
Countermeasures Analysis

The goal of this steps is to determine
some changes to the target system
to avoid or at least reduce the risk

Countermeasures
A first classification

 Proactive
 They are applied before an attack

eg a vulnerability is removed
 Dynamic

 They are applied as soon as an attack is detected
 eg a vulnerability is removed
 eg a connection is killed

 Reactive
 They are applied after a successful attack
 eg a vulnerability is removed
 eg a password is changed

Detection?

A more detailed taxonomy

Prevent Resist  Detect  Recovery  React

Deception
Honeypot

Resiliency
Robustness

Intrusion Detection
Consistency Checks

Heterogeneity
Cold/Hot Redundancy

Change to
1. Configuration
2. Architecture
3. Application

Identification, authentication, right management

Implementation mechanisms
 Countermeasures are implemented through

a set of common mechanisms
 A set of shared mechanisms

 It can increase the cost effectiveness of
countermeaures

 It should be highly robust because a vuln may
affect several countermeasures

Base mechanisms

 The mechanisms are defined on top of
a security kernel (= TCB) that manages
 The user identities
 User authentication (identity checks)
 User rights

 This should not be confused with the
minimal system that is discussed in the
following

Countermeasures Glossary- I
 Deception = no information about the system

design is available = S&S, open design
 Honeypot = fake systems are introduced to

increase the complexity of discovering nodes to
be attacked

 Resiliency/Robustness = prevent a single
vulnerability from enabling a successful attack
(S&S, least privilege etc)

 Intrusion Detection/ Consistency Check = a set
of checks to discover current or previous
attacks

Countermeasures Glossary - II
 Redundancy = spare components to replace the

attacked ones. The impact is reduced and control
on the system is not lost
 Cold = Stand by spare components
 Hot = Spare components are in use (oversize system)

The underlying problem is a properly evaluation of
expected performance

 Heterogeneous components = genetic diversity =
the vulns of spare components differs from those
of standard components

 A generalization of triple modular redundancy

Triple Modular Redundancy

Module M copy 1

Module M copy 2

Module M copy 3

Voter

Safety, not security
anytime the three copies
share the same vul

If the three versions have
a different implementation
some security is achieved

Countermeasures Glossary- III
 Minimal system

 A subset of components
 More robust
 Large number of severe checks

 Control of the minimal system should
never be lost

 It is a starting point to gain back control
on the whole system

 Strongly related to normal vs power law
impact

Countermeasures Glossary- IV
 Reaction = Updates to

 The configuration of the OS and applications
 System architecture
 Enabled application
 Patch

 The reaction should involve (work on) the
target system rather than the attacking
one

No action on the attacking sys?
 Stepping stone = a chain of hosts that starts at

the one of the attacker and that are, illegally,
controlled by the attacker =botnet

 The chain enables the attacker to hide his/her
location

 The attack is implemented by the last node of the
chain to hide the first one

 Any node connected to the internet has a value
as it can be used as a stepping stone

 How can we discover a stepping stone?

Stepping stone

Attacker node

Target node
Stepping stones

Encrypted

Stepping stone - 1

 An analysis of input/output node channel to
evaluate their correlation

 If there are an input channel and an output one (i/o
port) that are correlated as far as concerns
 Time = when a communication occurs
 Data = size of exchanged data

 then the node may act as a stepping stone
 By repeating the analysis for the sender/receiver of

the two channeld, the whole chain of stepping
stones may be discovered

Stepping stone - 2

 The proposed analysis is a traffic analysis
that can be applied even to encrypted flows
because it does not consider the information
content of the two flows

 It is almost impossible that the flows in a
stepping stone chains are in clear

Stepping stone

Attacker node

Target node

Stepping stones Correlation among them
can be discovered even
If they are encrypted

Deception = Honeypot
 Its importance has increased because of the developing of

virtualization technologies that minimizes its cost
 It increases the complexity of attacks that use a

vulnerability scanner to discover nodes in a network that
can be attacked

 For each address generated by the scanner a it creates a
new fake virtual node the attacker has to analyze

 These virtual nodes are useless but how far as the scanning
is concerned, they behave like real nodes

 The fake nodes replies to the fingerprinting messages of the
scanner are slower and slower to slow down the scanning

 An alarm is raised

Honeypot - Definition

An ICT resource whose value lies in
unauthorized or illicit use of that resource.

 Has no production value; anything going to/from
a honeypot is likely a probe, attack or
compromise

 Used for monitoring, detecting and analyzing
attacks

 Does not solve a specific problem. Instead, they
are a highly flexible tool with different applications
to security.

Classification

 By level of interaction
 High
 Low
 Middle

 By Implementation
 Virtual
 Physical

 By purpose
 Production
 Research

Level of Interaction

 Low Interaction
 Simulates some aspects of the system
 Easy to deploy, minimal risk
 Limited Information
 OS tool - Honeyd

 High Interaction
 Simulates all aspects of the OS: real systems
 Can be compromised completely, higher risk
 More Information
 OS tool - Honeynet

Level of Interaction

Operating system

F
ake D

aem
on

Disk

Other
local
resource

Low

Medium

High

Physical V.S. Virtual Honeypots

 Two types
 Physical

 Real machines
 Own IP Addresses
 Often high-interactive

 Virtual
 Simulated by other machines that:

 Respond to the traffic sent to the honeypots
 May simulate distinct virtual honeypots at the same

time

Production HPs: Protect the systems

 Prevention
 Keeping the bad guys out
 not effective prevention mechanisms.
 Deception, Deterence, Decoys do NOT work against

automated attacks: worms, auto-rooters, mass-rooters

 Detection
 Detecting the burglar when he breaks in.
 Great work

 Response
 Can easily be pulled offline
 Little to no data pollution

Research HPs: gathering information

 Collect compact amounts of high value
information

 Discover new Tools and Tactics
 Understand Motives, Behavior, and

Organization
 Develop Analysis and Forensic Skills
 Used to discover new worms/viruses

and their signatures

Building your HoneyPots

 Specifying Goals
 Selecting the implementation strategies

 Types, Number, Locations and Deployment

 Implementing Data Capture
 Logging and managing data
 Mitigating Risk
 Mitigating Fingerprint

Just an anticipation …
 Firewall

 A system that connects two networks with distinct
security requirements

 It filters the information flowing across the two networks
and the services each network can access in the other
one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Location of Honeypots

 In front of the
firewall

 Demilitarized
Zone

 Behind the
firewall
(Intranet)

Capturing Information

 Host based:
 Keystrokes
 Syslog

 Network based:
 Firewall
 Sniffer
 IP not resolved name

Logging and Managing Data

 Logging
architecture

 Managing data

What is Honeyd?

 HoneydHoneyd: A virtual honeypot application,
which allows us to create thousands of IP
addresses with virtual machines and
corresponding network services.

 Written by Neil Provos available at
http://www.honeyd.org/

What can honeyd do?

 Simulates operating systems at TCP/IP stack
level, supporting TCP/UDP/ICMP;

 Support arbitrary services;

 Simulate arbitrary network topologies;

 Support tunneling and redirecting net traffic;

Illustration Simple

How it works?

routing

routing

Packet Dispatcher

TCP UDP ICMP

Services

Personality
Engine

Configuration
DataBase

Network

Why Personality Engine?
 To fool fingerprinting tools

 Uses fingerprint databases by
 Nmap, for TCP, UDP
 Xprobe, for ICMP

 Introduces changes to the headers of
every outgoing packet before it is sent
to the network

Why Routing topology?
 Simulates virtual network topologies;

 Some honeypots are also configured as routers
 Latency and loss rate for each edge is configured;

 Support network tunneling and traffic
redirection;

What is a Honeynet <> Honeypot

 High-interaction honeypot designed to:
 capture in-depth information
 learn who would like to use your system

without your permission for their own ends
 Its an architecture, not a product or

software.
 Populate with live systems.
 Can look like an actual production system

What is a Honeynet

 Once compromised, data is collected to
learn the tools, tactics, and motives of
the blackhat community.

 Information has different value to
different organizations.
 Learn vulnerabilities
 Develop response plans

What’s The Difference?

 Honeypots use known vulnerabilities to lure
attack.
 Configure a single system with special software or

system emulations
 Want to find out actively who is attacking the

system
 Honeynets are networks open to attack

 often use default installations of system software
 behind a firewall
 hope attackers mess up the Honeynet instead

than your production system

How it works

 A highly controlled network where every
packet entering or leaving is monitored,
captured, and analyzed.

 Any traffic entering or leaving the
Honeynet is suspect by nature.

Countermeasures - Deception
 Cryptography algorithms
 Information is coded so that only who knows

a further info, the key, can access it
 Already known

Just a reminder ...
 Cryptography does not solve the problems, it

only simplify the solution
 It is very difficult to safely store a 2 gb file
 It is rather simpler to encrypt the file through

a 256 bit key and safely store the key
 The same problem has to be solved (safely

store an info) but now the solution is simpler
because the problem size has been reduced

Just a reminder ...

 Hiding and protecting
 Information at rest
 Exchanged information

 Authentication (digital signature)
 Integrity (hash function)
 Coprocessor (smartcard)
 Symmetric and Asymmetric

Resist – Robust programming

 Validate program inputs
 Prevent buffer overflow
 Robust implementation
 Check the invocations to other

resources
 Check returned results

Robust programming – Input validation

Input validation + default deny (S&S)
 Define the input legal structure
 Check that any input satisfy the defined

structure
Example: Strings

 A grammar that defines the structure
 Longest input string
 Define which special characters are legal
 Check that any input satisfies 1-2-3

Robust programming – Input validation

 The ability of defining a set of checks to validate
the input should be considered when the
program is specified rather than after the design
of the application

 In the correct approach, the application is
specified and designed to simplify the definition
and the implementation of the checks through a
simple grammar, eg LR grammar, that means
controls implemented by finite state automaton

 A complex control may be useless if we are not
confident that it has been correctly implemented

Robust programming – Input validation

 Parameters to be validated
 Environment variables
 File names (blanks , .., /,)
 Email addresses
 URL
 Html
 data

 Several languages define built in function to
match a string against a predefined pattern
(regular expression etc.)

Robust programming – no buffer overflow

 Do not use any library function that does not
check it input parameters

 Use only those functions that check the
length of their input strings

 Dynamic memory allocation of a data
structure rather than static allocation of the
largest data structure

Robust programming –
robust implementation - I

 Satisfy S&S
 Rigorous definition of the program interface
 Do not assume that input/output values are related

 If a function of a library returns a pointer and another
function of the same library has a pointer parameter, there
is no reason to assume that the one transmitted to the
second is the one that has been returned by the first one

 If an input parameter of a function should be equal to the
output of another function, the parameter has to be defined
so that this relation can be checked

 Data and instruction should be different
 The data that each function can access should be

minimized

Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

Pointers - II
 By replacing an array of pointers with an

array of records we can
 Introduce fields in the records to discover

whether each element is properly initialized
 Check access to the array
 Define some check on the input output relation

of a pointer
 This is a simplified, redundant version of an

access control matrix for the pointers

Pointers - III
 We can also return an encrypted index to the

pointer array rather than the real one
realpositioin= m*returnedpos+cost

 It simplifies the detection of pointer
manipulation

 Access control does not change

Robust Programming –
robust implementation - II

 Safe variable initialization
 Avoid critical runs by parallelizing operations

and consistency checks
 Time- to-check/time-to-use
 Open file;checks;close;open;use

 Atomic transaction on the file system
 Lock to guarantee consistency but time out to

prevent starvation
 Quota mechanisms for shared resources

Robust programming – check
invocations

 Only safe functions should be invoked
(eg functions that checks their input/output
parameters)

 Check
 the correctness of transmitted parameters
 of metadata in transmitted parameters
 the values that are returned

 Hide and protect critical information

Robust programming – check
returned results

 Do not leak information before the user is authenticated
(banner etc)

 Do not return too much information (yes or no without
explaing why)
 Do not say if the user or the password does not exist but just that

the pair (user, password) does not exist
 Information useful for the debugging should be returned

in log files in the node rather than in the user interface
 Avoid dependency on the user to prevent DOS attacks

 Avoid synchronous communications,
 If synchronous communications are required, introduce a sacrifical

thread

Robust programming vs
programming language

 Most of the previous constraints can be
 Enforced by the program run time support (Java)
 Be satisfied because a discipline is imposed on the

programmer (C)
 Both solutions are acceptable, one privileges

performance the other security
 The only solution to be avoided is a support that

has a low performance even if it does not
enforce the constraints

A distinct perspective

 The 2011 CWE/SANS Top 25 Most Dangerous
Programming Errors is a list of the most significant
programming errors that can lead to serious software
vulnerabilities.

 They occur frequently, are often easy to find, and easy
to exploit.

 They are dangerous because they will frequently allow
attackers to completely take over the software, steal
data, or prevent the software from working at all.

The 25 errors

 Aree partitioned into three classes
 Unsafe interactions among components
 Risky resource management
 Porous defenses

 Selected according to
 Frequency
 Danger

Attributes of each error

 Weakness Prevalence: diffusion
 Attack Frequency: how often the weakness occurs

in vulnerabilities that are exploited by an attacker.
 Ease of Detection: how easy it is for an attacker to

find this weakness.
 Remediation Cost: the amount of effort required to

fix the weakness.
 Attacker Awareness: the likelihood that an attacker

is going to be aware of this particular weakness,
and of methods for detection and for exploitation.

 Consequences = Potential impact

The list - 1

SQL Iniection

SQL Iniection

SQL Injection

SQL Injection

The list - 2

The list - 3

24 sins...
 5 kinds of sins

 Web
 Implementation
 Cryptographic
 Network
 Stored Data

 Web Application Sins;
 SQL Injection;
 Server Side Cross-Site Scripting
 Web-Client Related Vulnerabilities;

24 sins...

 4 kinds of sins
 Web
 Implementation
 Cryptographic
 Network

 Web Application Sins;
 SQL Injection;
 Server Side Cross-Site Scripting
 Web-Client Related Vulnerabilities;

24 sins...

 Implementation Sins
 Use of Magic URLs
 Buffer Overruns;
 Format String Problems;
 Integer Overflows;
 C++ Catastrophes;
 Catching All Exceptions;
 Command Injection;
 Failure to Handle Errors;
 Information Leakage;
 Race Conditions;
 Poor Usability; Chapter
 Not Updating Easily;

24 sins...

 Cryptographic Sins
 Not Using Least Priveleges;
 Weak Password Systems;
 Unauthenticated Key Exchange;
 Random Numbers;

 Networking Sins;
 Wrong Algorithm;
 Failure to Protect Network Traffic;
 Trusting Name Resolution;

 Stored Data Sins;
 Improper Use of SSL/TLS;
 Failure to Protect Stored Data

Countermeasures – Resist –
First Step
 Correct configuration (hardening) of

standard software component (OS,
packages)
 Determine useful functions
 Remove useless functions
 Remove any standard account or at least

update its password

Countermeasures – Resist –
Second Step

 Firewall
 A system that connects two networks with distinct

security requirements
 It filters the information flowing across the two networks

and the services each network can access in the other
one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Introducing a Firewall

fw

Initial configuration

Local network
To be protected

Local network

Firewall

After introducing the fw

Dangerous
Network
Dangerous
Network

Dangerous
Network
Dangerous
Network

Introducing a Firewall
 A firewall CAN protect a network from

attacks from outside the network
 It prevents connection to critical nodes of the

network it protects
 It filters information transmitted through legal

connections
 It can force stronger user authentication when

it generates connections to enter or to leave
the network it protects

Introducing a Firewall
 A firewall CANNOT protect a network

from attacks
 Originating from within the network

(insider threat)
 That exploits lines it cannot control
 That exploits protocol that it does not

know (unless a default deny strategy is
adopted)

Introducing a Firewall
 The firewall behaviour fully depends upon

the adopted security policy
 The behaviour is based upon the distinction

inside/outside
 All the mechanisms are implemented in a

single point (controls are fully delegated to
the firewall)

 Fail safe or fault tolerance (redundancy) of
the firewall

Firewall: properties
 A firewall is characterized by

 The protocols it knows and can analyze
(communication stack layers it can analyze to protect a
network)

 Its architecture (router, dedicated node, router+
dedicated node)

 The two properties are distinct and fully orthogonal
and they determine the overall robustness of the
firewall = robustness enabled by the controls

 +
robustness in the control implementation

An example - I
 The same set of controls can be

implemented in
 A firewall that receives and transmits

through the same network interface
 A firewall that receives and transmits

through two distinct network interfaces
 A firewall with two interfaces that are the

only connections between the two networks

Some architectures - 1

fw
A hub

A physical connection exist

Routing tables
To filter
traffic

Some architectures - 2

fw

A physical connection does not exist

Some architectures - 3

fw

A physical connection does not exist
And two components have to be attacked

routers

Controls
 Controls implemented through rules route/drop

according to some conditions
 The conditions are related to the protocol
 The simplest case:

 ACL in a router (see in S&S) rather than a distinct node =
a layer 3 firewall conditions on ports and hosts

 it can prevent the opening of an outbound connection by
checking the bits in an IP packet (three way handshake)

 It can be also implemented by a dedicated system or a
system with other functions, eg a Linux node plus
netchain and/or iptable

Packet filtering

Firewalls – Packet FiltersFirewalls – Packet Filters
Simplest of components Simplest of components
Uses transport-layer information onlyUses transport-layer information only

 IP Source Address, Destination AddressIP Source Address, Destination Address
 Protocol/Next Header (TCP, UDP, ICMP, etc)Protocol/Next Header (TCP, UDP, ICMP, etc)
 TCP or UDP source & destination portsTCP or UDP source & destination ports
 TCP Flags (SYN, ACK, FIN, RST, PSH, etc)TCP Flags (SYN, ACK, FIN, RST, PSH, etc)
 ICMP message typeICMP message type

ExamplesExamples
 DNS uses port 53DNS uses port 53

 No incoming port 53 packets except known trusted No incoming port 53 packets except known trusted
serversservers

Usage of Packet FiltersUsage of Packet Filters

Filtering with incoming or outgoing Filtering with incoming or outgoing
interfacesinterfaces

 E.g., Ingress filtering of spoofed IP E.g., Ingress filtering of spoofed IP
addressesaddresses

 Egress filteringEgress filtering

Permits or denies certain servicesPermits or denies certain services
 Requires intimate knowledge of TCP and UDP port Requires intimate knowledge of TCP and UDP port

utilization on a number of operating systemsutilization on a number of operating systems

How to Configure a Packet FilterHow to Configure a Packet Filter

Start with a security policyStart with a security policy
Specify allowable packets in terms of logical Specify allowable packets in terms of logical
expressions on packet fieldsexpressions on packet fields
Rewrite expressions in syntax supported by Rewrite expressions in syntax supported by
your vendoryour vendor
General rules - least privilegeGeneral rules - least privilege

 All that is not expressly permitted is prohibitedAll that is not expressly permitted is prohibited
 If you do not need it, eliminate itIf you do not need it, eliminate it

Every ruleset is followed by an implicit rule Every ruleset is followed by an implicit rule
reading like this.reading like this.

Example 1: Example 1:
 Suppose we want to allow inbound mail Suppose we want to allow inbound mail

(SMTP, port 25) but only to our gateway (SMTP, port 25) but only to our gateway
machine. Also suppose that traffic from machine. Also suppose that traffic from

some particular site SPIGOT is to be some particular site SPIGOT is to be
blocked.blocked.

Solution 1: Solution 1:

Example 2: Example 2:
 Now suppose that we want to implement Now suppose that we want to implement
the policy “any inside host can send mail to the policy “any inside host can send mail to

the outside”.the outside”.

Solution 2: Solution 2:

This solution allows calls to come from any This solution allows calls to come from any
port on an inside machine, and will direct port on an inside machine, and will direct
them to port 25 on the outside. Simple them to port 25 on the outside. Simple

enough…enough…

So why is it wrong?So why is it wrong?

Our defined restriction is based solely on the Our defined restriction is based solely on the
outside host’s port number, which we have outside host’s port number, which we have
no way of controlling.no way of controlling.
Now an enemy can access any internal Now an enemy can access any internal
machines and port by originating his call machines and port by originating his call
from port 25 on the outside machine.from port 25 on the outside machine.

 What can be a better solution ?What can be a better solution ?

 The ACK signifies that the packet is part of The ACK signifies that the packet is part of
an ongoing conversationan ongoing conversation

 Packets without the ACK are connection Packets without the ACK are connection
establishment messages, which we are only establishment messages, which we are only
permitting from internal hostspermitting from internal hosts

Security & Performance of Packet Security & Performance of Packet
FiltersFilters

Tiny fragment attacksTiny fragment attacks
 Split TCP header info over several tiny Split TCP header info over several tiny

packetspackets
 Either discard or reassemble before checkEither discard or reassemble before check
Degradation depends on number of rules Degradation depends on number of rules
applied at any pointapplied at any point
Order rules so that most common traffic is Order rules so that most common traffic is
dealt with firstdealt with first
Correctness is more important than speedCorrectness is more important than speed

Port NumberingPort Numbering
TCP connectionTCP connection

 Server port is number less than 1024 Server port is number less than 1024
 Client port is number between 1024 and 16383Client port is number between 1024 and 16383

Permanent assignmentPermanent assignment
 Ports <1024 assigned permanently Ports <1024 assigned permanently

 20,21 for FTP 23 for Telnet20,21 for FTP 23 for Telnet
 25 for server SMTP 80 for HTTP25 for server SMTP 80 for HTTP

Variable useVariable use
 Ports >1024 must be available for client to make Ports >1024 must be available for client to make

any connectionany connection
 This presents a limitation for stateless packet This presents a limitation for stateless packet

filteringfiltering
 If If client wants to use port 2048, firewall must allow client wants to use port 2048, firewall must allow

incoming incoming traffic on this porttraffic on this port
 Better: stateful filtering knows outgoing requestsBetter: stateful filtering knows outgoing requests

Circuit level

Firewalls – Stateful Packet FiltersFirewalls – Stateful Packet Filters

Traditional packet filters do not examine Traditional packet filters do not examine
transport layer contexttransport layer context

 ie matching return packets with outgoing flowie matching return packets with outgoing flow

Stateful packet filters address this needStateful packet filters address this need
They examine each IP packet in contextThey examine each IP packet in context

 Keep track of client-server sessionsKeep track of client-server sessions
 Check each packet validly belongs to oneCheck each packet validly belongs to one

Hence are better able to detect bogus Hence are better able to detect bogus
packets out of context packets out of context

Proxy service

Firewall GatewaysFirewall Gateways
Firewall runs set of proxy programsFirewall runs set of proxy programs

 Proxies filter incoming, outgoing packetsProxies filter incoming, outgoing packets
 All incoming traffic directed to firewall All incoming traffic directed to firewall
 All outgoing traffic appears to come from firewallAll outgoing traffic appears to come from firewall

Policy embedded in proxy programsPolicy embedded in proxy programs
Two kinds of proxiesTwo kinds of proxies

 Application-level gateways/proxiesApplication-level gateways/proxies
 Tailored to http, ftp, smtp, etc.Tailored to http, ftp, smtp, etc.

 Circuit-level gateways/proxiesCircuit-level gateways/proxies
 Working on TCP levelWorking on TCP level

Application Level

Firewalls - Firewalls - Application Level Application Level
Gateway (or Proxy)Gateway (or Proxy)

Application-Level FilteringApplication-Level Filtering
Has full access to protocol Has full access to protocol

 user requests service from proxy user requests service from proxy
 proxy validates request as legal proxy validates request as legal
 then actions request and returns result to user then actions request and returns result to user

Need separate proxies for each service Need separate proxies for each service
 E.g., SMTP (E-Mail)E.g., SMTP (E-Mail)
 NNTP (Net news)NNTP (Net news)
 DNS (Domain Name System)DNS (Domain Name System)
 NTP (Network Time Protocol)NTP (Network Time Protocol)
 custom services generally not supportedcustom services generally not supported

App-level Firewall ArchitectureApp-level Firewall Architecture

Daemon spawns proxy when communication Daemon spawns proxy when communication
detecteddetected

Network Connection

Telnet
daemon

SMTP
daemon

FTP
daemon

Telnet
proxy

FTP
proxy SMTP

proxy

Screening router + bastion host

The bastion host is the only system on the internal network that hosts on
the Internet can open connections to (for example, to deliver email).
Only certain types of connections are allowed. Any external system
trying to access internal systems or services will have to connect to this
host. The bastion host thus needs to maintain a high level of host
security.

Screened subnet architecture

An extra layer of security by adding a perimeter network that further
isolates the internal network from the Internet.
Bastion hosts are the most vulnerable machines they are the machines
most likely to be attacked, because they're the machines that can be
attacked.

DMZ – Layered protection =
defence in depth

Even a simple
router with
packer filtering

DMZ – Advantages

 The creation of three layers of protection that segregate the protected network. To The creation of three layers of protection that segregate the protected network. To
penetrate the protected network, the intruder must crack three separate routers: penetrate the protected network, the intruder must crack three separate routers:
 the outside firewall router, the outside firewall router,
 the bastion firewallthe bastion firewall
 the inside firewall router devices.the inside firewall router devices.

 The outside router advertises the DMZ network only to the Internet systems on the The outside router advertises the DMZ network only to the Internet systems on the
Internet do not have routes to the protected private network. This allows the private Internet do not have routes to the protected private network. This allows the private
network to be "invisible," and only network to be "invisible," and only selected systems on the DMZ are known to the selected systems on the DMZ are known to the
InternetInternet

 The inside router advertises the DMZ network only to the private network, systems The inside router advertises the DMZ network only to the private network, systems
on the private network do not have direct routes to the Internet. on the private network do not have direct routes to the Internet.

 Since the DMZ network is a different network from the private one, a Network Since the DMZ network is a different network from the private one, a Network
Address Translator (NAT) can be installed on the bastion host to eliminate the need Address Translator (NAT) can be installed on the bastion host to eliminate the need
to renumber or re-subnet the private network.to renumber or re-subnet the private network.

Countermeasures – Resist & Recovery

 Defence-in-depth
 A network is segmented into several

subnetworks, each with a security level
 Networks with consecutive security levels only

are connected
 Any connection from a network to another one

is protected by a firewall
 Physical node connections may have to be

updated

Defence-in-depth

E-mail,
web server

E-mail,
web server

Accou
nting
Accou
nting

ResearchResearch

Local network

fw

fw

fw

Initial configuration Defence in depth

Firewall & Virtual Machine
 Virtualization technology supports the definition of virtual

network (overlay network)
 This makes it possible to spread information across a large

number of nodes and of networks
 Virtual networks are protected by (virtual) firewall
 Some applications can be protected by mapping the

corresponding virtual nodes onto distinct physical nodes
 The ability of introducing several nodes and distinct

networks simplify information management as each
network can manage a low amount of homogeneous
information from a security perspective

Checks are more rigorous as sharing may be minimized

Countermeasures – Personal
Firewall

 Initially , the target of the attack where the server systems

 Currently attacks are complex (eg sequences of attacks) and
one of the target of an intermediate step may be a client
system, eg to steal information used to authenticate users

 A personal firewall is a software component to protect the
client and the information exchange between the client and
the server

 A special purpose application may be useless because the
ability of defining a virtual network makes it possible to
protect the applications running on a client system through
standard components

Personal or real firewall?

Client Virtual
Nodefirewall

Client node

Virtual machines

It can be
decomposed
into a virtual
network

Countermeasure - Detect

 Discover attacks against a node
 There are two cases of interest

 Discover ongoing attacks = discover a malware
trying to attack a node

 Discover malware that has been installed on a
node after a successful attack

 There are alternative strategies to discover
events of interest

Countermeasures - Detect

Detection – Anomaly Based

 The behaviour of the system to be protected
is observed for an interval of time (learning
the normal behavior)

 After the learning, any behavior that is too
“distant” from those that have been observed
is signalled as an anomaly

 The critical element is the amount of
information on the system acquired in the
learning phase

Detection – Anomaly Based

 Dynamic
 Information on a program behavior is collected to

discover attacks against it
 Static

 Information on the structure of a program or of file
record are collected

 Hybrid
 The expected behavior of the program is compared

against the actual one

Detection – Anomaly Based

In general the information that is collected makes it possible
to approximate the behavior of interest

Detection – Specification Based

 Normal behaviors are not learned, instead they are
specified by the security policy

 Dynamic
 Information on the program behavior are collected and

compared against the program specification
 Static

 A program is statically analysed and the results are
compared against the specification

 Hybrid
 The program compilation returns some specification to

be compared against the program behavior

Detection – Signature Based

 Main idea: there are some behavior that fully characterize and
identify a malware, they are a signature of the malware

 All the signatures are collected in a database that drives the
detection. This poses two problems
 The discovery of a signature
 The update of the database

 A malware can be discovered only if its signature is known = a 0-
day exploit cannot be detected = new attacks can be discoverd,
only if an anomaly detection approach is being implemented

 Alternative strategies can be adopted to define the signature

Detection – Signature Based

 A default allow strategy, anything that is different fro a
signature is allowed

 Dynamic
 Information on the program behaviour are collected and

compared against the signature
 Static

 The program code is analyzed and compared against the signature
 Used by antivirus tool

 Hybrid
 The two approaches are merged: a subset of the programs is

selected by a static analysis and the behaviour of these programs is
monitored

Detection – Signature/Anomaly Based

Detection

 Which events are used to define a
signature

 Events local to a node
 OS calls
 File operations

 Global network events
 Messagges
 Protocol events

Detection
 Intrusion Detection System

 It monitors either a host (host IDS) or a
subnet (network IDS) to detect attacks

 It integrates with a firewall to detect
 Attacks from the outside that escape the firewall
 Insider attacks that the firewall cannot prevent

 Unstable technology

IDS, false positive, negative…
 The behavior that the tool detects are an

approximation of those of interest. This implies that
some statistic notion may be very useful

 The problem arises because we do not have a
perfect test to discover if a system is being or has
been attacked

 There is a set of symptoms (behavior) that suggest
that the system has been or is being attacked

 However, we are not sure of the attack

False, true positive etc
 We define a test to discover whether

some one is ill
 4 cases are possible

 Test positive, illness = true positive
 Test positive, no illness = false positive
 Test negative, illness = false negative
 Test negative, no illness = true negative

The ideal test

No illness Illness

True neg True pos

Probability distribution
of the parameter, no illness

Probability distribution
of the parameter, illness

Any real test

No illness Illness

False negative false positive

True neg True pos

Detection uses the rule
“no illness if lower than
threshold”

A real test

Ideal test = perfect
knowledege

A real test

True positive

Veri negativi
False negative True negative

False
positive

Ill No ill

Another case: biometrics

Sensitivity

Sensitive = probability of a positive answer in an
ill person

Ill

Specificity

No ill

Specifity= probability of a false answer if no illness

Likelyhood


LR+= ratio between the probabilities of
a positive test in one ill and one healthy
person
LR-= ratio between the probabilities of a
negative test in one ill and one healthy
person

= 1-specifity
= sensitivity

ROC curve
receiver operating characteristics

Drawing a curve

th chosen

 if score < th then n else p

ROC curve
receiver operating characteristics

The curve is drawn by considering a rule that depends upon a parameter x for
distinct values of the parameter (it opens x connections in a second)
Each value of x results in a percentage of false and true positives
The bisector corresponds to a rule that chooses at random
Rule can be evaluated according to the surface they define, the larger, the better
No curve can be worse than the bisector because we can define a curve better
than the bisector by negating the rule

Sensitivity vs 1-specificity

Random answer

Evaluating rules to detect intrusion

To each rule to detect an intrusion
• it sends at least x Mb/sec
• It open at least x connection in a sec
we can pair a point in this space according
the probability of false and true positive for
each value of x.
As x changes, we have a curve in ROC space

A rule low and left = conservative low number of false positives but
also a low detection capability

A rule high and right = good detection capability at the expense of a lot
of false positves and few true positive

A rule under the bisector = worse than random (= the bisector) it can
 be improved by negating it

Area under ROC curve (AUC)
• Overall measure of test performance

• Comparisons between two tests based on
differences between (estimated) AUC

• AUC can be interpreted as the probability that
the test result from a randomly chosen diseased
individual is more indicative of disease than that
from a randomly chosen nondiseased individual:
P(Xi  Xj | Di = 1, Dj = 0)

• AUC evaluates the features we have chosen to
define our test. Distinct features result in distinct
curves

Tr
ue

 P
os

iti
ve

Ra

te

0
%

10
0%

False
Positive Rate

0
%

10
0%

Tr
ue

 P
os

iti
ve

Ra

te

0
%

10
0%

False
Positive Rate

0
%

10
0%

Tr
ue

 P
os

iti
ve

Ra

te

0
%

100
%

False Positive
Rate

0
%

10
0%

AUC = 50%

AUC =
90%

AUC = 65%Tr
ue

 P
os

iti
ve

Ra

te

0
%

100
%

False Positive
Rate

0
%

10
0%

AUC for ROC curves

AUC = 100%

Applying ROC (AUC) to select a strategy

Best solution
Always higher
Than the others

Problems with AUC

• No clear and rigorous semantic interpretation

• A lot of the area is coming from the range of
large false positive values, no one cares what’s
going on in that region (need to examine
restricted regions)

• The curves might cross, so that there might be a
meaningful difference in performance that is not
picked up by AUC

Pay attention to the
population size

 When considering an IDS the number of “people”
to be tested is fairly larger than in the case of a
medical test

 A test that produce a false positive with a
probability equal to 10-6 is almost ideal in the
medical field

 The same test, if applied to a network that
transmits 109 IP packet in one day, returns about
100 false positive a day, about 5 false alarms for
each our = the test is useless

Host IDS
 It monitors a single host
 It checks system and user process to discover

 OS commands that have been changed
 Attackers that impersonate legal users
 Attacks against the host

 Base mechanisms to define a monitor:
 Interception of OS calls then

either
 Analyze the call

or
 Produce a log with the calls and analyze it

Network IDS
 It monitors the network segment inbetween

two switches (a collision domain)
 The monitoring has to detect anomalous or

dangerous traffic
 The basic mechanism is sniffing, the same

one used by an attacker
 A dedicated host should be used for both

performance and security

NIDS + HIDS
 The two tools can cooperate through a

distinct interconnection network
 The real problem is how much one tool

can trust the other (mutual trust)
 The host running a tool may be attacked

and controlled by the attacker

NIDS+ HIDS = IDS = sensors+ engine
 The most coherent perspective consider a set of sensors and

an inference engine
 Each sensor monitors some components and transmits

information to the engine
 The engine applies a set of rules to the input from the

sensors to detect intrusions
 The communication among the engine and the sensors

exploits a segregated connection network
 It is important to determine whether two events are

independent because if several independent events signal an
intrusion, then the probability of a true positive increases

 Danger model = inspired by biology, rules that produces a
larger number of false positive may be applied as the
probability of an intrusion increases

IDS
 In any case, the adoption of an IDS has to be

trasparent for the user
 In several cases, the users should not to be

aware that an IDS has been adopted (it can
discover insider threats)

 Legal problems
 According to the italian law the adoption of any tool that

can be used to monitor a worker has to be authorized
by trade unions

IDS

 Which actions can be automatically taken as
soon as an IDS discover an attack?
 It is correct to take action on the target system: kill

an internet connection increase the amount of
data that are recorded in a log, ends some user
sections

 No action should be taken against other systems,
eg the attacker one, for two reasons:

 Stepping stones
 False positives

Intrusion Detection System

E-mail
 web
E-mail
 web

Accoun
ting
Accoun
ting

ResearchResearch

Local
Network

fw

fw

fw

Initial configuration Segmentation+Defence in Depth+IDS

nIDS

nIDS

nIDS

Security information and
event management =SIEM

Local
Network

Initial configuration

Segmentation+Defence in Depth+IDS

fw

fw

fw

nIDS

nIDS

nIDS

SIEM

Sensors
 Two kind of sensors

 off-line: they analyze the system and user logs to discover attacks
that have been implemented and their impact

 real-time: they analyze the current system behavior to discover
ongoing attacks and stop them before they are successfull

 real time
 Some compromises have to be accepted = minimize the number

of control to avoid a loss of performance
 Hardware supports, eg similar to the routing one for NIDS

 Off line = CIDF, common intrusion detection framework
standard for logs

 NIDS vs HIDS sensors
 hIDS

 It filter the requests from a user process to the OS,
the OS executes only requests that have not been
rejected

 It may slow down a host but any request is controlled
 nIDS is not involved in the service that manages

a given packet, there is no way to slow down the
receiving host
 NIDS has to be executed on a dedicated

host to analyze all the information flows

hIDS and nIDS technologies
 Base element that is analyzed

 IP packects and protocol events for a nIDS
 OS call for a hIDS
 They can be generalized if the hierarchy of

virtual machines is considered
 String of vm invocations for a hIDS
 A stream of information for a nIDS

 nIDS: some problems
 Fragmentation of IP packets
 Analysis of a TCP stream (reordering ..)
 Protocol analyis
 Normalization of a protocol to handle all

those cases that are not defined by a
standard (overlapping IP packets)

hIDS and nIDS technologies
 Anomaly detection

 By observing a system, a database is built that stores the normal
system behavior

 Behaviors that differ more than a predefined threshold are
signalled

 Zero day exploit

 Signature specification based
 Default allow (attack signatures have to be specified)

 A database storing attack signatures
 At run time any behavior matching one in the database is

signalled
 The update of the database is critical

 Default deny = legal behavior has to be specified

N&H-IDS: anomaly detection
First step: interesting measures
 Number of open file

 global & for each user
 Number of open port

 global & for each user
 Frequency of commands
 Number of connected user
 Time when a user connects
 Usage of system resources

N&H-IDS: anomaly detection
 An histogram is built by observing the system and by using a

number of intervals (eg 32)
 The intervals are chosen so that the last one include less

than 1% observations
 We monitor the system for a time interval (we observe the

value of interest at each minute, for 30 days) and build the
distribution that pairs each interval with a probability = long
term distribution

 We monitor the system for a shorter interval (eg. at each
minute for two hours) and build a short term distribution

 An anomaly arises if the two distributions differs

Generating a distribution
 Defined starting from an histogram of

the observations

1 2 31 32

Number of
Observations in the
corresponding
interval

The probability
is computed
by normalizing =
Ratio of observation
In an interval

N&H-IDS: anomaly detection
 The difference between two discrete distributions

is the sum of the absolute differences between
two corresponding intervals

 Dist= |longi-shorti|
 Several distributions of the same measures can

be generated by distinct observation frequency or
for distinct cases
 Open files

 Read the number at each minute or at each hour
 Read the number for each user or group of users

N&H-IDS: anomaly detection
 The IDS raises an allarm anytime the absolute

difference is larger than a user defined threshold
 The observations collected to build the short

term distribution are used to
 Discover anomalies and signal attacks
 Update the long term distribution to mimic the system

evolution (a weigthed sum is used)
 The long term distribution is updated at predefined

times (eg at the end of the day) rather than in real
time

N&H-IDS: anomaly detection
 The overall system behavior may be

seen as a learning system
 Initially, the system learns its normal

behavior
 The learning and the discover of

anomalous behavior are a life long
property of the system

N&H-IDS: anomaly detection
 The definition of anomaly is related to a user

defined threshold
 A large threshold corresponds to a large

difference among behaviors 
A few false positives, several false negatives

 A small threshold corresponds to a small
difference among behaviors 

 A few false negatives, several false positives
 Different measures, different set of meausures

correspond to distinct ROC curves

Anomaly detection: an example

 Nides = next generation intrusion detection
system

 To protect military systems
 First rigorouse definitions of long and short term

distributions
 Measure

 Continuous = any value
 Categorical = one value in a predefined range
 Binary
 IDS related = The IDS activity is measured as well

NIDES - SRI - Continuous - I
 UCPU User CPU time
 SCPU System CPU time
 IO Number of character exchanged

in an application execution
 MEMCMB Largest amount of memory to

 execute the application
 MEMUSE Sum of the amount of memory

used multiplied by the time it
has been used = KByte*seconds.

NIDES - Continuous -II

 TEXTSZ Size of a segment
 OPENF Number of open file
 PGFLT Number of memory faults
 PGIN Number of disk pages read
 PRCTIME Elapsed time
 SIGNAL Number of received signals

NIDES - SRI - Categorical

 UID New user name if changed
 HOUR Hour when the application

began
 RNETHOST Name of the remote host that

has invoked the program
 LNETHOST Name of the local host that

has invoked the program
 RNETTYPE Name of the application

invoked by the remote host

NIDES – SRI - Binary
 RNET Application executed on a

remote host
 LNET Application executed on a

local host

NIDES – IDS related
 INTARR continuous Seconds from the last

record
 I60 continuous Number of audit records

produced in 1 min
 I600 continuous Number of audit records

produced in 10 min
 I3600 continuous Number of audit records

produced in 1 hour

NIDES – Learning time - I

NIDES – Learning time - II

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

A real user

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

A server

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

An OS process

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

ROC curves

Detecting Masqueraders in Clouds based on
Security Events and NetFlow Data Analysis

Hisham A. Kholidy, Fabrizio Baiardi, and Salim Hariri

ROC curves
For local +networks
events

N&H-IDS: signature detection
 The overall behavior strongly resembles an

antivirus tool
 A pattern database (signature) for known attacks,

each action is matched against each pattern
 Currently the pattern may be stored in a server in a

cloud actions are checked there
 Any matching is recorded
 Anytime a pattern has been fully matched, an

alarm is fired

N&H-IDS: signature detection
 Describe an attack against a system where the IDS

stores its signature database in a cloud
 List some countermeasures

N&H-IDS: signature detection
 Wrt to Antivirus some differences:

 Dynamic generation of the elements to be
matched

 The time inbetween two consecutive generations
is unknown

 An element can match several patterns
 The complexity is much larger for IDSes

than for antivirus where we match a
sequence of characters in a file against a
set of patterns

 Cloud does not help here

N&H-IDS: signature detection
 msg=p1 msg=p2 msg=p1

 If the recognizer is currently in state 3 and a
packet = p1 is sniffed then the next state may be
 The one following 3 = 4
 The one following 1 = 2

 A nondeterministic behavior is required = the
status of the automata is both 2 and 4

1 32 3 4

Nimbda Signature (log)
GET /scripts/root.exe?/c+dir

GET /MSADC/root.exe?/c+dir

GET /c/winnt/system32/cmd.exe?/c+dir

GET /d/winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /_vti_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /_mem_bin/..%5c../..%5c../..%5c../winnt/system32/cmd.exe?/c+dir

GET /msadc/..%5c../..%5c../..%5c/..\xc1\x1c../..\xc1\x1c../..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x1c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0/../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc0\xaf../winnt/system32/cmd.exe?/c+dir

GET /scripts/..\xc1\x9c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%35c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%5c../winnt/system32/cmd.exe?/c+dir

GET /scripts/..%2f../winnt/system32/cmd.exe?/c+dir

HTTP-WHISKER-SPLICING-ATTACK-SPACE

Signature Snort compatible (snort,prelude,etc)

alert TCP $EXTERNAL any -> $INTERNAL 80 (msg: "IDS296/web-misc_http-whisker-splicing-attack-
space"; dsize: <5; flags: A+; content: "|20|"; classtype: suspicious; reference: arachnids,296;)

 Signature Dragon Sensor

T D T B 10 0 W IDS296:web-misc_http-whisker-splicing-attack-space /20

 Defenseworx Signature

1 B 6 T 0 80 [IDS296/web-misc_http-whisker-splicing-attack-space] "\20"

Pakemon Signature IDS296/web-misc_http-whisker-splicing-attack-space tcp * 80 "|20|"

Shoki Signature

tcp and (dst port 80) and (ip[2:2] > ((ip[0:1] & 0x0f) + (tcp[12:1] & 0xf0) + 5)) and (tcp[13]&16!=0) 65536
SEARCH IDS296 web-misc_http-whisker-splicing-attack-space '0x20' ALL 1 NULL

N&H-IDS:
signature detection & evasion

 When sniffing a packet P the NIDS has no mean
to anticipate
 Whether P will be received
 How P will be handled

 An attacker can iniject packets to hide other ones
or to confuse the IDS (eg packet with a wrong
checksum that will be discarded by the receiver)

 Encrypted traffic is a further problem

Bypassing NIDS - Fragmentation

 NIDS must reconstruct fragments
 Maintain state = drain on resources
 Must overwrite correctly = more drain on

resources
 Target server correctly de-frags
 Attack #1 - just fragment
 Attack #2 - frag with overwrite
 Attack #3 - start an attack, follow with

many false attacks, finish the first attack

Bypassing NIDS - TCP un-sync

 Inject a packet with a bad TCP checksum
 fake ‘FIN’ packet

 Inject a packet with a weird TCP
sequence number
 step up
 wrapping numbers

Bypassing HIDS -
 Stack Protection

 Stackguard
 A ‘canary’ is placed next to return address
 Program halts and logs if canary is altered
 Canary can be random or terminating
 Bypass: overwrite return address without

touching canary
 Fix: XOR the return address and the canary
 Yet another example of an arms race

NIDS - Overwhelming

 Send as many false attacks as possible
while still doing the real attack
 May overload console
 May drop packets
 Admins may not believe there is a threat

 Send packets that “cost” the NIDS CPU
cycles to process
 Fragmented, overlapping, de-synchronized web

attacks with the occasional bad checksum

NIDS - ‘Slow Roll’

 Port scans and sweeps
 Obvious: incremental destination ports
 Trivial: randomized ports
 Sweep: one port and many addresses
 Stealthy: random ports and addresses over

time

IP addresses

P
o
r
t
s

Port sweep
Port scan

Plotting all destination
ports from one source IP
to a target network …

IP addresses

P
o
r
t
s

random Simple port walk

Still maps out
a network with
one IP address

N&H-IDS: signature detection
 New attacks can be detected only if the

database is continuously updated and after the
update

 The detection of unknown attacks is fully
delegated to anomaly detection only

 Anomaly detection can discover a new attack
provided that it results in some anomaly for
some time

NIDS e HIDS: new attacks??
 An alternative approach considers the IDS as

a rule base expert system
 A rule database rather than a pattern database
 Rules describe attacks and anomaly

 A generalization (abstraction) procedure can
be applied to rules to discover, at least,
variants of attacks that are already known

Snort

 Freeware.
 Designed as a network sniffer.
 Useful for

– traffic analysis.
– intrusion detection.

 Warning: Has become a target of attackers!
 What’s more fun for them than to find a vulnerability

in security software.

Snort
 Snort is a good sniffer.
 Snort uses a detection engine, based on

rules.
 Packets that do not match any rule are

discarded.
 Otherwise, they are logged.
 Rule matching packets can also trigger

an alert.

Snort Basics
 Intrusions have “signatures”
 Examples

 Directory Traversal Vulnerability
 Solaris Sadmind/IIS worm (2001)

 Allowed HTTP GET requests to change to root directory
with “../../”.

 Allowed to copy cmd.exe into the Scripts directory.
 Gained control usually at admin level

GET/ scripts/../../winnt/system32/cmd.exe /c+

copy+\wint\system32\CMD.exe+root.exe

Snort Basics
 Code Red Worm 2001

 Exploited vulnerability in IIS 4.0 and 5.0
 Buffer overflow vulnerability
 Footprint:

/default.ida?
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNN
%u9090%u6858%ucbcd3%7801%u9090%u6805%ucb
d3%u7801

Snort Architecture

 Sniffer
 Preprocessor
 Detection Engine
 Alert Logging

Using Snort

● NIDS mode
● Load snort with a set of rules, configure packet

analysis plug-ins, and let it monitor hostile network
activity

● Sniff mode
● Logger mode

SNORT Architecture

 Packet Sniffer
 Taps into network

 Preprocessor
 Checks against plug-ins

 RPC plug-in
 Port scanner plug-in
 …

SNORT Architecture
 Detection Engine

 Signature-based implemented via rule-sets
 Rules

 Consists of rule header
 Action to take
 Type of packet
 Source, destination IP address
 …

 And rule option
 Content of package that should make the packet match the

rule

SNORT Architecture
 Snort Alerting
 Incoming “interesting packets” are sent

to log files.
 Also sent to various Add-ons

 SnortSnarf (diagnostics with html output)
 SnortPlot (Perl script that plots attacks)
 Swatch (provides email alerts).
 …

Snort: Architecture
 Packet Decode Engine

 Uses the libpcap package
 Packages are decoded for link-level protocols, then for

higher protocols.
 Preprocessor Plug-ins

 Each preprocessors examines and manipulates packages,
e.g. for alerts.

 Detection Engine
 Checks packages against the various options in the snort

rules files.
 Detection Plug-Ins

 Allow additional examinations
 Output Plug-Ins

Snort: Architecture

Package View:
 NIC in promiscuous mode.
 Grab packages from the network card.
 Decode packages
 Run through various rule sets.
 Output logs and alerts.

Snort Rules

 Rules contains the rule header and the
rule option.

alert tcp !10.1.1.0/24 any -> 10.1.1.0/24 any (flags: SF; msg: “SYN-FIN scan)

Alerts to traffic from outside the 10.1.1.x subnet to the 10.1.1.x subnet with the
Syn and the Fin flags set.

Snort Rules: Example

 Rule Header
 alert tcp $External_NET any -> $Home_Net21

 Rule Options
 (msg: “ftp Exploit”; flow_to_server, established;

content: “|31c031db 41c9b046 cd80 31c031db|”;
reference: bugtraq,1387; classtype:attempted-
admin; sid 344; rev4;)

Snort Rules
 Rule Header

 Action
 tcp: Protocol being used. UDP / IP / ICMP
 $External_NET: This is the source IP, default is any.
 any: This is the source port set to “any”
 ->: Direction of conversation.
 $Home_Net: This is a variable that Snort will replace with
 21: Port to be monitored.

 The header concerns all tcp packages coming from
any port from the outside to port 21 on the inside.

Snort Rules: Action

alert: generate an alert using the selected method
and log

log: log the packet
pass: ignore the packet
activate: alert and then turn on another dynamic rule
dynamic: idle until activated by a rule, then act as a log rule
drop: block and log the packet
reject: block the packet, log it, and then send a TCP reset

if TCP or an ICMP port unreachable if UDP
sdrop: block the packet but do not log it.

Snort Rules

 Rule Header Fields
 Protocol Field

 TCP
 UDP
 ICMP
 IP
 Others (ARP, RARP, GRE, …) to come

Snort Rules
 Rule Header Fields

 Source and Destination IP Address Field
 Format: Address/netmask or any or

 Address x.x.x.x
 Netmask = bits of network mask
 For example

 24.0.0.0/8 Class A
 24.3.0.0/16 Class b
 192.185.67.0/24 Class C
 192.185.67.188 host address

 Special keywords:
 any
 ! (negation)
 $HOME_NET (variable defined elsewhere)

Snort Rules

 TCP: TCP protocol, for example SMTP,
HTTP, FTP

 UDP: For example DNS traffic
 ICMP: For example ping, traceroute.
 IP: For example IPSec, IGMP

Snort Rules
Rule Options

 (): Rule option is placed in parentheses.
 msg: “ftp Exploit”;
 flow_to_server, established;
 content: “|31c031db 41c9b046 cd80 31c031db|”; Snort will look

whether the package contains this string, the dangerous payload.
 reference: bugtraq,1387; Snorts allow links to third-party warnings.
 classtype:attempted-admin; Class Types allow users to quickly scan

for attack types
 sid 344; Snort rule unique identifier. Can be checked against

www.snort.org/snort-db.
 rev4; All rules are part of a revision process to limit false positives

and detect new attacks.

Snort Rules

 Rule Options
 Msg Option = message to print

alert udp any any -> 129.210.18.0 / 24 31337 \

(msg: “Back Orifice”;)

 [**] Back Orifice [**]

05/10-08:44:26.398345 192.120.81.5:60256 -> 129.210.18.34:31337

UDP TTL:41 TOS:0x0 ID:49951

Len: 8

Rule:

Log:

Snort Rules Options

 The heart of intrusion detection engine,
 Four major categories of rule options.

General : provide information about the rule but
do not affect detection

Payload: look for data inside the packet
payload and can be inter-related

Non-payload: look for non-payload data

Post-detection: rule specific triggers that happen after
a rule has ``fired.''

Snort Rules

 Rule Options
 Separated by parentheses

alert tcp !$HOME_NET any -> $HOME_NET any (flags: SF; \

msg: “Syn-Fin” scan”;)

Snort Rules

 Rule Options
 Logto Option

 Specifies filename to which to log the activity.
 Allows to separate the annoyances from the

truly dangerous.

alert udp any any -> 129.210.18.0 / 24 31335 \
(msg: “trinoo port”; logto “DDoS”)

Snort Rules

 Rule Options, not paylod
 TTL option

 Allows to use the time to live field in packet
 Format: ttl: number

alert udp any any -> 129.210.18.0 / 24 33000;34000 \
(msg: “Unix traceroute”; ttl: 1;)

Snort Rules

 Rule Options
 ID option

 16-bit value found in the IP header of each
datagram.

alert udp any any -> 129.210.18.0 / 24 33000;34000 \
(msg: “Suspicious IP Identification”; ID: 0;)

Snort Rules

 Rule Options
 Dsize option

 Size of payload

alert icmp any any -> 129.210.18.0 / 24 any \
(msg: “Large ICMP payload”; dsize: >1024;)

Snort Rules

 Rule Options
 Sequence Option

 Value of tcp sequence number
 Ack option

 Value of ack number in tcp

alert tcp any any -> any any \
(msg: “Possible Shaft DDoS”; seq: 0x28374839;)

alert tcp any any -> any any \
(msg: “nmap tcp ping”; flags: A; ack: 0;)

Snort Rules

 Rule Options
 Itype and Icode Options

 Select ICMP message type and operations code

alert icmp 1.1.1.0/24 any -> 129.210.18.0 / 24 any \
(msg: “port unreachable”; itype: 3; icode: 3;)

Snort Rules

 Rule Options
 Flags option

alert tcp any any -> any any \
(msg: “null scan”; flags: 0;)

Snort Rules

 Rule Options
 Content Option

alert udp $EXTERNAL_NET any -> $HOME_NET 53 \
(msg: “Exploit bind tsig Overflow attempt”; \
content: “|00 FA 00 FF|”; content: “/bin/sh”;)

Snort Rules
 Rule Options

 Offset option
 Specifies offset of content

 Depth option
 Specifies how far into packet to search for content

 Nocase option
 Makes content searches case insensitive

 Regex Option
 Allows wildcards in content searches

Snort Rules

 Rule Options
 Session Options

 Allows to capture TCP session.
 Rest Option

 Allows an automatic active response
 Tag Option

 Allows to dynamically capture additional
packages after a rule triggers.

Rule Order

 A packet is checked shuold be checked in the order

 drop > pass > alert > log this order.
 This scheme is the most secure since no packet passes through without

being checked against all drop rules
 However most of the packets are normal traffic and do not show any

intruder activity. Testing all of the packets against all alert rules requires
a lot of processing power. You can change this order to a more efficient,
but more dangerous.

Pass > Drop > Alert > Log

Structure of the Bro System

Network

libcap

Event engine

Policy Script Interpreter

Packet Stream

Filtered Packet Stream

Event Stream

Real time notification
Policy script

Event Control

Tcpdump filter

Bro - libcap

• It’s the packet capture library used by
tcpdump.

• Isolates Bro from details of the network link
technology.

• Filters the incoming packet stream from the
network to extract the required packets.

• E.g port finger, port ftp, tcp port 113 (Ident),
port telnet, port login, port 111 (Portmapper).

• Can also capture packets with the SYN, FIN,
or RST Control bits set.

Bro – Event Engine

• The filtered packet stream from the libcap is
handed over to the Event Engine.

• Performs several integrity checks to assure
that the packet headers are well formed.

• It looks up the connection state associated
with the tuple of the two IP addresses and
the two TCP or UDP port numbers.

• It then dispatches the packet to a handler for
the corresponding connection.

Bro – TCP Handler

• For each TCP packet, the connection handler
verifies that the entire TCP Header is present
and validates the TCP checksum.

• If successful, it then tests whether the TCP
header includes any of the SYN/FIN/RST
control flags and adjusts the connection’s
state accordingly.

• Different changes in the connection’s state
generate different events.

Policy Script Interpreter

• The policy script interpreter receives the
events generated by the Event Engine.

• It then executes scripts written in the Bro
language which generates events like logging
real-time notifications, recording data to disk
or modifying internal state.

• Adding new functionality to Bro consists of
adding a new protocol analyzer to the event
engine and then writing new events handlers
in the interpreter.

Application Specific Processing -
Finger

Finger request

Event Engine

Generates Finger_request
event

Script interpreter

Tests for buffer overflow,
checks the user against
sensitive ids, etc

Event Engine

Generates event controls
based on the policy

Finger reply

Using a pubblic network
 Several institution have to connect remote,

local networks
 Leased lines are too expensive
 The most convenient connection exploits a

pubblic network, eg the internet
 The connection security is very low because

information flows on a pubblic network
 This is a particular case of a problem we

will meet again in clouds

Countermeasures - Robustness
 Virtual Private Network

 It emulates a secure connection on top of
an unsafe connection

 Assuming that each local network is
protected by a firewall, secure connections
are established among the firewalls

 Secure = integrity and confidentiality are
achieved by encrypting the traffic between
any pair of firewalls

VPNVLAN
 VLAN denotes a logical network that is

set up to minimise the number of
conflicts

 A vlan is built by pairing
 Transmission frequency
 Tags
with a subset of the nodes

 No security property

Virtual Private Network

InternetInternet

net 4net 4

net 1net 1

net 2

net 3

Encrypted
communication

Virtual Private Network
 Symmetric Encryption due to the large

amount of transmitted data
 A distinct key for each pair of firewalls
 The key is updated according to the

amount of exchanged data
 The key is chosen in a preamble and

changed according to the amount of
information that is exchanged

VPN and symmetric encryption - I

 The simpliest strategy to share a key
without transmitting it is the
Diffie_Helmann protocol
 each firewall produces a number
 All-to-all exchange
 After the exchange, each firewall produce a

key for each partner
 Man-in-the-middle attack

Diffie-Hellman

chooses chooses

This exchange cannot
be authenticated

VPN and symmetric encryption -II

 Each firewall pubblish a pubblic key and
know the corresponding secret key

 The two keys makes it possible to
compute a symmetric key

 Data to be exchanged is protected with
the symmetric key

 IP v6

VPN: a shared problem
 Any implementation of any VPN may be the

target of a Denial of Service attack
 A VPN decrypts any message it receives. If the

output satisfies the protocol, it forwards the
cleartext otherwise it discards the message

 On receiving a flood of fake messages, the
receiver will be busy to discard them and cannot
run legal applications or receive legal messages

 This shows that any security solutions that only
applies encryption cannot guarantee resource
availability

IPSEC
 An IPv4 extension to authenticate and encrypt

information flows, to be used till IPv4 will be replaced by
IPv6  

 There are further solutions that offer security service at
distinct level of the OSI stacks (PGP, HTTPS, SSL, etc).

 Two IPSEC behaviours (protocols)
 Authentication Mode = authentication header
 Encapsulated Security Payload = the information is encrypted
 Both protocols can be used in one of two modes

 Transport Mode = the original packet is updated
 Tunnel Mode = the old IP is protected and becomes the information

of a new packet

IPSEC can also be used between

• two hosts (even clients),

• a gateway and an host

• two gateways.

By replacing IP with IPSEC, we increase communication
security in a more transparent way for the involved
hosts

No update to the software or hardware network
components to adopt IPSEC.

IPSEC

IPSEC defines the following, further protocols

AH (Authentication Header) it protect the integrity of
and authenticate the data

ESP (Encapsulating Security Payload) it offers
confidentiality because of encryption.

IKE (Internet Key Exchange) two partners can agree
on the key to be used and on how long it should
be used

ISAKMP (Internet Security Association and Key
Management Protocol) it is used to set up and
update “ Security Association (SA)” and their
attributes

IPSEC

A Security Association (SA) is a directed connection
that also defines the security services paired with the
traffic it transmits

To secure a bidirectional connection, two SAs are
required, one in each direction

An SA also includes any information to execute the
security services

The security services of an SA are implemented either
through AH or through ESP. In general the protocols
are never applied simultaneously

IPSEC

SA unidirectional

SPI – Header field

There are two types of SA that introduce some
updates to an IP packet:

Transport mode (SA between two hosts) the security
header immediately follows the IP header.

Tunnel mode (at least one end point is a gateway)
there are two IP headers
• The first one is the more external one and it shows
 where the tunnel ends
• The inner one defines the packet final destination

IPSEC

IPSEC

Authentication Header (AH)

IPSEC

Encapsulating Payload Protocol (ESP)

IPSEC

Authentication Mode

ESP

IPSEC

IPSEC Authentication Header (AH)

Original IP packed

MD5/SHA-1

Authenticated packet

IPSEC: ESP in Transport Mode

IP packet with ESP in Transport mode

Original IP packet

IPSEC

IPSEC: ESP in Tunnel Mode

new IP
 header

IP packet ESP + Tunnel mode

Original IP packet

Applying several SAs

SSL = applicative VPN

Four protocols

SSL vs IPSEC

SSL

Can they be swapped?
Why?

SSL
 Fragment, at most 16384 bytes (2**14)
 SSLv3 does not specify a compression

method
 No information loss, and length increase

should be lower than 1024
 Default = no compression

 Encryption methods
 Idea (128) des (56) triple des (168)
 Stream cipher: rc4-40, rc4-128

Some definitions

 session:
 association between a client and a server that defines a set of

parameters such as algorithms used, session number etc.
 a session is created by the Handshake Protocol that allows

parameters to be shared among the connections made between the
server and the client, and sessions are used to avoid negotiation of
new parameters for each connection.

 connection: logical client/server link, associated with the provision of a
suitable type of service. In SSL terms, it is a peer-to-peer connection with
two network nodes.

 A single session is shared among multiple SSL connections between the
client and the server. Multiple sessions may be shared by a single
connection, but this is not used in practice.

Session state

Session identifier: an arbitrary byte sequence, chosen by the server to
identify the state of an active section and can be reused to continue the
session ;

 Peer certificate: the node certificate that may not exist;
 Compression method: the algorithm to compress the data;
 Cipher spec: the encryption algorithm and the one use to compute the

MAC. It also defines cryptographic attributes as the hash_size;
 Master secret: a 48 byte secret information shared by the client and the

server that will be used to compute the encryption keys;
 Is resumable: a flag that shows if the section can be reused

Connection State

The connection state is defined by the following parameters:

 Server and client random: a random byte sequence chosen by the client
and by the server for each connection ;

 Server write MAC secret: to compute the MAC on the server data ;
 Client write MAC secret: to compute the MAC on the client data;
 Server write key: to encrypt the data server  client ;
 Client write key: to encrypt the data client  server ;
 Initialization vectors: a data for Cipher Block Chaining encryption. IS

is shared by both partners because it is needed
both to encrypt and to decrypt.

 Sequence numbers 0.. 264-1: each partner stores and manages the sequence
numbers to send and receive messages on each
connection. A number is zeroed when one
partner sends a change cipher spec.

Record Protocol

 Frames and encrypts upper level data into one
protocol for transport through TCP (reliable
communications)

 5 byte frame
 1st byte protocol indicator
 2nd byte is major version of SSL
 3rd byte is minor version of SSL
 Last two bytes indicate length of data inside

frame, up to 214

 Message Authentication Code (MAC)

The Four Protocols

 Handshaking Protocol
 Establish communication variables

 ChangeCipherSpec Protocol
 Alert to a change in communication variables

 Alert Protocol
 Messages important to SSL connections

 Application Protocol: the one that is
encrypted

Message Authentication Code

 MAC secures connection in two ways
 Ensure Client and Server are using same

encryption and compression methods
 Ensure messages sent were received without

error or interference
 Both sides compute MACs to match them
 No match = error or attack

MAC

hash(MAC_write_secret || pad_2 || hash(MAC_write_secret || pad_1 || seq_num
|| SSLCompressed.type || SSLCompressed.length || SSLCompressed.fragment))

where :
 ||= concatenation;
 MAC_write_secret: secret shared key;
 hash: hash algorithm (MD5 o SHA-1);
 pad_1: byte 0x36 (00110110) repeated 48 times (384 bit) for MD5 and 40 (320

bit) for SHA-1;
 pad_2: byte 0x5C (01011100) repeated 48 times for MD5 and 40 for SHA-1;
 seq_num: sequential number of the message;
 SSLCompressed.type: higher level protocol to be applied;
 SSLCompressed.length: length of the compressed packet;
 SSLCompressed.fragment: compressed fragment (the clear text fragment if no

compression is applied).

Handshaking Messages

 ClientHello
 ServerHello
 *Certificate
 ServerKeyExchange
 *CertificateRequest
 ServerHelloDone
 *Certificate
 *CertificateVerify
 ClientKeyExchange
 ChangeCipherSpec
 Finished

*=optional

*=optional

In brief ...

1. The client sends the server the client's SSL version number, cipher settings,
a nonce, and possibly a request for the server's certificate.

2. The server sends the client the server's SSL version number, cipher settings,
a nonce, its own certificate, and requests the client’s certificate if it is needed.

3. Client authenticates the server (warning box if it fails).
4. Client creates the premaster secret for the session, encrypts it with the

server's public key and sends it to the server. Client also sends its own
certificate, if requested.

5. Server authenticates the client (terminates session if authentication fails).
6. Server uses its private key to decrypt the premaster secret, then performs a

series of steps (which the client also performs, starting from the same premaster
secret) to generate the shared master secret (shared session key). Client
simultaneously computes session key.

7. Client and server inform each other that they have computed a session key, and
both signal termination of the handshake protocol.

Premaster secret vs secret

master_secret = MD5(pre_master_secret || SHA(‘A’ || pre_master_secret ||
ClientHello.random || ServerHello.random) || MD5(pre_master_secret || SHA(‘BB’ ||
pre_master_secret || ClientHello.random || ServerHello.random)) ||
MD5(pre_master_secret || SHA(‘CCC’ || pre_master_secret || ClientHello.random ||
ServerHello.random));

 X.509 certificates
 Version: Which version of the X.509 standards is applied (v1, v2 or v3)
 Serial number: Assigned by the CA to identify the certificate;
 Signature algorithm: the algorithm the CA uses to sign the certificate.
 Issuer: the X.500 Distinguished Name of the signing CA ;
 Validity period: The lifetime of the certificate;
 Subject: the DN of the entity that is identified by the certificate;
 Subject Public key information: information on the subject pubblic key

 Public key algorithm: algorithm used to generate the pubblic and private keys .
 RSA Public key:key length;
 Modulus: the modulo N used to sign ;
 Exponent: the exponent e used to sign.

 Signature algorithm: the certificate signature encrypted by the CA private key

Detail: The process begins

 Client Sends ClientHello
 Highest SSL version supported
 32-byte random number
 SessionID
 List of supported encryption methods
 List of supported compression methods

Detail: The Server Responds

 Server Sends ServerHello
 SSL version that will be used
 32-byte random number
 SessionID
 Encryption method that will be used
 Compression method that will be used

Detail Server Authentication

 To authenticate Server, Server sends
Certificate
 Server’s public key certificate
 Issuing authority’s root certificate

 When Client receives Certificate, it decides
whether or not to trust Server
 This is the only step that might involve User if

User never specified whether or not to trust
the issuing authority before

Detail: Still Shaking Hands

 Server Sends ServerKeyExchange
 Any information necessary for public key

encryption system
 If Server wishes Client to be authenticated,

Server sends CertificateRequest message
 The client would respond to this with a

Certificate message encrypted with Server’s
public key

 Server sends ServerHelloDone

Detail: Client Responds

 Client sends ClientKeyExchange
 Information necessary for public key

encryption system
 Encrypted with Server’s public key

 Compute secret keys using Key Derivation
Function such as Diffie-Hellman

 If Client is being authenticated, Client
sends CertificateVerify
 Digest of previous messages encrypted with

Client’s private key

Detail ChangeCipherSpec Protocol

 Special protocol with only one message
 When Client processes encryption

information, it sends ChangeCipherSpec
message
 Signals all following messages will be

encrypted
 ChangeCipherSpec is always followed by

Finished message

Detail: The End of the Beginning

 Upon receipt of ChangeCipherSpec, Server
sends its own ChangeCipherSpec and
Finished messages

 After both Client and Server receive Finish
messages, Handshaking phase is over

 All following communication is encrypted
 Encryption and compression methods can

be changed with new ChangeCipherSpec
messages

Alert and Application Protocols

 Alert protocol always two byte message
 First byte indicates severity of message

 Warning or Fatal
 A Fatal alert will terminate the connection

 Second byte indicate preset error code
 Secure connection end alert not always used

 Application Protocol is HTTP, POP3, SMTP,
or whatever application is being used
 Simply give a datagram to the Record Layer

Alert = Exception

 unexpected_message;
 bad_record_mac;
 decompression_failure;
 handshake_failure: the sender cannot negotiate an acceptable set of parameters
 illegal_parameter: an uncorrect handshake parameter.
 close_notify: sent by each side before closing its side of the connection
 no_certificate: reply if no certificate can be used ;
 bad_certificate: the received certificate has been manipulated
 unsupported_certificate: the receiver certificate is not supported ;
 certificate_revoked, _expired, _unknown: the certificate has been revoked, or is out

of date or it cannot be elaborated

Benefits

 Ease of implementation
 For network application developers

 As easy as implementing unsecured Sockets
 For network implementation developers

 Simply add layer to established network protocol
stack

 For Users
 Only need to authorize certificates

Drawbacks

 More bandwidth needed
 Slower
 Needs a dedicated port – 443 for HTTPS
 Assumes reliable transport for underlying

transport protocol
 No UDP
 Implications for streaming media, VoIP

Countermeasures - OS
 An OS that can implement a large set of

security policy rather than a predefined one
 Implemented by the OS rather than emulated

on top the OS using the OS one
 Large set of choices = MAC + DAC + RBAC ...
 It increases the security of the applications it

supports

Security Enhanced Linux
 A set of mechanisms to implement MAC + DAC

security policies
 A set of tools that support

 A simple description of the security policy of interest
 Check the consistency of the description
 Force the adoption of the policy

 Evolution of two OSs: Flask e Fluke
 Both are microkernel OS
 NSA + NAI + MITRE

SELinux - NSA

The increased awareness of the need for security has resulted in an increase of
efforts to add security to computing environments. However, these efforts suffer
from the flawed assumption that security can adequately be provided in
application space without certain security features in the operating system. In
reality, operating system security mechanisms play a critical role in supporting
security at higher levels. This has been well understood for at least twenty five
years and continues to be reaffirmed in the literature. Yet today, debate in the
research community as to what role operating systems should play in secure
systems persists. The computer industry has not accepted the critical role of the
operating system to security, as evidenced by the inadequacies of the basic
protection mechanisms provided by current mainstream operating systems. The
necessity of operating system security to overall system security is undeniable;
the underlying operating system is responsible for protecting application-space
mechanisms against tampering, bypassing, and spoofing attacks. If it fails to
meet this responsibility, system-wide vulnerabilities will result.

An interesting comment...

Let me assure you that this action by the NSA was
the crypto-equivalent of the Pope coming down off
the balcony in Rome, working the crowd with a few
loaves of bread and some fish, and then inviting
everyone to come over to his place to watch the
soccer game and have a few beers. There are some
things that one just never expects to see, and the
NSA handing out source code along with details of
the security mechanism behind it was right up there
on that list.

Why do we need a SE Linux and not only
Linux?

Definition of the
security policy

SeLinux vs Linux

 Linux defines the user rights
 Selinux defines

 The rights of each program
 The programs that each user can run

 Rights are defined in terms of types, of
roles and of levels
 Type1 can do this op on type2
 This role can run program with these types

SE - Linux
 Final goal: the security policy is a

configuration parameter
 Both MAC and DAC security policy can be

defined
 No notion of root user
 Model to define security policies is based

upon Flask and Fluke

In brief

 DAC = Discretionary Access Control = user rights
are defined by the owner

 MAC = Mandatory Access Control = system wide
constrains that the owner has to respect

 RBAC = Role Based Access control = rigths
defined according to the user role

 Role= set of users = distinct rights of the same
user at distinct times

 MLS = multilevel security = MAC constrain defined
in terms of levels of subjects and objects

General Model - SID
 Each subject and each object is paired with a

security context, the one used to solve access
control decisions

 Context = type, level, role
 This information is stored in a security server that

is invoked before executing an operation
 Each process can only access a logical pointer to

this context that it transmits to the server

We have already seen this
Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

Relazioni tra nomi, ruoli etc

Type Enforcement

 Object(s): items in a system that are acted upon (files, IPC,
sockets, etc….)

 Subject(s): process that are requesting access to an object

 All Objects and Subjects contain a security context

 Security Context(s) are composed of four parts

 All Security Context components are checked against the
policy to see if access is allowed.

 Type is the base component while role and user are used to
further restrict type enforcement

TE Access Control

 Source type(s): The domain type of the process accessing the

object

 Target type(s): The type of the object being accessed by the

process

 Object class(es): The class of object to permit access to

 Permission(s): The kind of access permitted for the indicated

object class

allow user_t bin_t : file {read execute write getattr setattr}

Type Enforcement

 Several major keywords

 type

 attribute

 typeattribute

 typealias

 allow

 dontaudit

 auditallow

 neverallow

Type Enforcement

rule_name src_type_set target_type_set : class_set perm_set;
allow user_t bin_t : file { read getattr } ;
allow user_t bin_t : dir { read getattr search } ;

#invalid since file does not have a search permission
allow user_t bin_t { file dir } {read getattr search } ;
#valid

#dontaudit when this access is denied
dontaudit httpd_t etc_t : dir search ;

#audit when this access is allowed
#by default allowed access is not audited
auditallow domain shadow_t : file write ;

#This statement may never be allowed by any rule
neverallow user_t shadow_t : file write

allow user_t bin_t : { file dir } * ;
allow user_t bin_t : file ~{ write setattr ioctl };

Domain Transitions

 Analogous to SetUID programs

 Joe running as user_t (untrusted user) needs to change his
password. How does Joe change his password?

 allow user_t passwd_exec_t : file {getattr execute}

 allow passwd_t passwd_exec_t : file entrypoint

 allow user_t passwd_t : process transition

 What does this solve? Restricts trusted domain passwd_t and
allows user_t to transition to it.

 Implicit domain transitions provided via type_transition.

Users & Roles

 First and second component of a security context

 SELinux usernames and DAC usernames are not

synonymous

 Roles are collections of types geared towards a purpose

 Roles can be used to further restrict actions on the system

 SELinux usernames are granted roles in the system

MLS

 MLS portion of Security Context is composed of 4 parts

 Low/High

 Sensitivity/Category

 Includes syntax to define dominance of security levels

 Subjects with range of levels considered trusted subjects

 Implements a variation of Bell-La Padula

Architecture

LSM

 Kernel framework for security modules

 Provides a set of hooks to implement further security checks

 Usually placed after existing DAC checks and before

resource access

 Implications? SELinux check is not called if the DAC fails

 Makes auditing difficult at times.

SELinux LSM Module

User Space

Kernel Space

Selinux Filesystem

Access
Vector
Cache

Security Server
(Policy Rules and

Access Decision Logic)
LSM

Hooks

Various
Kernel

Object
Managers

Cache Miss

Yes or No?

SELinux LSM Module

Policy
Management

Interface

Figure taken from SELinux by
Example

General Model - PSID
 PSID = SID for persisten object
 Each file system includes a file to map each

inode into a PSID and then into a context
 This file is used when the file system is

mounted

General model - Interactions

Enforcement with no
informatio about the
security policy

Security policy with no
enforcement

SID and Context

Caching

We reduce security to reduce the overhead

PSID

Userspace Object Managers

Access
Vector
Cache

libselinux

User-Space

Object Manager

User Space

Kernel Space

Selinux Filesystem

Policy
Management

Interface

Allow

access?

Yes or
No?

Access
Vector
Cache

Security Server
(Policy Rules and

Access Decision Logic)

Cache Miss
Yes or No?

Policy Server

Access
Vector
Cache

libselinux

User-Space

Object Manager

Figure taken from SELinux by
Example

User Space

Kernel Space

Selinux Filesystem

Policy

Managemen
t

InterfaceCache Miss?

Yes or
No?

User-Space
Security Server

Policy
Management

Server

Load

User

Policy

Policy Server

Access
Vector
Cache

Security Server
(Policy Rules and

Access Decision Logic)

Cache Miss
Yes or No?

Policy Language

Make, Scripts,
M4, and so on

Type Enforcement
Statements

(Types, TE Rules,
Roles, Users)

Constraints

Resource labeling
Specifications

Classes and Permissions

Checkpolicyy

Binary Policy
File

Kernel Space

Selinux Filesystem

Access
Vector
Cache

Security Server
(Policy Rules and

Access Decision Logic)

Cache Miss

Yes or No?

SELinux LSM Module

load_policy

Policy Source

 Modules
policy.conf

SELinux – Policy - Tools

SELinux – Policy
 The description of a policy is rather complex

even in the case of simple policies
 As an example, to specify the Linux policy

 29 types
 121 operations
 27.000 rules

 Little support for an high level description and
to check the consistency of a policy

SELinux - Implementation

Linux Security Module
To support policy configuration

SELinux – Implementation
Implementation of Linux standard
Security policy

Overhead due to SE

This points out that the cost is
• Acceptable if we consider the execution overhead
• Fairly large if we consider the complexity of the

description

Webstone

Creates a load on a Web server by simulating multiple clients which
can be thought of as users, Web browsers that retrieves files from a
Web server. This simulation is carried out using multiple Web clients
running on one or more computers. It is possible to run in excess of
100 simulated Web clients on a single computer.
In order to create large loads on a Web server, WebStone is able to
distribute Web clients among client computers. The Webmaster is
the program that controls all of the testing done by WebStone. It
can be run on one of the client computers or on a separate
computer. The Webmaster distributes the Web client software and
test configuration files to the client computers. The Webmaster
combines the performance results from all the clients into a single
summary report.

AppArmor

AppArmor, supplements rather than replaces the default
Discretionary Access Control (DAC). As such it's impossible to
grant a process more privileges than it had in the first place.

SELinux attaches labels to all files, processes and objects and is
therefore very flexible. However configuring SELinux is very
complicated and requires a supported filesystem.

AppArmor on the other hand works using file paths and its
configuration can be easily adapted.

AppArmor

AppArmor proactively protects the operating system and applications
from external or internal threats and even zero-day attacks by
enforcing a specific rule set on a per application basis.
Security policies completely define what system resources individual
applications can access, and with what privileges. Access is denied by
default if no profile says otherwise.
A few default policies are included with AppArmor and using a
combination of advanced static analysis and learning-based tools,
AppArmor policies for even very complex applications can be
deployed successfully in a matter of hours.
Every breach of policy triggers a message in the system log and with
real-time violation warnings popping up on the desktop.

Profile Modes

AppArmor operates in the following two types of profile
modes:

Enforce
In the enforce mode, system begins enforcing the rules
and report the violation attempts in syslog or auditd
and operation will not be permitted.

Complain
In the complain mode, system doesn’t enforce any
rules. It will only log the violation attempts.

Profile

/usr/sbin/mysqld {
 #include <abstractions/base>
 ...
 capability dac_override,
 capability sys_resource,
 capability setgid,
 capability setuid,
 network tcp,
 /etc/hosts.allow r,
 /etc/hosts.deny r,
 /etc/mysql/*.pem r,
 /etc/mysql/conf.d/ r,
 /etc/mysql/conf.d/* rw,
 /etc/mysql/*.cnf r,
 }

Path entries: This has information
on which files the application is
allowed to access.

Capability entries: determines the
privileges a confined process is
allowed to use.

Network entries: determines the
connection-type. For example:
tcp. For a packet-analyzer
network can be raw or packet etc.

Example - NSA NetTop

Classified
VM

VPN

Internet
VM

Firewall

SE-Linux

NetTop = SE-Linux + VMware
 SE-Linux:

 Security-Enhanced Linux
 Mandatory Access Control with flexible security

policy
 VMware Workstation:

 VMs configuration limited by security policy
 NetTop:

 Locked-down SE-Linux policy
 No networking on the host itself

Attributes of VMware Virtual Machines

 Software compatibility
 Runs pretty much all software
 BIOS, OS, Apps, viruses, …

 Near-native performance
 Encapsulation

 Virtual machines are not tied to physical machines
 Consolidation

 Run multiple VMs on a single desktop or server
 Isolation

Isolation at multiple levels
 Data :

 Each VM is managed independently
 Different OS, disks ( files, registry), MAC address ( IP

address)
 Data sharing is not possible = Each file system is a SE Linux

file

 Faults:
 Crashes are contained within a VM

 Performance
 Guaranteed performance levels for individual VMs

 Security
 No assumptions on the software running inside a VM.

Flexible Networking: VMnets

Physical LAN

 VM

VM

VM

VM

Host
NIC

Virtual networ devices

Mandatory Interposition on all I/O

 2 levels of mandatory I/O interposition
(VM level and OS level)

 Guest cannot directly initiate I/O
 All guest I/O operations mediated by VMware

 VMware relies on the host for I/O access
  VMware process uses system calls to execute

all I/O requests.
 Example: networking, disk I/O

I/O Interposition example: Networking

TCP

IP

Eth

vlance

vmnet

Guest

VMware

Host

I/O access

System Call

lance

Processes running on the Host system

 “See without being seen” advantage
 Very difficult within a computer
 Possible on the host

 Observation points:
 Networking (through vmnet)
 Disk I/O (read and write)
 Any other I/O
 Physical Memory of the VM

Why NetTop?

Example: Access to classified networks

 Traditional tension : Security vs. Usability
 Secure systems are not that usable

 E.g: require some particular OS setups
 Flexible systems are not that secure

 Many documented examples

 Additional requirement:
 Data cannot flow between networks of different

classification
 Conventional solution:

 Dedicate distinct computer for access to each
network

Security of Isolation
 Q: How securely isolated are the virtual

machines?
 A: Pretty well …

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Definition
	Classification
	Level of Interaction
	Diapositiva 20
	Physical V.S. Virtual Honeypots
	Production HPs: Protect the systems
	Research HPs: gathering information
	Building your HoneyPots
	Diapositiva 25
	Location of Honeypots
	Capturing Information
	Logging and Managing Data
	What is Honeyd?
	What can honeyd do?
	Illustration Simple
	How it works?
	Why Personality Engine?
	Why Routing topology?
	What is a Honeynet
	Diapositiva 36
	What’s The Difference?
	How it works
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	Diapositiva 78
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Usage of Packet Filters
	How to Configure a Packet Filter
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Security & Performance of Packet Filters
	Port Numbering
	Diapositiva 93
	Firewalls – Stateful Packet Filters
	Diapositiva 95
	Firewall Gateways
	Diapositiva 97
	Firewalls - Application Level Gateway (or Proxy)
	Application-Level Filtering
	App-level Firewall Architecture
	Diapositiva 101
	Diapositiva 102
	Diapositiva 103
	Diapositiva 104
	Diapositiva 105
	Diapositiva 106
	Diapositiva 107
	Diapositiva 108
	Diapositiva 109
	Diapositiva 110
	Diapositiva 111
	Diapositiva 112
	Diapositiva 113
	Diapositiva 114
	Diapositiva 115
	Diapositiva 116
	Diapositiva 117
	Diapositiva 118
	Diapositiva 119
	Diapositiva 120
	Diapositiva 121
	Diapositiva 122
	Diapositiva 123
	Diapositiva 124
	Diapositiva 125
	Diapositiva 126
	Diapositiva 127
	Diapositiva 128
	Diapositiva 129
	Diapositiva 130
	Diapositiva 131
	Diapositiva 132
	Diapositiva 133
	Area under ROC curve (AUC)
	AUC for ROC curves
	Diapositiva 136
	Problems with AUC
	Diapositiva 138
	Diapositiva 139
	Diapositiva 140
	Diapositiva 141
	Diapositiva 142
	Diapositiva 143
	Diapositiva 144
	Diapositiva 145
	Diapositiva 146
	Diapositiva 147
	Diapositiva 148
	Diapositiva 149
	Diapositiva 150
	Diapositiva 151
	Diapositiva 152
	Diapositiva 153
	Diapositiva 154
	Diapositiva 155
	Diapositiva 156
	Diapositiva 157
	Diapositiva 158
	Diapositiva 159
	Diapositiva 160
	Diapositiva 161
	Diapositiva 162
	Diapositiva 163
	Diapositiva 164
	Diapositiva 165
	Diapositiva 166
	Diapositiva 167
	Diapositiva 168
	Diapositiva 169
	Diapositiva 170
	Diapositiva 171
	Diapositiva 172
	Diapositiva 173
	Diapositiva 174
	Diapositiva 175
	Diapositiva 176
	Diapositiva 177
	Diapositiva 178
	Bypassing NIDS - Fragmentation
	Bypassing NIDS - TCP un-sync
	Bypassing HIDS - Stack Protection
	NIDS - Overwhelming
	NIDS - ‘Slow Roll’
	Diapositiva 184
	Diapositiva 185
	Diapositiva 186
	Diapositiva 187
	Diapositiva 188
	Diapositiva 189
	Diapositiva 190
	Diapositiva 191
	Diapositiva 192
	Diapositiva 193
	Diapositiva 194
	Diapositiva 195
	Diapositiva 196
	Diapositiva 197
	Diapositiva 198
	Diapositiva 199
	Diapositiva 200
	Diapositiva 201
	Diapositiva 202
	Diapositiva 203
	Diapositiva 204
	Diapositiva 205
	Diapositiva 206
	Diapositiva 207
	Diapositiva 208
	Diapositiva 209
	Diapositiva 210
	Diapositiva 211
	Diapositiva 212
	Diapositiva 213
	Diapositiva 214
	Diapositiva 215
	Diapositiva 216
	Diapositiva 217
	Diapositiva 218
	Diapositiva 219
	Diapositiva 220
	Diapositiva 221
	Diapositiva 222
	Diapositiva 223
	Diapositiva 224
	Diapositiva 225
	Diapositiva 226
	Diapositiva 227
	Diapositiva 228
	Diapositiva 229
	Diapositiva 230
	Diapositiva 231
	Diapositiva 232
	Diapositiva 233
	Diapositiva 234
	Diapositiva 235
	Diapositiva 236
	Diapositiva 237
	Diapositiva 238
	Diapositiva 239
	Diapositiva 240
	Diapositiva 241
	Diapositiva 242
	Diapositiva 243
	Diapositiva 244
	Diapositiva 245
	Diapositiva 246
	Diapositiva 247
	Diapositiva 248
	Diapositiva 249
	Diapositiva 250
	Diapositiva 251
	Diapositiva 252
	Diapositiva 253
	Diapositiva 254
	Diapositiva 255
	Diapositiva 256
	Diapositiva 257
	Diapositiva 258
	Diapositiva 259
	Diapositiva 260
	Record Layer
	The Four Upper Layer Protocols
	Message Authentication Code
	Diapositiva 264
	Handshaking Messages
	Diapositiva 266
	Diapositiva 267
	Diapositiva 268
	Diapositiva 269
	The Process Begins
	The Server Responds
	Server Authentication
	Still Shaking Hands
	Client Responds
	ChangeCipherSpec Protocol
	The End of the Beginning
	Alert and Application Protocols
	Diapositiva 278
	Benefits
	Drawbacks
	Diapositiva 281
	Diapositiva 282
	Diapositiva 283
	Diapositiva 284
	Diapositiva 285
	Diapositiva 286
	Diapositiva 287
	Diapositiva 288
	Diapositiva 289
	Diapositiva 290
	Diapositiva 291
	Type Enforcement
	TE Access Control
	Diapositiva 294
	Diapositiva 295
	Domain Transitions
	Users & Roles
	MLS
	Architecture
	LSM
	SELinux LSM Module
	Diapositiva 302
	Diapositiva 303
	Diapositiva 304
	Diapositiva 305
	Diapositiva 306
	Userspace Object Managers
	Policy Server
	Policy Language
	Diapositiva 310
	Diapositiva 311
	Diapositiva 312
	Diapositiva 313
	Diapositiva 314
	Diapositiva 315
	Diapositiva 316
	Diapositiva 317
	Diapositiva 318
	Diapositiva 319
	Diapositiva 320
	Diapositiva 321
	Diapositiva 322
	Diapositiva 323
	Diapositiva 324
	Diapositiva 325
	Diapositiva 326
	Diapositiva 327
	Diapositiva 328
	Diapositiva 329
	Diapositiva 330

