
Peter Pietzuch - Imperial College London

ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

Peter Pietzuch - Imperial College London

Syllabus

• Security
• New Threat Model
• New Attacks Cloud provider
• Countermeasures

Enclaves encryption + execution

Outline

• 1. Motivation: Trustworthy data processing in untrusted clouds

• 2. Overview of Intel SGX

• 3. Description of SGX-LKL Design

• 4. Description of preliminary SGX-Spark Design

• 5. Source code release of Java support on GitHub

1. Motivation: Trustworthy Data
Processing

Trust Issues: Provider Perspective

• Cloud provider does not trust users

• Use virtual machines to isolate
users from each other and the host

• VMs only provide one way protection

Redis

OS

VMM

Firmware

Cloud
platform

Staff

…

tr
u
st

e
d

5

Trust Issues: User Perspective

• Users trust their applications

• Users must implicitly trust
cloud provider

• Existing applications implicitly
assume trusted operating system

Redis

OS

VMM

Firmware

Cloud
platform

Staff

…

u
n
tr

u
st

e
d

6

Trusted Execution Support with Intel SGX

• Users create HW-enforced
trusted environment (enclave)

• Supports unprivileged
user code

• Protects against strong attacker
model

• Remote attestation
• Available on

commodity CPUs

OS

VMM

Firmware

Cloud
platform

Staff

…

u
n
tr

u
st

e
d

Enclave

7

Trusted Execution Support with Intel SGX

8

Trusted Execution Support with Intel SGX

• Users create HW-enforced
trusted environment (enclave)

• Supports unprivileged
user code

• Protects against strong attacker
model

• Remote attestation
• Available on

commodity CPUs

OS

VMM

Firmware

Cloud
platform

Staff

…

u
n
tr

u
st

e
d

Enclave

9

2. Overview of Intel SGX

10

Trusted Execution Environments

• Trusted execution environment (TEE)
in process

– Own code & data

– Controlled entry points

– Provides confidentiality & integrity

– Supports multiple threads

– Full access to application memory

User process

Application
code

Application
data

Enclave

OS Enclave

Enclave
code

Enclave
data

Threads
…

11

Intel Software Guard Extensions (SGX)

• Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
– Skylake (2015), Kaby lake (2016)

• Protects confidentiality and integrity of code & data in untrusted
environments

– Platform owner considered malicious

– Only CPU chip and isolated region trusted

In a few words

13

SGX Enclaves
• SGX introduces notion of enclave

– Isolated memory region for code & data

– New CPU instructions to manipulate enclaves
and new enclave execution mode

• Enclave memory encrypted and integrity-
protected by hardware

– Memory encryption engine (MEE)

– No plaintext secrets in main memory

• Enclave memory can be accessed only by enclave code
– Protection from privileged code (OS, hypervisor)

• Application has ability to defend secrets
– Attack surface reduced to just enclaves and CPU

– Compromised software cannot steal application secrets

Process

OS

Enclave

Hypervisor

✘✘
✘
✔

Enclaved page cache

Memory Access Control

MAC from enclaves to “outside”:

● All memory access has to conform to segmentation and paging policies by the
OS/VMM.

● Enclaves cannot manipulate those policies, only unprivileged instructions inside an
enclave.

● Code fetches from inside an enclave to a linear address outside that enclave will
results in a General Protection Fault (0)exception.

●

From “outside” to enclaves

● Non-enclave accesses to EPC memory results in abort page semantics.
● Direct jumps from outside to any linear address that maps to an enclave do not

enable enclave mode and result in a about page semantics and undefined behavior.
● Hardware detects and prevents enclave accesses using logical-to-linear address

translations which are different than the original direct EA used to allocate the page.
Detection of modified translation results in General Protection Fault (0).

SGX Instructions and Data Structures:

• 18 Instruction
– 13 Supervisor Instructions.

– 5 User Instructions.

• 13 Data Structures
– 8 data structures associated to a certain enclave.

– 3 data structures associated to certain memory page(s).

– 2 data structures associated to overall resource management.

SGX Supervisor Instructions:

• ENCLS[EADD] Add a page

• ENCLS[EBLOCK] Block an EPC page

• ENCLS[ECREATE] Create an enclave

• ENCLS[EDBGRD] ENCLS[EDBGWR] Read/Write data by debugger

• ENCLS[EEXTEND] Extend EPC page measurement

• ENCLS[EINIT] Initialize an enclave

• ENCLS[ELDB] Load an EPC page as blocked

• ENCLS[ELDU] Load an EPC page as unblocked

• ENCLS[EPA] Add version array

• ENCLS[EREMOVE] Remove a page from EPC

• ENCLS[ETRACK] Activate EBLOCK checks

• ENCLS[EWB] Write back/invalidate an EPC page
26

SGX User Instructions:

• User Instruction Description
• ENCLU[EENTER] Enter an Enclave
• ENCLU[EEXIT] Exit an Enclave
• ENCLU[EGETKEY] Create a cryptographic key
• ENCLU[EREPORT] Create a cryptographic report
• ENCLU[ERESUME] Re-enter an Enclave

27

SGX Data Structures in Details:

• SGX Enclave Control Structure (SECS) Represents one enclave and it store Hash, ID, size
etc.

• Thread Control Structure (TCS) one for each thread in the enclave. It stores Entry
point, pointer to SSA.

• State Save Area (SSA) It save the state of the running threat when an AEX
occurs

• Page Information (PAGEINFO) data structure used as a parameter to the EPC-
management instruction

• Linear Address, Effective address of the page (aka
virtual address)

 SECINFO + SECS

• Security Information (SECINFO) Meta-data about an enclave page

 R/W/X,Page type (SECS, TCS, normal page or VA)

• Paging Crypto MetaData (PCMD): Crypto meta-data of a paged-out page. With
PAGEINFO it used to verify, decrypt, and reload a
paged-out pag

• EWB writes out (the reserved field and) MAC values.

 ELDB/U reads the fields and checks the MAC.

 Contains Enclave ID, SECINFO and MAC

SGX Data Structures in Details:

Version Array (VA)

• Each VA page is an EPC page to securely store the versions of evicted EPC pages with 512 slots,
each with an 8-byte version number for a page evicted from the EPC.

– When an EPC page is evicted, an empty slot in a VA page receives the unique version number
of the evicted page

– When the EPC page is reloaded, a VA slot must hold the page version when the VA slot is
cleared.

–

– When evicting a VA page, a version slot in some other VA page must be used to receive the
version for the VA being evicted.

SGX Data Structures in Details:
• Enclave Page Cache Map (EPCM): used by the processor to track the contents of the EPC.

– EPCM is a secure structure the processor uses to track the contents of the EPC. It holds exactly one entry for each page
currently loaded into the EPC. EPCM is not accessible by software, and the field layout is implementation specific.
Contains, for instance, RWX, page type, linear address, state etc.one entry for each page currently loaded into the EPC.

• Enclave Signature Structure (SIGSTRUCT): information about the enclave from the enclave signer.

– ENCLAVEHASH as SHA256 and four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2).

• EINT Token Structure (EINITTOKEN):
– used by EINIT to verify that the enclave is permitted to launch.
– Contains, attributes, hash and signer of the enclave.
– Authenticated with a cryptographic MAC on EINITTOKEN using Launch key.

• Report (REPORT): the output of the EREPORT instruction
– Attributes of the enclave
– Hash and signer of the enclave + data for communication between the enclave and the target enclave
– A CMAC on the report using report key

• Report Target Info (TARGETINFO):
– An input parameter to EREPORT to identify the enclave able to cryptographically verify the REPORT structure returned by

EREPORT.
– Contains attributes and hash of target enclave.

• Key Request (KEYREQUEST):

– An input parameter to the EGETKEY instruction to select the key and any additional parameters to derive that key.

30

31

Memory Encryption Engine

32

Memory Encryption Engine

33

Memory Encryption Engine: Integrity Tree

34

nonces

Memory Encryption Engine: Performance

35

SGX SDK Code Sample

SGX application: untrusted code

char request_buf[BUFFER_SIZE];
char response_buf[BUFFER_SIZE];

int main()
{
 ...
 while(1)
 {
 receive(request_buf);
 ret = EENTER(request_buf, response_buf);
 if (ret < 0)
 fprintf(stderr, "Corrupted message\n");
 else
 send(response_buf);
 }
 ...
}

Enclave: trusted code

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

Server:
• Receives encrypted requests
• Processes them in enclave
• Sends encrypted responses

36

SGX Enclave Construction

Enclave populated using special instruction (EADD)
• Contents initially in untrusted memory
• Copied into EPC in 4KB pages
Both data & code copied before execution commences in
enclave

char input_buf[BUFFER_SIZE];
char output_buf[BUFFER_SIZE];

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

EPC

DRAM
1
2

3

37

SGX Enclave Construction

• Enclave contents distributed in plaintext
– Must not contain any (plaintext) confidential data

• Secrets provisioned after enclave constructed and integrity
verified

• Problem: what if someone tampers with enclave?
– Contents initially in untrusted memory

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

int process_request(char *in, char *out)
{
 copy_msg(in, input_buf);
 if(verify_MAC(input_buf))
 {
 decrypt_msg(input_buf);
 process_msg(input_buf, output_buf);
 copy_msg(output_buf, external_buf);
 encrypt_msg(output_buf);
 copy_msg(output_buf, out);
 EEXIT(0);
 } else
 EEXIT(-1);
}

Write unencrypted response to outside
memory

SGX Enclave Attestation

• Is my code running on remote machine intact?
• Is code really running inside an SGX enclave?

• Local attestation
– Prove enclave’s identity (= measurement) to another enclave on same

CPU

• Remote attestation
– Prove enclave’s identity to remote party

• Once attested, enclave can be trusted with secrets

39

SGX Enclave Measurement

• CPU calculates enclave measurement hash during enclave
construction

– Each new page extends hash with page content and attributes
(read/write/execute)

– Hash computed with SHA-256

• Measurement can be used
to attest enclave to local or
remote entity

CPU calculates enclave measurement hash
during enclave construction
Different measurement if enclave modified

EPC

DRAM CPU

c0 94 7d bc 35 52 ba

9a 16 a6 63 0b 72 09

0d 0f 15 0b d0 2d ae
1a 55 f9 2f a8 20 98

40

Local Attestation

• Prove identity of A to local enclave B

1. Target enclave B measurement required for key generation
2. Report contains information about target enclave B, including its measurement
3. CPU fills in report and creates MAC using report key, which depends on random CPU fuses

and target enclave B measurement
4. Report sent back to target enclave B
5. Verify report by CPU to check that generated on same platform, i.e. MAC created with same

report key (available only on same CPU)
6. Check MAC received with report and do not trust A upon mismatch

CPU

Enclave A Enclave B
1. Hi! I’m 5f904ba8910bff! Who are you?

0d 0f 15 0b d0 2d ae

Measurement (enclave A)

5f 90 4b a8 91 0b ff

Measurement (enclave B)2. Please create a report for
5f904ba8910bff

0d 0f 15 0b d0 2d ae

3. Here you go!

4. Here is my report

0d 0f 15 0b d0 2d ae

5. Please give me my report
verification key

6. Here you go!

41

Remote Attestation

• Transform local report to remotely verifiable “quote”

• Based on provisioning enclave (PE) and quoting enclave (QE)
– Architectural enclaves provided by Intel

– Execute locally on user platform

• Each SGX-enabled CPU has unique key fused during
manufacturing

– Intel maintains database of keys

42

Remote Attestation

• PE communicates with Intel attestation service
– Proves it has key installed by Intel

– Receives asymmetric attestation key

• QE performs local attestation for enclave
– QE verifies report and signs it using attestation key

– Creates quote that can be verified outside platform

• Quote and signature sent to remote attester, which
communicates with Intel attestation service to verify quote
validity

43

SGX Limitations & Research Challenges

• Amount of memory enclave can use needs to be known in
advance

– Dynamic memory support in SGX v2

• Security guarantees not perfect
– Vulnerabilities within enclave can still be exploited

– Side-channel attacks possible

• Performance overhead
– Enclave entry/exit costly

– Paging very expensive

• Application partitioning? Legacy code? …

3. Description of SGX-LKL

45

SGX-LKL: Supporting Managed Runtimes in
SGX

• Many applications need runtime support
– JVM

– .NET

– JavaScript/V8/Node.js

•
• Requires complex system support

– Dynamic library loading

– Filesystem support

– Signal handling

– Complete networking stack

SGX-LKL: Linux Kernel Library in SGX
Enclaves

• Based on Linux Kernel Library (LKL)
– Implemented as architecture-specific port of mainline Linux

(github.com/lkl)

– Follows Linux no MMU architecture

– Full filesystem support

– Full network stack available

47

SGX-LKL Architecture

• Runs unmodified Linux applications in SGX enclaves
• Applications and dependencies provided via disk image
• Full Linux kernel functionality available

• Custom memory allocator
• User-level threading

– In-enclave synchronisation
primitives

SGX-LKL Architecture: How many instructions
in enclaves

49

4. Description of SGX-Spark

Secure Big Data Processing

• Processing of large amounts of sensitive information
• Outsourcing of data storage and processing
• Cloud provider can access processed data

– Not acceptable for number of industries

def main(args: Array[String]) {

 new SparkContext(new SparkConf())

 .textFile(args(0))

 .flatMap(line => {line.split(" ")})

 .map(word => {(word, 1)})

 .reduceByKey{case (x, y) => x + y}

 .saveAsTextFile(args(1))

}
O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1 Taskn

O
S

T
E
E

JVM

Spark

T.
.
.

OS

JVM

Spark

Task1 Taskn

O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1 Taskn

O
S

T
E
E

JVM

Spark

.

.

.

OS

JVM

Spark

Task1 Taskn

Task 1 Task n

Distributed File System

Apache Spark

• Spark is built on the concept of distributed datasets, which contain
arbitrary Java or Python objects.

• You create a dataset from external data, then apply parallel
operations to it. The building block of the Spark API is its RDD API. In
the RDD API, there are two types of operations: transformations, which
define a new dataset based on previous ones, and actions, which kick
off a job to execute on a cluster.

• On top of Spark’s RDD API, high level APIs are provided, e.g.
DataFrame APIand Machine Learning API. These high level APIs
provide a concise way to conduct certain data operations. In this
page, we will show examples using RDD API as well as examples
using high level APIs.

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/mllib-guide.html

Secure Machine Learning

• Secure machine learning (ML) killer application for Maru
– Resource-intensive thus good use case for cloud usage

– Raw training data comes with security impliations

• Complex implementations of ML algorithms cannot be adapted
for SGX

– Consider Spark MLlib with 100s of algorithms

• Challenges
– Extremely data-intensive domain

– Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, …)

– ML requires accelerators support (GPUs, TPUs, …)

– Prevention of side-channel attacks

State of the Art

• Protect confidentiality and integrity of tasks and input/output
data

• Opaque [Zheng, NSDI 2017]
– Hide access patterns of distributed data analytics (Spark SQL)

– Introduces new oblivious relational operators

– Does not support arbitrary/existing Scala Spark jobs

• VC3 [Schuster, S&P 2015]
– Protects MapReduce Hadoop jobs

– Confidentiality/integrity of code/data; correctness/completeness of results

– No support for existing jobs → Re-implement for VC3

SGX Support for Spark

• SGX-Spark
– Protect data processing from infrastructure provider

– Protect confidentiality & integrity of existing jobs

– No modifications for end users

– Acceptable performance overhead

• Idea:
Execute only sensitive parts of Spark inside enclave

– Code that accesses/processes sensitive data

Code outside of enclave only accesses encrypted data
– Partition Spark

– Run two collaborating JVMs, inside enclave and outside of enclave

Spark

OS TEE

Spark
Manage-

ment

Taskn

OS SGX

JVM

Spark

Task1

Taskn

JVM

1. Partitioning Spark

• Goal: Move minimal amount of Spark code to enclave

56

Outside Enclave

HadoopRDD
Provide iterator over input data partition
(encrypted)

MapPartitionsRDD
Execute user-provided function (f)
(eg flatMap(line => {line.split(" ")})

(i) Serialise user-provided function f
(ii) Send f and it to enclave JVM
(iv) Receive result iterator it_result

(iii) Decrypt input data
(iv) Compute f(it) = it_result
(v) Encrypt result

ExternalSorter
Execute user-provided reduce function g
(eg reduceByKey{case (x, y) => x + y})

(iii) Decrypt input data
(iv) Compute g(it2) = it2_result
(v) Encrypt result

ResultTask
Output results

it

f,it

it2 = it_result

g,it2

it2_result

A partitioning framework

Data flow analysis for partitioning

Partitioning Spark

59

RDD

MapPartitions
RDD

HadoopRDD ResultTask

Task

ItConsumer ItProviderItProvider

SgxTask

SgxFirstTask SgxOtherTask SgxFct2

SgxMain

Communication Communication

ItConsumer

EncryptionEncryption Encryption EncryptionEncryption

Communication

Partitioning Spark

60

HadoopRDD A

ItProvider i

<outfile> <infile>

MapPartitions
RDD B

MapPartitions
RDD C

ResultTask

IItConsumer k

j=SgxTask(B,i) SgxTask B

ItConsumer i

SgxTask C
k=SgxTask(C,j)

i’

j’ j

k’

k

i

i,j,k

A,B,C,D

Outside

Enclave

Tasks

Iterators

Iterate via shm

ItProvider k

k

	Diapositiva 1
	Diapositiva 2
	Outline
	1. Motivation: Trustworthy Data Processing
	Trust Issues: Provider Perspective
	Trust Issues: User Perspective
	Trusted Execution Support with Intel SGX
	Diapositiva 8
	Diapositiva 9
	2. Overview of Intel SGX
	Trusted Execution Environments
	Intel Software Guard Extensions (SGX)
	In a few words
	Diapositiva 14
	Diapositiva 15
	
	SGX Enclaves
	Diapositiva 18
	
	
	
	
	Diapositiva 23
	
	SGX Instructions and Data Structures:
	SGX Supervisor Instructions:
	SGX User Instructions:
	SGX Data Structures in Details:
	Diapositiva 29
	SGX Data Structures in Details:
	
	Memory Encryption Engine
	Memory Encryption Engine
	Memory Encryption Engine: Integrity Tree
	Memory Encryption Engine: Performance
	SGX SDK Code Sample
	SGX Enclave Construction
	Diapositiva 38
	SGX Enclave Attestation
	SGX Enclave Measurement
	Local Attestation
	Remote Attestation
	Remote Attestation
	SGX Limitations & Research Challenges
	3. Description of SGX-LKL
	SGX-LKL: Supporting Managed Runtimes in SGX
	SGX-LKL: Linux Kernel Library inside SGX Enclaves
	SGX-LKL Architecture
	Diapositiva 49
	4. Description of SGX-Spark
	Secure Big Data Processing
	Apache Spark
	Secure Machine Learning
	State of the Art
	SGX Support for Spark
	1. Partitioning Spark
	Diapositiva 57
	Diapositiva 58
	1. Partitioning Spark
	1. Partitioning Spark

