ICT Risk Assessment

Fabrizio Baiardi
f.baiardi@unipi.it

Peter Pietzuch - Imperial College London

Syllabus

* Security

Cloud provider

Enclaves encryption + execution

Peter Pietzuch - Imperial College London

Outline

1. Motivation: Trustworthy data processing in untrusted clouds

2. Overview of Intel SGX

3. Description of SGX-LKL Design

4. Description of preliminary SGX-Spark Design

5. Source code release of Java support on GitHub

1. Motivation: Trustworthy Data
Processing

Trust Issues: Provider Perspective

Cloud provider does not trust users

Use virtual machines to isolate
users from each other and the host

VMs only provide one way protection

Trust Issues: User Perspective

Users trust their applications

Users must implicitly trust
cloud provider

©
Q
]
wn
-
-
—
[
>

Existing applications implicitly
assume trusted operating system

Trusted Execution Support with Intel SGX

Users create HW-enforced
trusted environment (enclave)

Supports unprivileged
user code

Protects against stronq attacker

e
Available on
P commodity CPUs

Remote attestation

untrusted

Trusted Execution Support with Intel SGX

iData Owrer's | fAemcte Computer
iCompaier : R 1
i i E | |1
e |
: | Computalbion I = | Comtaires :
= | CHspateher - 5 I
- = i a I
1 Setup oLt at o _E I
- E -
; : - R E Prireafe Comde I I
E Wearhsamlae Erﬂ".-l-p-l:z:n-:. —"'E' Pri Diats I I
- L]]
- == :
B o —— — e e | R I — e e
- : t
Trosts A oS, -
g 3?&
Daia Cissrear Ean ™ o i IS e b

Figure 1 Securns remols comppubalion. A user reles on a remols
compuber, ovned by an umtnested party, 1o perform soeme compailaticnm
omn her daka. The aoer has soemes assuramece o he compulsison s
imlegrMly amdl combfidenmahy.

Trusted Execution Support with Intel SGX

Users create HW-enforced
trusted environment (enclave)

Supports unprivileged
user code

Protects against stronq attacker

e
Available on
P commodity CPUs

Remote attestation

untrusted

2. Overview of Intel SGX

10N

Trusted Execution Environments

Trusted execution environment (TEE) .

In process

- Own code & data o

Enclave

Controlled entry points

code

Provides confidentiality & integrity

Enclave

Enel
nclave data

Supports multiple threads

Full access to application memory .
Application

code

Application
data

11

Intel Software Guard Extensions (9GX)

Extension of Instruction Set Architecture (ISA) in recent Intel CPUs
- Skylake (2015), Kaby lake (2016)

Protects confidentiality and integrity of code & data in untrusted
environments

- Platform owner considered malicious

- Only CPU chip and isolated region trusted

In a few words

1

Allow application developers to protect sensitive data from unauthorized access or
modification by rogue software running at higher privilege levels.

Enable applications to preserve the confidentiality and integrity of sensitive code and data
without disrupting the ability of legitimate system software to schedule and manage the use
of platform resources.

Enable the development of trusted applications using familiar tools and processes.

Allow the performance of trusted applications to scale with the capabilities of the underlying
application processor.

Enable software vendors to deliver trusted applications and updates at their cadence, using
the distribution channels of their choice.

Enable applications to define secure regions of code and data that maintain confidentiality
even when an attacker has physical control of the platform and can conduct direct attacks
on memory.

122

The Basic Issue: Why Aren’t Compute Devices
Trustworthy?

Protected Mode (rings) protects OS from apps ..

Privileged Code

.. and apps from each other ...

.. UNTIL a malicious app exploits a flaw to gain full
privileges and then tampers with the OS or other apps

The Basic Issue: Why Aren’t Compute Devices
Trustworthy?

Code

Privileged Code

.. and apps from each other ...

.. UNTIL a malicious app exploits a flaw to gain full
privileges and then tampers with the OS or other apps

Application gains ability to defend

Its own secrets Attack surface with Enclaves
- Smallest attack surface (App + processor) sr

- Malware that subverts 0S/VMM, BIOS, Drivers m P | A
etc. cannot steal app secrets

Familiar development/debug
- Single application environment
- Build on existing ecosystem expertise

-~~~ Hardware

Attack Surface

SGX Enclaves
oy | oo

- Isolated memory region for code & data

- New CPU instructions to manipulate enclaves
and new enclave execution mode

Enclave memory enerypted and integrity-
protected by hardware 0s

Hypervisor

- Memory encryption engine (MEE)
- No plaintext secrets in main memory
Enclave memory can be accessed only by enclave code
- Protection from privileged code (OS, hypervisor)
Application has ability to defend secrets
- Attack surface reduced to just enclaves and CPU

- Compromised software cannot steal application secrets

Reduced attack surface with SGX

Application gains ability to defend

IS own secrets Attack surface with Enclaves
- Smallest attack surface (App + processor)

- Malware that subverts OS/VMM, BIOS, Drivers
etc. cannot steal app secrets

Familiar development/debug

- Single application environment
- Build on existing ecosystem expertise

==~ " Hardwar

Attack Surface

How SE Works: Protection vs. Software Attack

1. App is built with trusted
and untrusted parts

2. App runs & creates
enclave which is placed
in trusted memory

Privileged System Code

0S, VMM, BIOS, SMM, ...

How SE Works: Protection vs. Software Attack

Privileged System Code
0S, VMM, BIOS, SMM, ...

. App is built with trusted

and untrusted parts

. App runs & creates

enclave which is placed
in trusted memory

. Trusted function is

called; code running
inside enclave sees data
in clear; external access
to data is denied

. Function returns; enclave

data remains in trusted
memory

SGX Programming Environment

Trusted execution environment embedded in a process

Enclave

User Process

Enclave

With its own code and data
Provide Confidentiality
Provide integrity

With controlled entry points
Supporting multiple threads

SGX High-level HW/SW Picture

Instructions

.) EEXIT
Application EGETKEY
Environment EREPORT

EENTER
SGX User SGX User ERESUME

Runtime Runtime

Instructions eTRACK
ECREATE EwB

Privileged EADD ELD
Envi EEXTEND EpA
nvironment EINIT EREMOVE
EBLOCK

Hdw Data Structure

Hardwars
Exposed Runtime
Hardware A—

05 Data structure

Enclaved page cache

Memory Access Control

MAC from enclaves to “outside’:

« All memory access has to conform to segmentation and paging policies by the
OS/VMM.

* Enclaves cannot manipulate those policies, only unprivileged instructions inside an
enclave.

» Code fetches from inside an enclave to a linear address outside that enclave will
results in a General Protection Fault (0O)exception.

From “outside” to enclaves

* Non-enclave accesses to EPC memory results in abort page semantics.

 Direct jumps from outside to any linear address that maps to an enclave do not
enable enclave mode and result in a about page semantics and undefined behavior.

 Hardware detects and prevents enclave accesses using logical-to-linear address
translations which are different than the original direct EA used to allocate the page.
Detection of modified translation results in General Protection Fault (0).

SGX Access Control

Linear . Physical
Address Traditional [tees

|A Page Table
Checks

SGX Imstructions and Data Structures:

18 Instruction
- 13 Supervisor Instructions.

- 5 User Instructions.

13 Data Structures
- 8 data structures associated to a certain enclave.
- 3 data structures associated to certain memory page(s).

- 2 data structures associated to overall resource management.

SGX Supervisor Instructions:

ENCLS

ENCLS]

ENCLS
ENCLS

ENCLS]

ENCLS
ENCLS
ENCLS
ENCLS

ENCLS]

ENCLS
ENCLS

[EADD]
EBLOCK]

[ECREATE]

[EDBGRD] ENCLS[EDBGWR]
EEXTEND]

[EINIT
ELDB]
ELDU]
[EPA]
EREMOVE]
 ETRACK]
[EWB]

Add a page
Block an EPC page
Create an enclave
Read/Write data by debugger
Extend EPC page measurement
Initialize an enclave
Load an EPC page as blocked
Load an EPC page as unblocked
Add version array
Remove a page from EPC
Activate EBLOCK checks
Write back/invalidate an EPC page

SGX User Instructions:

User Instruction

ENCLU[EENTER]
ENCLU[EEXIT]
ENCLU[EGETKEY]
ENCLU[EREPORT]
ENCLU[ERESUME]

Description

Enter an Enclave

Exit an Enclave

Create a cryptographic key
Create a cryptographic report
Re-enter an Enclave

77

SGX Data Structures in Details:

SGX Enclave Control Structure (SECS)

etc.

Thread Control Structure (TCS)
point,

State Save Area (SSA)
OCCuUrs

Page Information (PAGEINFO)
management

virtual

Security Information (SECINFO)

Paging Crypto MetaData (PCMD):
PAGEINFO

paged-out pag

Represents one enclave and it store Hash, ID, size

one for each thread in the enclave. It stores Entry
pointer to SSA.

It save the state of the running threat when an AEX

data structure used as a parameter to the EPC-
instruction

Linear Address, Effective address of the page (aka
address)

SECINFO + SECS

Meta-data about an enclave page
R/W/X,Page type (SECS, TCS, normal page or VA)
Crypto meta-data of a paged-out page. With

it used to verify, decrypt, and reload a

FWR writec otit (the recerved field and)l MAC valiiec

SGX Data Structures in Details:

Version Array (VA)

Each VA page is an EPC page to securely store the versions of evicted EPC pages with 512 slots,
each with an 8-byte version number for a page evicted from the EPC.

- When an EPC page is evicted, an empty slot in a VA page receives the unigue version number
of the evicted page

- When the EPC page is reloaded, a VA slot must hold the page version when the VA slot is
cleared.

- When evicting a VA page, a version slot in some other VA page must be used to receive the
version for the VA being evicted.

SGX Data Structures in Details:

Enclave Page Cache Map (EPCM): used by the processor to track the contents of the EPC.

- EPCM is a secure structure the processor uses to track the contents of the EPC. It holds exactly one entry for each page
currently loaded into the EPC. EPCM is not accessible by software, and the field layout is implementation specific.
Contains, for instance, RWX, page type, linear address, state etc.one entry for each page currently loaded into the EPC.

Enclave Signature Structure (SIGSTRUCT): information about the enclave from the enclave signer.
- ENCLAVEHASH as SHA256 and four 3072-bit integers (MODULUS, SIGNATURE, Q1, Q2).

EINT Token Structure (EINITTOKEN):
- used by EINIT to verify that the enclave i1s permitted to launch.
- Contains, attributes, hash and signer of the enclave.
- Authenticated with a cryptographic MAC on EINITTOKEN using Launch key.

Report (REPORT): the output of the EREPORT instruction
Attributes of the enclave
Hash and signer of the enclave + data for communication between the enclave and the target enclave
A CMAC on the report using report key

Report Target Info (TARGETINFO):

- An input parameter to EREPORT to identify the enclave able to cryptographically verify the REPORT structure returned by
EREPORT.

- Contains attributes and hash of target enclave.

Key Request (KEYREQUEST):

- An input parameter to the EGETKEY instruction to select the key and any additional parameters to derive that key.
20

Protection vs. Memory Snooping Attacks

Non-Enclave
Access

+ Security perimeter is the
CPU package boundary

+ Data and code unencrypted
inside CPU package

+ Data and code outside CPU
package is encrypted and/or
integrity checked

+ External memory reads and
bus snoops see only
encrypted data

21

Memory Enceryption Engine

e

_—

it

s

" L

] - |

' = El' rm

-:l rEn |
L secma et : E

3

4 ' % a =0

S mibated transsctions o the s=ired regon — a 2 -

jverdfgfupdate che imtegrny tree| . - - B -
= = ._- m
Criomypaesd cransact o= b B Prosected region g é "y
______ _ -
S8

ranssctions bo pereral junprobecied] megpons -

Memory Enceryption Engine

Objective 1. Providing confidentiality for the data that is
written to the Protected region (on the DRAM).
Objective 2. Data iniegrity with replay prevention, as-
suring that data which is read back from the DEAM s Pro-
tected region to the CPU, is the same data that was most
recently written from the CPU to the DRAM.

Remark 1. The MEE is not designed to be an Oblivi-
ous RAM. An adversary with the assumed ability to track
DRAM changes over time, can, by definition, carry out
traffic analysis. He can learn when CL's are written, and
to which CL addresses (though the contents of this traffic
remains confidential). Preventing such analvsis is not an
objective of the MEE.

Property 1. The MEE keys are generated uniformly at
random at boot time, and never leave the die.

Property 2. The encryption keys and the authentication
kevs are separate.

Property 3 (Drop-and-lock policy). Tree verifications
(and updates) enforce the following “drop-and-lock™ pol-
icy. The MEE computes the MAC rags of dara that it reads,

and compares them to expected values, fetched from the
integrity free on the DRAM. If all comparisons maich, the
aperation continues. However, as soon as any mismaich is
detected, the MEE emits a failure signal, drops the trans-
acfion (i.e., no unverified data ever reaches the cache)
and immediately locks the MC (ie., no further transac-
rions are serviced). This causes the system to hang, and it
needs to be re-booted. After re-boot, the MEE starts over
with newly generated kevs.

22

Memory Encryption Engine: Integrity Tree

nonces

Memory Encryption Engine: Performance

Figure 3 Performance companson of the 443.gobmk

component of SPECINT 2006, with 10 mput files (see

s explanations In the text). The bars show that the perfors
mance degradation (in %) incurred by enabling the MEE,
vanes from 2.2% to 14%, with an average of 3.5%.

perizrmeEks degradaiion mpec lin%
* I
* Il -
« I
‘:':l:- .h.
I
* I i
* I
* I i
L
T
“ M

ac

SGX SDK Code Sample

SGX application: untrusted code

char request buf [BUFFER SIZE] ; Enclave: trusted code

char response buf [BUFFER SIZE];

char input buf[BUFFER_SIZE];
int main() char output buf[BUFFER SIZE];
{

e int process_request(char *in, char *out)
while (1) {

{ copy_msg(in, input buf);
receive (request buf) ; if (verify MAC (input buf))
ret = EENTER (request buf, response buf) ; { B B
if (ret < 0) decrypt _msg(input_buf) ;
fprintf (stderr, "Corrupted message\n") ; process msg(input buf, output buf);
else encrypt msg(output buf) ;
send (response_buf) ; copy_msg (output buf, out);
} EEXIT(O) ;
v } else
} EEXTIT (-1) ;

Receives encrypted requests
Processes them in enclave
Sends encrypted responses
G

SGX Enclave Construction

char input buf[BUFFER SIZE]; ~"tee—o
char output_buf [BUFFER_SIZE] ;

int process_request(char *in, char *out)
{
copy msg(in, input buf);
if (verify MAC (input_buf))
{
decrypt _msg(input_buf) ;
process_msg (input_buf, output buf);
encrypt msg(output_ buf) ;
copy_msg (output _buf, out);
EEXIT (0) ;
} else
EEXIT (-1) ;

Enclave populated using special instruction (EADD)
Contents initially in untrusted memory
Copied into EPC in 4KB pages

Both data & code copied before execution commences in

enclave .

SGX Enclave Construction

Enclave contents distributed in plaintext

- Must not contain any (plaintext) confidential data

Secrets provisioned after enclave constructed and integrity
verified

Problem: what if someone tampers with enclave?

- Contents initially in untrusted memory

int process_request(char *in, char *out) int process_request(char *in, char *out)
{ {
copy_msg(in, input_ buf); copy _msg(in, input buf) ;
if (verify MAC (input_buf)) if (verify MAC(input_buf))
{ {
decrypt msg(input buf) ; decrypt _msg(input_buf) ;
process msg(input_buf, output buf); process msg(input_buf, output buf);
encrypt msg (output_buf) ; [:::::C> copy _msg (output buf, external buf) ;
copy_msg (output_buf, out); encrypt msg(output_ buf) ;
EEXIT (0) ; copy_msg (output _buf, out);
} else EEXIT (0) ;

EEXIT (-1) ; } else
} EEXIT (-1) ;

SGX Enclave Attestation

Is my code running on remote machine intact?
Is code really running inside an SGX enclave?

- Local attestation

- Prove enclave’s identity (= measurement) to another enclave on same
CPU

- Remote attestation

- Prove enclave’s identity to remote party

Once attested, enclave can be trusted with secrets

20

SGX Enclave Measurement

CPU calculates enclave measurement hash during enclave
construction

- Each new page extends hash wi ar ent/andg'aﬂﬂbulﬁs
(read/write/execute) YETTETE—

- Hash computed with SHA-256 9a 16 a6 63 0b 72 09

0d 0f 15 0b dO0O 24 ae
la 55 £9 2f a8 20 98

Measurement can be used
to attest enclave to local or
remote entity

_ /

CPU calculates enclave measurement hash
during enclave construction

Different measurement if enclave modified
A0

Local Attestation

Prove identity of A to local enclave B

A 1. Hi! 'm 5£904ba8910b£f£! Who are you? ("

A

0d 0f 15 Ob dO0 2d ae 0d 0f 15 Ob dO 2d ae

) 4. Here is my report _

/ Measurement (enclave A) \
3. Heréxyou go!
0d 0f 15 Ob dO 2d ae

2. Please create a report for
5£904ba8910bff

5. Please give me my report

Measurement (enclave B)) .
verification key

_ o

. Target enclave B measurement required for key generation

.. Report contains information about target enclave B, including its measurement

;. CPU fills in report and creates MAC using report key, which depends on random CPU fuses
and target enclave B measurement

.. Report sent back to target enclave B

. Verify report by CPU to check that generated on same platform, i.e. MAC created with same
report key (available only on same CPU)

.. Check MAC received with report and do not trust A upon mismatch

N1

Remote Attestation

Transform local report to remotely verifiable “quote”

Based on provisioning enclave (PE) and quoting enclave (QE)
- Architectural enclaves provided by Intel

- Execute locally on user platform

Each SGX-enabled CPU has unique key fused during
manufacturing

- Intel maintains database of keys

i)

Remote Attestation

PE communicates with Intel attestation service
- Proves it has key installed by Intel

- Receives asymmetric attestation key

QE performs local attestation for enclave
- QE verifies report and signs it using attestation key

- Creates quote that can be verified outside platform

Quote and sighature sent to remote attester, which
communicates with Intel attestation service to verify quote
validity

N2

SGX Limitations & Research Challenges

Amount of memory enclave can use needs to be known in

advance

- Dynamic memory support in SGX v2

Security guarantees not perfect

- Vulnerabilities within enclave can still be exploited

- Side-channel attacks possible

Performance overhead Untrusted

component

- Enclave entry/exit costly

- Paging very expensive

AA~nnnlicrcranFiam mnar-yfiFiAanimnA~Aa? 1 Ay, ~AAAD

Attack
surface
Sensitive
< code
and data
Performance
overhead

TCB size

3. Description of SGX-LKL

A5

SGX-LKL: Supporting Managed Runtimes in
SGX

Many applications need runtime support

- JVM
- .NET
- JavaScript/V8/Node.|s
) P J f:—_{g)Java

Requires complex system support

- Dynamic library loading

- Filesystem support
- Signal handling

- Complete networking stack

SGX-LKL: Linux Kernel Library in $GX

Enclaves

Based on Linux Kernel Library (LKL)

Implemented as architecture-specific port of mainline Linux
(github .com/1k1l)

Follows Linux no MMU architecture

- Full filesystem support Legend
- Full network _stack available Core LKL API
Applicati
Unmodified Linux Kernel ppiication LKL to Host API
l * Synchronous call

Additional LKL virtual | Ikl_syscall()
lkl_trigger_irq() | computer architecture

R _Jgu_ ____________ & _______________ ‘} _____________ _Environment-indendent
: port of Linux

% Asynchronous call

Common virtio backend

Memory Threading Environment-specific
~native operations
Time Timers devices interfaces (Linux, MacOS,

i Semaphores Mutexes Block Network

Windows, etc.)

N7

SGX:-LKL Architecture

Runs unmedified Linux applications in SGX enclaves

Applications and dependencies provided via disk image

Full Linux kernel functionality available

Host

Network/block

LKL

Unmodified application

operations | device operations Syscall interface

Custom memory allocator

4

A |

Y Y

—I Y

User-level threading

Unmodified standard C wrappers not handled Unmodified standard C
by LKL (threading, synchronisation, memory, time)| |wrappers handled by LKL

- In-enclave synchronisation " Y
. .y malloc Ithread
prin 11tives Memory allocator | |Userland scheduler

v v

Unmodified system call stubs

Loader

~

Y

Unmodified system call server

[L —

loads as a shared library

SGX-LKL Architecture: How many instructions

inm enclaves

Application Total code size (LOCs) Enclave size (LOCs)
Memcached 31,000 12,000 (40%)
DigitalBitbox 23,000 8,000 (38%)
LibreSSL 176,000 38,000 (22%)

yile)

4. Description of SGX-Spark

Secure Big Data Processing

Processing of large amounts of sensitive information
Outsourcing of data storage and processing
Cloud provider can access processed data

- Not acceptable for number of industries

’\/‘ def main (args: Array[String]) {
. new SparkContext (new SparkConf ())
\ T~

.textFile (args (0))

.flatMap (line => {line.split(" ")})
.map (word => { (word, 1)})
.reduceByKey{case (x, y) => x + y}

.saveAsTextFile (args (1))

Apache Spark

Spark is built on the concept of distributed datasets, which contain
arbitrary Java or Python objects.

You create a dataset from external data, then apply parallel
operations to it. The building block of the Spark API is its RDD API. In
the RDD API, there are two types of operations: transformations, which
define a new dataset based on previous ones, and actions, which kick
off a job to execute on a cluster.

On top of Spark’s RDD API, high level APIs are provided, e.q.
DataFrame APland Machine Learning API. These high level APIs
provide a concise way to conduct certain data operations. In this
page, we will show examples using RDD APl as well as examples
using high level APIs.

https://spark.apache.org/docs/latest/rdd-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/sql-programming-guide.html
https://spark.apache.org/docs/latest/mllib-guide.html

Secure Machine Learning

Secure machine learning (ML) Killer application for Maru
- Resource-intensive thus good use case for cloud usage

- Raw training data comes with security impliations

Complex implementations of ML algorithms cannot be adapted
for SGX

- Consider Spark MLIlib with 100s of algorithms

Challenges

Extremely data-intensive domain

Must support existing frameworks (Spark, TensorFlow, MXNet, CNTK, ...)

ML requires aecelerators support (GPUs, TPUs, ...)

Dronvseontinn AfF c°d s hhccseese I HFarl

State of the Art

Protect confidentiality and integrity of tasks and input/output
data

Opaque [Zheng, NSDI 2017]
- Hide access patterns of distributed data analytics (Spark SQL)

- Introduces new oblivious relational operators

- Does not support arbitrary/existing Scala Spark jobs

VC3 [Schuster, S&P 2015]

- Protects MapReduce Hadoop jobs
- Confidentiality/integrity of code/data; correctness/completeness of results

- No support for existing jobs - Re-implement for VC3

SGX Support for Spark

SGX-Spark

- Protect data processing from infrastructure provider

Protect confidentiality & integrity of existing jobs

No modifications for end users

Acceptable performance overhead

|dea:
Execute only sensitive parts of Spark inside enclave

- Code that accesses/processes sensitive data

Code outside of enclave only accesses encrypted data

- Partition Spark

- Run two collaborating JVMs, inside enclave and outside of enclave

1. Partitioning Spark

Goal: Move minimal amount of Spark code to enclave

Qutside Enclave
HadoopRDD
Provide iterator over input data partition
(encrypted)

it

MapPartitionsRDD i
Execute user-provided function (f)
(eg flatMap (line => {line.split(" ")})
(i) Serialise user-provided function £ £,it (i) Decryptinput data
(ii) Send £ and it to enclave JVM A/' (iv) Compute £(it) = it _result
(iv) Receive result iterator it resuit it2 1it_resu1t (V) Encrypt result
ExternalSorter 9.1t2), (jii) Decrypt input data
Execute user-provided reduce function g 4 (iv) Compute g(it2) = it2_result
(eg reduceByKey{case (x, y) => x + y}) ¢1t2_result (V) Encrypt result
ResultTask

Output results
LA

A partitioning framework
Z :;5‘

N

P.
rg B

Annotations Application code

| Enclave
Static analysis = @ == boundary Source-source
relocation transformation
Partition
Forward sEEAVEICM | specification
analysis analysis Untrusted
application
code

\g/ Invariants

Compiler-based framework for partitioning C applications

Data flow analysis for partitioning

\ 4 .

data = hdfs_read(..)

T k/ Must be protected by

read(data)

format() / ¢ ; | enclave
write(data) If (data =="._.
Program dependence graph piees) HEaet)
To ensure data confidentiality: forward dataflow analysis

To ensure data integrity: backward dataflow analysis

Partitioning Spark

cQ

Partitioning Spark

k=SgxTask(C,j)

Communication
j=SgxTask(B,i)

/

Outside

Enclave
AB,C,D Tasks

Lj,K Iterators

Iterate via shm

	Diapositiva 1
	Diapositiva 2
	Outline
	1. Motivation: Trustworthy Data Processing
	Trust Issues: Provider Perspective
	Trust Issues: User Perspective
	Trusted Execution Support with Intel SGX
	Diapositiva 8
	Diapositiva 9
	2. Overview of Intel SGX
	Trusted Execution Environments
	Intel Software Guard Extensions (SGX)
	In a few words
	Diapositiva 14
	Diapositiva 15
	
	SGX Enclaves
	Diapositiva 18
	
	
	
	
	Diapositiva 23
	
	SGX Instructions and Data Structures:
	SGX Supervisor Instructions:
	SGX User Instructions:
	SGX Data Structures in Details:
	Diapositiva 29
	SGX Data Structures in Details:
	
	Memory Encryption Engine
	Memory Encryption Engine
	Memory Encryption Engine: Integrity Tree
	Memory Encryption Engine: Performance
	SGX SDK Code Sample
	SGX Enclave Construction
	Diapositiva 38
	SGX Enclave Attestation
	SGX Enclave Measurement
	Local Attestation
	Remote Attestation
	Remote Attestation
	SGX Limitations & Research Challenges
	3. Description of SGX-LKL
	SGX-LKL: Supporting Managed Runtimes in SGX
	SGX-LKL: Linux Kernel Library inside SGX Enclaves
	SGX-LKL Architecture
	Diapositiva 49
	4. Description of SGX-Spark
	Secure Big Data Processing
	Apache Spark
	Secure Machine Learning
	State of the Art
	SGX Support for Spark
	1. Partitioning Spark
	Diapositiva 57
	Diapositiva 58
	1. Partitioning Spark
	1. Partitioning Spark

