Logica per la Programmazione

Lezione 8

- ► Semantica della Logica del Primo Ordine
 - Semantica dei termini
 - ► Semantica delle formule
 - Esempi

Interpretazione: Richiamo

Dato un alfabeto V, C, F e P, una **intepretazione** $\mathcal{I} = (\mathcal{D}, \alpha)$ è costituita da:

- ▶ Un insieme D, detto dominio dell'intepretazione
- ▶ Una funzione di interpretazione α che associa:
 - ▶ ad ogni **costante** $c \in C$ del linguaggio un **elemento** del dominio D, rappresentato da $\alpha(c)$
 - ▶ ad ogni **simbolo di funzione** $f \in \mathcal{F}$ di arietà n una funzione $\alpha(f)$ che data una n-upla di elementi di \mathcal{D} restituisce un elemento di \mathcal{D} . Ovvero

$$\alpha(f): \mathcal{D}^n \to \mathcal{D}$$

- ▶ ad ogni **simbolo di predicato** $p \in \mathcal{P}$ di arietà zero (un simbolo proposizionale) un **valore di verità** indicato da $\alpha(p)$
- ▶ ad ogni **simbolo di predicato** $p \in \mathcal{P}$ di arietà n (un **predicato** n-**ario**), una funzione $\alpha(p)$ che data una n-upla di elementi di \mathcal{D} restituisce un valore di verità. Ovvero

$$\alpha(p): \mathcal{D}^n \to \{\mathsf{T}, \mathsf{F}\}$$

Esempio di Semantica: Alfabeto e Interpretazioni

Sia dato l'alfabeto:
$$C = \{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$$
 $\mathcal{F} = \{\}$ $\mathcal{P} = \{\mathbf{p}(_)\}$ $\mathcal{V} = \{x, y\}$

Consideriamo le seguenti interpretazioni:

- Interpretazione $\mathcal{I}_1 = (\mathcal{D}_1, \alpha_1)$
 - ▶ **Dominio**: le città italiane $[\mathcal{D}_1 = \{c \mid c \text{ è una città italiana}\}]$
 - $\alpha_1(a) = Milano, \ \alpha_1(b) = Roma, \ \alpha_1(c) = Pontedera$
 - $\alpha_1(\mathbf{p})(x) = \mathbf{T}$ se x è capoluogo di provincia, \mathbf{F} altrimenti
- Interpretazione $\mathcal{I}_2 = (\mathcal{D}_2, \alpha_2)$
 - ▶ **Dominio**: l'insieme di numeri naturali $\{5,10,15\}$ $[\mathcal{D}_2=\{5,10,15\}]$
 - $\alpha_2(\mathbf{a}) = \mathbf{5}, \ \alpha_2(\mathbf{b}) = \mathbf{10}, \ \alpha_2(\mathbf{c}) = \mathbf{15}$
 - $\alpha_2(\mathbf{p})(x) = \mathbf{T}$ se x è multiplo di $\mathbf{5}$, \mathbf{F} altrimenti
- ▶ Interpretazione $\mathcal{I}_3 = (\mathcal{D}_3, \alpha_3)$
 - come \mathcal{I}_2 , ma **Dominio**: l'insieme dei numeri naturali $[\mathcal{D}_3 = \mathbb{N}]$

Esempio di Semantica: Valore di Verità di Formule

	Dominio	$\alpha(a)$	$\alpha(\mathbf{b})$	$\alpha(\mathbf{c})$	$\alpha(\mathbf{p})(x) = \mathbf{T}$ sse
\mathcal{I}_1	città italiane	Milano	Roma	Pontedera	x capoluogo
\mathcal{I}_2	$\{5, 10, 15\}$	5	10	15	x multiplo di 5
\mathcal{I}_3	numeri naturali	5	10	15	x multiplo di 5

Formula	Valore in \mathcal{I}_1	Valore in \mathcal{I}_2	Valore in \mathcal{I}_3
p(a)	Т	Т	Т
p(b)	Т	Т	Т
<i>p</i> (<i>c</i>)	F	Т	Т
$p(a) \wedge p(c)$	F	Т	Т
$(\exists x.p(x))$	Т	Т	Т
$(\forall x.p(x))$	F	Т	F
$(\exists x. p(x)) \land (\exists y. \neg p(y))$	T	F	T

La Semantica della Logica del Primo Ordine

- ▶ Sia fissato un linguaggio \mathcal{L} del primo ordine con alfabeto $(\mathcal{C}, \mathcal{F}, \mathcal{V}, \mathcal{P})$.
- ▶ Data una interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$ e una formula ϕ su \mathcal{L} , vogliamo definire in modo formale la **semantica** di ϕ in \mathcal{I} , cioè il suo valore di verità
- \blacktriangleright Per far questo, dobbiamo prima dare la **semantica** dei termini che compaiono in ϕ
 - ▶ I termini **chiusi** denotano elementi del dominio
 - Se un termine contiene delle variabili, allora è aperto. La sua semantica dipende da un assegnamento che associa un elemento del dominio ad ogni variabile.

Quindi il significato dei simboli in $\mathcal{C} \cup \mathcal{F} \cup \mathcal{P}$ è determinato dall'interpretazione (dalla funzione α), mentre il significato dei simboli in \mathcal{V} è determinato da un assegnamento.

Il motivo di questa differenza sarà chiarito nelle regole per la semantica.

Assegnamenti

- ▶ Un assegnamento ρ è una funzione che associa ad ogni variabile un elemento del dominio: $\rho: \mathcal{V} \to \mathcal{D}$
- Possiamo rappresentare un assegnamento anche come un insieme di coppie: per esempio se $\mathcal{V}=\{x,y,z\},~\mathcal{D}=\mathbb{N},~\rho(x)=0,~\rho(y)=3,~\rho(z)=1,~\text{scriviamo}$

$$\rho = \{x \mapsto 0, y \mapsto 3, z \mapsto 1\}$$

Se ρ è un assegnamento, con $\rho[d/x]$ denotiamo l'assegnamento che associa alla variabile x il valore d, e sulle altre variabili si comporta come ρ . Quindi

$$\rho[d/x](y) = \begin{cases} d & \text{se } x = y \\ \rho(y) & \text{altrimenti} \end{cases}$$

Esempio: sia ρ come definito sopra, e $\rho_1 = \rho[15/z]$, allora $\rho_1 = \{x \mapsto 0, y \mapsto 3, z \mapsto 15\}$

Semantica dei Termini

- Ricordiamo la definizione di termine:
 - ightharpoonup Ogni costante in $\mathcal C$ è un termine e ogni variabile in $\mathcal V$ è un termine
 - ▶ Se f è un simbolo di funzione in \mathcal{F} con arietà n e $t_1, ..., t_n$ sono termini, allora $f(t_1, ..., t_n)$ è un termine
- ▶ Data una interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$ e un assegnamento $\rho : \mathcal{V} \to \mathcal{D}$, la semantica di un termine t, in simboli $\alpha_{\rho}(t)$, è ottenuta per induzione strutturale con le tre regole:
 - (R0) se t è la variabile x allora $\alpha_{\rho}(t) = \rho(x)$
 - (R1) se t è una costante c allora $\alpha_{\rho}(t) = \alpha(c)$
 - ► (R3) se $t = \mathbf{f}(t_1, ..., t_n)$ e $\alpha_{\rho}(t_1) = d_1$, ..., $\alpha_{\rho}(t_n) = d_n$, allora $\alpha_{\rho}(t) = (\alpha(\mathbf{f})(d_1, ..., d_n))$
- ▶ Quindi la semantica di un termine è un elemento del dominio. Inoltre se il termine non contiene variabili, la sua semantica non dipende dall'assegnamento (la regola (R0) non verrà mai usata).

Un esempio di Interpretazione

- ightharpoonup II linguaggio $\mathcal L$
 - $\mathcal{C} = \{a\}$
 - $\mathcal{F} = \{\mathbf{f}\}\$ con arietà 1
 - $\mathcal{P} = \{\mathbf{p}\}$ con arietà 2
- L'interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$
 - $\triangleright \mathcal{D} = \mathbb{N}$. insieme dei numeri naturali
 - $\alpha(a) = 0$
 - $\alpha(\mathbf{f})$ è la funzione successore $\alpha(\mathbf{f})(n) = n+1$
 - $\sim \alpha(\mathbf{p})$ è la relazione di maggiore sui naturali, per esempio $\alpha(\mathbf{p})(7,5) = \mathbf{T}$, mentre $\alpha(\mathbf{p})(11,18) = \mathbf{F}$
- ▶ L'assegnamento $\rho = \{x \mapsto 2, y \mapsto 3\}$
- ▶ Consideriamo i termini f(f(f(a))) e f(f(x)): la loro semantica sarà:
 - $\sim \alpha_{o}(\mathbf{f}(\mathbf{f}(\mathbf{f}(a)))) = 3$
 - $\alpha_{\rho}(\mathbf{f}(\mathbf{f}(x))) = \rho(x) + 1 + 1 = 4$

Esempio di semantica di termini

Ricordiamo che $\alpha(\mathbf{a}) = 0$, $\alpha(\mathbf{f})(n) = n + 1$, e $\rho = \{x \mapsto 2, y \mapsto 3\}$

$$\alpha_{\rho}(\mathbf{f}(\mathbf{f}(\mathbf{f}(\mathbf{a})))) = \\
\alpha(\mathbf{f})(\alpha_{\rho}(\mathbf{f}(\mathbf{f}(\mathbf{a})))) = \\
\alpha_{\rho}(\mathbf{f}(\mathbf{f}(\mathbf{a}))) + 1 = \\
\alpha(\mathbf{f})(\alpha_{\rho}(\mathbf{f}(\mathbf{a}))) + 1 = \\
\alpha_{\rho}(\mathbf{f}(\mathbf{a})) + 1 + 1 = \\
\alpha(\mathbf{f})(\alpha(\mathbf{a})) + 2 = \\
\alpha(\mathbf{a}) + 1 + 2 = 0 + 3 = 3$$

Analogamente,

$$\alpha_{\rho}(\mathbf{f}(\mathbf{f}(x))) = \\ \alpha(\mathbf{f})(\alpha_{\rho}(\mathbf{f}(x))) = \\ \alpha_{\rho}(\mathbf{f}(x)) + 1 = \\ \alpha(\mathbf{f})(\alpha_{\rho}(x)) + 1 = \\ \alpha_{\rho}(x) + 1 + 1 = \\ \rho(x) + 2 = 2 + 2 = 4$$

Semantica delle Formule

Data una interpretazione $\mathcal{I}=(\mathcal{D},\alpha)$ e un assegnamento $\rho:\mathcal{V}\to\mathcal{D}$, la semantica di una formula ϕ , denotata $\mathcal{I}_{\rho}(\phi)$, è definita per induzione strutturale dalle regole che seguono.

Ricordiamo che se $p \in \mathcal{P}$, $t_1,...,t_n$ sono termini, allora $p(t_1,...,t_n)$ è una formula atomica

- ▶ (S1) se $\phi = \mathbf{p}(t_1, ..., t_n)$ e $\alpha_{\rho}(t_1) = d_1, ..., \alpha_{\rho}(t_n) = d_n$, allora $\mathcal{I}_{\rho}(\phi) = (\alpha(\mathbf{p})(d_1, ..., d_n))$
 - ► caso particolare: il predicato a zero argomenti, ovvero la proposizione: $\mathcal{I}_o(\mathbf{p}) = \alpha(\mathbf{p})$
- ► (S2) [questa regola è obsoleta]

Semantica dei Connettivi Logici (per Induzione Strutturale)

► (S3)

$$\mathcal{I}_{
ho}(\neg P) = \left\{ egin{array}{ll} \mathbf{T} & ext{se } \mathcal{I}_{
ho}(P) = \mathbf{F} \\ \mathbf{F} & ext{altrimenti} \end{array}
ight.$$

► (S4)

$$\mathcal{I}_{
ho}(P \wedge Q) = \left\{egin{array}{ll} \mathsf{T} & \mathsf{se} \ \mathcal{I}_{
ho}(P) = \mathsf{T} \ \mathsf{e} \ \mathcal{I}_{
ho}(Q) = \mathsf{T} \ \mathsf{F} & \mathsf{altrimenti} \end{array}
ight.$$

► (S5)

$$\mathcal{I}_{
ho}(Pee Q)=\left\{egin{array}{ll} \mathbf{F} & ext{se }\mathcal{I}_{
ho}(P)=\mathbf{F} ext{ e }\mathcal{I}_{
ho}(Q)=\mathbf{F} \ \mathbf{T} & ext{altrimenti} \end{array}
ight.$$

► (S6)

$$\mathcal{I}_{
ho}(P\Rightarrow Q)=\left\{egin{array}{ll} \mathbf{F} & ext{se }\mathcal{I}_{
ho}(P)=\mathbf{T} ext{ e }\mathcal{I}_{
ho}(Q)=\mathbf{F} \ \mathbf{T} & ext{altrimenti} \end{array}
ight.$$

► (S7)

$$\mathcal{I}_{
ho}(P \equiv Q) = \left\{egin{array}{ll} \mathbf{T} & ext{se } \mathcal{I}_{
ho}(P) = \mathcal{I}_{
ho}(Q) \ \mathbf{F} & ext{altrimenti} \end{array}
ight.$$

Semantica dei Quantificatori

► (S8)

$$\mathcal{I}_{\rho}((\forall x.P)) = \left\{ egin{array}{ll} \mathbf{T} & \mbox{se } \mathcal{I}_{
ho[\mathbf{d}/x]}(P) = \mathbf{T} \mbox{ per qualunque } \mathbf{d} \mbox{ in } D \\ \mathbf{F} & \mbox{altrimenti} \end{array} \right.$$

► (S9)

$$\mathcal{I}_{\rho}((\exists x.P)) = \left\{ egin{array}{ll} \mathbf{T} & ext{se } \mathcal{I}_{\rho[\mathbf{d}/x]}(P) = \mathbf{T} ext{ per almeno un } \mathbf{d} ext{ in } D \\ \mathbf{F} & ext{altrimenti} \end{array} \right.$$

Nota: l'uso dell'assegnamento ρ è necessario per le regole dei quantificatori (S8) e (S9), infatti la sottoformula P è tipicamente una formula aperta.

Esercizio 1

Mostrare che la formula

$$\Phi_1 = (\exists x. Q(x) \land (\forall y. P(x, y)))$$

è vera nell'interpretazione $\mathbf{I} = (\mathbf{D}, \alpha)$, dove $\mathbf{D} = \{a, b\}$ ed α è definita come segue:

$$\alpha(P)(x,y) = \begin{cases} \mathbf{T} & \text{se } x = a \text{ e } y = a \text{ oppure } x = a \text{ e } y = b \\ \mathbf{F} & \text{altrimenti} \end{cases}$$

$$\alpha(Q)(x) = \begin{cases} \mathbf{T} & \text{se } x = a \text{ oppure } x = b \\ \mathbf{F} & \text{altrimenti} \end{cases}$$

Procedimento: Calcolare il valore di di $\mathcal{I}_{\rho_0}(\Phi_1)$ usando le regole (S1)-(S9) per induzione strutturale, dove ρ_0 è un assegnamento arbitrario.

Esercizio 2

Calcolare il valore di verità della formula

$$\Phi_2 = (\forall x. P(x) \Rightarrow Q(x) \land R(x)))$$

nell'interpretazione $\mathbf{I} = (\mathbf{D}, \alpha)$, dove $\mathbf{D} = \{a, b, c\}$ ed α è definita come segue:

$$\alpha(P)(x) = \begin{cases} \mathbf{T} & \text{se } x = a \text{ oppure } x = b \\ \mathbf{F} & \text{se } x = c \end{cases}$$

$$\alpha(Q)(x) = \begin{cases} \mathbf{T} & \text{se } x = a \text{ oppure } x = c \\ \mathbf{F} & \text{se } x = b \end{cases}$$

$$\alpha(R)(x) = \begin{cases} \mathbf{T} & \text{se } x = b \\ \mathbf{F} & \text{se } x = a \text{ oppure } x = c \end{cases}$$

Calcolare cioè il valore di $\mathcal{I}_{\rho_0}(\Phi_2)$ usando le regole della semantica del primo ordine, dove ρ_0 è un assegnamento arbitrario.