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Syllabus

• New Technology 

• New Attacks

• Countermeasures

Machine Learning
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Adversarial Machine Learning

●  Several machine learning models, including neural networks, 
consistently misclassify adversarial examples 

●  These are inputs to machine learning models that an attacker 
has intentionally designed to cause the model to make a 
mistake; they’re like optical illusions for machines

●  Adversarial examples work across different mediums and 
securing systems against them can be difficult

●  Adversarial examples are a good aspect of security to work on 
because they represent a concrete problem in AI security and 
safety that can be addressed in the short term, and because 
fixing them is difficult enough that it requires a serious 
research effort
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An example of an adversarial example

EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy
Google Inc., Mountain View, CA
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Adversarial Machine Learning – Another def

●  An adversarial example is a sample of input data which has been 
modified very slightly in a way that is intended to cause a machine 
learning classifier to misclassify it. 

●  In many cases, these modifications can be so subtle that a human 
observer does not even notice the modification at all, yet the classifier 
still makes a mistake. 

●  Adversarial examples can be used to attack machine learning systems, 
even if the adversary has no access to the underlying model. 

●  In the current a threat model in which the adversary can feed data 
directly into the machine learning classifier. 

●  This is can happen for systems operating in the physical world, for 
example those which are using signals from cameras and other sensors 
as an input.
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Adversarial Machine Learning – Another def
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Adversarial Examples for Linear Model

●  In many problems, the precision of an individual input feature 
is limited. For example, digital images often use only 8 bits 
per pixel so they discard all information below 1/255 of the 
dynamic range. 

●  Because the precision of the features is limited, it is not 
rational for the classifier to respond differently to an input x 
than to an adversarial input x' = x + η if every element of the 
perturbation η is smaller than the precision of the features.

●  Formally, for problems with well-separated classes, we expect 
the classifier to assign the same class to x and x' so long as      
||η||∞ < , where  is small enough to be discarded by the 

sensor or data storage apparatus associated with our problem.



8

F.Baiardi – ICT Risk Assessment – Adversarial learning

Adversarial Examples for Linear Model - I

●   wtx' =  wtx + wtη  is the dot product between a weight vector w and an 
adversarial example x'

●  The adversarial perturbation causes the activation to grow by wtη. This 
increase can be maximised by assigning η = sign(w). 

●  If w has n dimensions and the average magnitude of an element of the 
weight vector is m, then the activation will grow by mn.

●  Since ||η||∞  does not grow with the dimensionality of the problem but the 

change in activation caused by perturbation by η can grow linearly with n, 
then for high dimensional problems, we can make many infinitesimal 
changes to the input that add up to one large change to the output. 

●  This as a sort of “accidental steganography,” where a linear model is 
forced to attend exclusively to the signal that aligns most closely with its 
weights, hence a simple linear model can have adversarial examples if its 
input has sufficient dimensionality
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Adversarial Examples for Linear Model - II
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Adversarial Examples for Linear Model - III



11

F.Baiardi – ICT Risk Assessment – Adversarial learning

Adversarial Examples for Linear Model - III

●  Many threat models assume the adversary knows the machine learning 
parameters to solve the optimization problem for the input perturbation. 

●  In more realistic models, an adversary can only observe the model  
predictions on chosen inputs. As an example, it can figure out

●  how to design webpages that are well ranked 
●  how to craft spam that evades detection. 

●  In these black-box settings, the machine learning model is said to act 
as an oracle. An attack strategy 

●  queries  the oracle to approximate its decision boundaries 
●   usea this model to craft examples the oracle misclassifies

●  The attacks exploit the transferability of adversarial examples: they are 
often misclassified simultaneously across different models solving the 
same machine learning task, despite the fact that these models differ in 
their architecture or training data
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Adversarial Examples of Deep Networks

●  The criticism of deep networks as vulnerable to adversarial examples is 
somewhat misguided because they can represent functions that resist 
adversarial perturbation. 

●  The universal approximator theorem guarantees that a neural network with 
at least one hidden layer can represent any function to an arbitary degree of 
accuracy so long as its hidden layer is permitted to have enough units.

●  Shallow linear models are not able to become constant near training points 
while also assigning different outputs to different training points. 

●  The universal approximator theorem does not say anything about whether a 
training algorithm will be able to discover a function with all of the desired 
properties. 

●  Obviously, standard supervised training does not specify that the chosen 
function be resistant to adversarial examples. This must be encoded in the 
training procedure somehow.
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 Defenses against Adversarial Examples

● Traditional techniques for making machine learning models 
more robust, such as weight decay and dropout, generally do 
not provide a practical defense against adversarial examples. 
So far, only two methods have provided a significant defense
● Adversarial training 
● Defensive distillation

● Simple defense strategies such as  “gradient masking” do not 
work.

● Even these specialized algorithms can easily be broken by 
giving more computational firepower to the attacker.
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 Gradient Masking

●  Shattered gradients are nonexistent or incorrect gradients 
caused either intentionally through nondifferentiable operations 
or unintentionally through numerical instability.

●  Stochastic gradients are gradients that depend on testtime   
entropy unavailable to the attacker.

●  Vanishing/exploding gradients in very deep or recurrent 
computation that consist of multiple iterations of neural    
network evaluation, feeding the output of one computation as 
the input of the next. This type of computation, when unrolled,
can be viewed as an extremely deep neural network evaluation, 
which can cause vanishing/exploding gradients.
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 Adversarial Training 

●  Adversarial training seeks to improve the generalization of a 
model when presented with adversarial examples at test time 
by proactively generating adversarial examples as part of  
training  

●  This idea is not new but was not yet practical because of the 
high computation cost of generating adversarial examples. 

●  Methods exist (fast gradient sign method) to generate large  
batches of adversarial examples during the training process 

●  The model is then trained to assign the same label to the 
adversarial example as to the original example

●  We might take a picture of a cat, and adversarially perturb it to 
fool the model into thinking it is a vulture, then tell the model it 
should learn that this picture is still a cat.
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 Defensive Distillation 

● Defensive distillation smooths the model’s decision surface in 
adversarial directions exploited by the adversary. 

● It is a training procedure where one model is trained to predict the 
probabilities output by another model that was trained earlier. 

● Its goal is that the final model’s responses is more smooth, so it 
works even if both models are the same size. 

● The reason it works is that the first model is trained with “hard” 
labels (100% probability that an image is a dog rather than a cat) 
and then provides “soft” labels (95% probability that an image is a 
dog rather than a cat) to train the second model. 

● The second distilled model is more robust to attacks
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 Gradient Masking ( why it does not work)

● The defense strategies that perform gradient masking typically 
result in a model that is very smooth in specific directions and 
neighborhoods of training points, which makes it harder for the 
adversary to find gradients indicating good candidate directions to 
perturb the input in a damaging way for the model. 

● The adversary can train a substitute model: a copy that imitates the 
defended model by observing the labels that the defended model 
assigns to inputs chosen carefully by the adversary. 

● The adversary can then use the substitute model’s gradients to find 
adversarial examples that are misclassified by the defended model 
as well. 

● The gradient masking phenomenon would be exacerbated for 
higher dimensionality problems
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 Gradient Masking (does not work)
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 Defensive Strategies - I

● Gradient masking is not a very good defense because it defends 
against an attacker who uses the gradient, but if the attacker knows 
we are using that defense, it can just switch to a transferability attack. 
This means that gradient masking is not an adaptive defense.

● Most defenses against adversarial examples that have been proposed 
so far just do not work very well at all, but the ones that do work are 
not adaptive. This means it is like they are playing a game of whack-
a-mole: they close some vulnerabilities, but leave others open.
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 Defensive Strategies – II

● Adversarial examples are hard to defend against because it is hard to 
construct a model of the adversarial example crafting process. 

● Adversarial examples solve an optimization problem that is non-
linear and non-convex for many ML models. Because we don’t have 
good tools for describing the solutions to these problems, it is very 
hard to prove that a defense will rule out a set of examples.

● From another point of view, adversarial examples are hard to defend 
against because ML models should produce good outputs for every 
possible input. Most ML models work very well but only on a very 
small amount of all the possible inputs they might encounter.

● Because of the massive amount of possible inputs, it is very hard to 
design a defense that is truly adaptive.
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Other attacks

● Beside test-time inputs to confuse a ML model, other kinds of attacks 
are possible, such as those that surreptitiously modifies the training 
data so that the model learns to behave the way the attacker wishes.

● The no free lunch theorem for supervised learning says that, averaged 
over all possible datasets, no ML algorithm does better on new points 
at test time than any other algorithm. 

● At first glance, this seems to suggest that all algorithms are equally 
vulnerable to adversarial examples. 

● However, the theorem does not assume anything about the structure 
of the problem. Adversarial examples assume that small perturbations 
of the input should not change the output class, so the theorem in its 
typical form does not apply.
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Open problems

●   The study of adversarial examples is exciting because many of 
the most important problems remain open, both in terms of 
theory and in terms of applications. 

●  On the theoretical side, no one yet knows whether defending 
against adversarial examples is a theoretically hopeless 
endeavor (like trying to find a universal machine learning 
algorithm) or if an optimal strategy would give the defender 
the upper ground (like in cryptography). 

●  On the applied side, no one has yet designed a truly powerful 
defense algorithm that can resist a wide variety of adversarial 
example attack algorithms. 
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 The challenge of verification and testing

●  The limitations of existing defenses point to the lack of verification of machine 
learning models. 

●  Testing = evaluating the system in several conditions and observing its 
behavior, watching for defects.

●  Verification = producing a compelling argument that the system will not 
misbehave under a very broad range of circumstances.

●  Orthogonal to this issue is the question of which input values should be subject 
to verification and testing. Do we intend to verify or test the system only for 
“naturally occurring” legitimate inputs, or do we intend to provide guarantees 
for its behavior on arbitrary, degenerate inputs?

●  ML has traditionally relied primarily on testing. A classifier is usually applied 
to several examples from a test set and measuring its accuracy on these 
examples. By definition, these testing procedures cannot find all of the 
possible—previously unseen—examples that may be misclassified.
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 Verification, testing and robustness

●  Besides using verification rather than testing,  ensure that the model will 
behave safely on inputs crafted by an attacker = guarantee robustness to 
adversarial examples.

●  The natural way to test robustness to adversarial examples is to evaluate the 
model accuracy on a test set adversarially perturbed to create adversarial 
examples. This applies traditional ML testing methodology to new inputs.

●  Testing cannot provide security guarantees, because the attacker inputs can 
differ from those used for testing. For example, a model that is tested and 
found to be robust against some methods of adversarial example generation 
may be vulnerable to more computationally expensive methods.

●      Testing only provides a lower bound on the failure rate eg if testing identifies n 
inputs that cause failure it concludes that at least n inputs cause failure

●  To provide security guarantees, an upper bound is necessary eg we need a 
means of becoming reasonably confident that at most n inputs cause failure.
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       An example. Adversarial attacks on biometrics
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       An example. Adversarial attacks on biometrics
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Poisoning 

●   The attacker’s capability consists of modifying the template database, 
either by directly manipulating it (e.g., through malware infection), or, 
more realistically, by submitting fake traits that are erroneously used to 
update the template gallery of a given client.

●  In terms of security violation, an integrity violation thus amounts to 
replacing a victim’s template with an attacker’s template or to adding an 
attacker’s template in the victim’s gallery.

●  This allows the attacker to impersonate the victim without using any 
further spoofing or replay attack, but directly using her own biometric trait.

 

●  The goal of an availability violation is to cause a denial of service, instead, 
by replacing or compromising the majority of templates in the victim 
gallery. This will indeed deny the victim access to the system. 
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Direct Poisoning

●  Direct poisoning is implemented by inserting points in a training dataset 
used for anomaly detection

●  This can gradually shift the decision boundary of a simple centroid 
model, i.e. a model that classifies a test input as malicious when it is too 
far from the empirical mean of the training data. 

●  The detection model is learned in an online fashion
● new training data is collected at regular intervals
● the parameter values  are computed based on a sliding window 

●  Injection of poisoning data in the training dataset is a particularly easy 
task for adversaries in these online settings. 

●  Poisoning points are found by solving a linear programming problem 
that maximizes the displacement of the centroid (empirical mean of the 
training data). 

●  This is made possible by the simplicity of the centroid model
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Indirect Poisoning

●  Adversaries poison the model’s training data before its pre-processing 
●  For instance, perturbation are inserted into worm traffic flows to prevent 

Polygraph, a worm signature generation tool, from learning meaningful 
signatures .

●  Polygraph combines a flow tokenizer together with a classifier that 
determines whether a flow should be in the signature.

●  Polymorphic worms are crafted with noisy traffic flows such that 

 (1) their tokenized representations will share tokens not representative 
of the worm’s traffic flow, 

 (2) they modify the classifier’s threshold for using a signature to flag 
worms.

●  This attack forces Polygraph to generate signatures with tokens that do not 
correspond to invariants of the worm’s behavior.

●   This has also been applied to  to feature selection algorithms like LASSO
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