114

Example of Zperm Mutation

From Szor and Ferrie, “Hunting for Metamorphic”

slide 115

Putting It All Together: Zmist

Designed in 2001 by the Russian virus writer
Z0mbie of “Total Zombification” fame

Technique: code integration
• Virus merges itself into the instruction flow of its host
• “Islands” of code are integrated

 into random locations in the host
 program and linked by jumps

• When/if virus code is run, it infects
 every available portable executable

• A randomly inserted virus entry point
 may not be reached in a particular execution

slide 116

Putting It All Together: Zmist

Designed in 2001 by the Russian virus writer
Z0mbie of “Total Zombification” fame

Technique: code integration
• Virus merges itself into the instruction flow of its host
• “Islands” of code are integrated

 into random locations in the host
 program and linked by jumps

• When/if virus code is run, it infects
 every available portable executable

• A randomly inserted virus entry point
 may not be reached in a particular execution

slide 117

MISTFALL Disassembly Engine

To integrate itself into host’s instruction flow, virus
must disassemble and rebuild host binary

Tricky - addresses are based on offsets, must be
recomputed when new instructions are inserted

Iterative process: rebuild with new addresses, see
if branch destinations changed, rebuild again

• Requires 32MB of RAM and explicit section names (DATA, CODE,
etc.) in the host binary – doesn’t work with every file

slide 118

Simplified Zmist Infection Process

Pick a Portable
Executable binary
< 448Kb in size

Disassemble, insert space for new
code blocks, generate new binary

Insert mutated virus body
 Split into jump-linked “islands”
 Mutate opcodes (XORSUB, ORTEST)
 Swap register moves and PUSH/POP, etc.

Encrypt virus body by
XOR (ADD, SUB) with a
randomly generated key,
insert mutated decryptor

Insert random garbage
instructions using
Executable Trash Generator

Decryptor must
restore host’s
registers to
preserve host’s
functionality

Randomly insert
indirect call OR
jump to decryptor’s
entry point OR
rely on instruction
flow to reach it

slide 119

Legal obfuscation : Skype

slide 120

Skype: Code Integrity Checking

slide 121

Skype: Anti-Debugging

slide 122

Skype: Control Flow Obfuscation (1)

slide 123

Skype: Control Flow Obfuscation (2)

slide 124

Rootkits

Rootkit is a set of trojan system binaries

Main characteristic: stealthiness
• Create a hidden directory

• /dev/.lib, /usr/src/.poop and similar
• Often use invisible characters in directory name (why?)

• Install hacked binaries for system programs such as netstat, ps, ls,
du, login

•
•
• Modified binaries have same checksum as originals

• What should be used instead of checksum?

Can’t detect attacker’s processes,
files or network connections by
running standard UNIX commands!

slide 125

Function Hooking

Rootkit may “re-route” a legitimate system function
to the address of malicious code

Pointer hooking
• Modify the pointer in OS’s Global Offset Table, where function

addresses are stored

“Detour” or “inline” hooking
• Insert a jump in first few bytes of a legitimate function
• This requires subverting memory protection

Modifications may be detectable by a clever rootkit
detector

slide 126

Kernel Rootkits

Get loaded into OS kernel as an external module
• For example, via compromised device driver or a badly

implemented “digital rights” module (e.g., Sony XCP)

Replace addresses in system call table, interrupt
descriptor table, etc.

If kernel modules disabled, directly patch kernel
memory through /dev/kmem (SucKIT rootkit)

Inject malicious code into a running process via
PTRACE_ATTACH and PTRACE_DETACH

• Security and antivirus software are often the first injection
targets

slide 127

Mebroot (Windows)

Replaces the host’s Master Boot Record (MBR)
• First physical sector of the hard drive
• Launches before Windows loads

No registry changes, very little hooking

Stores data in physical sectors, not files
• Invisible through the normal OS interface

Uses its own version of network driver API to
send and receive packets

• Invisible to “personal firewall” in Windows

Used in Torpig botnet

slide 128

Detecting Rootkit’s Presence

Sad way to find out
• Run out of physical disk space because of sniffer logs
• Logs are invisible because du and ls have been hacked

Manual confirmation
• Reinstall clean ps and see what processes are running

Automatic detection
• Rootkit does not alter the data structures normally used by

netstat, ps, ls, du, ifconfig
• Host-based intrusion detection can find rootkit files

• …assuming an updated version of rootkit did not disable the intrusion
detection system!

slide 129

Remote Administration Tools

Legitimate tools are often abused
• Citrix MetaFrame, WinVNC, PC Anywhere

• Complete remote control over the machine
• Easily found by port scan (e.g., port 1494 – Citrix)

• Bad installations, crackable password authentication
• “The Art of Intrusion” – hijacking remote admin tools to break into a

cash transfer company, a bank’s IBM AS/400 server

Semi-legitimate tools
• Back Orifice, NetBus
• Rootkit-like behavior: hide themselves, log keystrokes
• Considered malicious by anti-virus software

slide 130

Communicating Via Backdoors

All sorts of standard and non-standard tunnels

SSH daemons on a high port
• Communication encrypted hard to recognize for a network-

based intrusion detector
• Hide SSH activity from the host by patching netstat

UDP listeners

Passively sniffing the network for master’s
commands

slide 131

RAT Capabilities

“Dropper” program installs RAT DLL, launches it
as persistent Windows service, deletes itself

RAT notifies specified C&C server, waits for

 instructions

Attacker at C&C server

 has full control of the

 infected machine, can

 view files, desktop,

 manipulate registry,

 launch command shell

Hybrid

Most malware current integrates all the
previous behavior
Software with an opportunistic approach to
spread to other nodes
Usb
Share
Mail
Attack
....

Autonomous Hybrid

They can transmit themselves to other nodes
without exploiting the node resources
Even if the node does not exchange email, it
can
Trasmit email from the node
Hide in the mail

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	What is ?
	Diapositiva 15
	Access Vector
	Access Complexity
	Authentication
	Confidentiality Impact
	Base Score
	Base Score Example CVE-2002-0392
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85
	Diapositiva 86
	Diapositiva 87
	Diapositiva 88
	Diapositiva 89
	Diapositiva 90
	Diapositiva 91
	Diapositiva 92
	Diapositiva 93
	Diapositiva 94
	Diapositiva 95
	Diapositiva 96
	Diapositiva 97
	Diapositiva 98
	Diapositiva 99
	Diapositiva 100
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Slide799
	Slide800
	Slide922
	Slide802
	Slide834
	Slide804
	Slide805
	Slide835
	Slide893
	Slide894
	Slide895
	Slide923
	Slide896
	Slide897
	Slide828
	Slide830
	Slide831
	Slide832
	Slide833
	Slide932
	Slide934
	Slide935
	Slide936
	Slide937
	Slide973
	Slide974
	Slide940
	page105
	page106

