LOGICA PER LA PROGRAMMAZIONE - a.a. 2019-2020 Prima prova di verifica - 7/11/2019 - Soluzioni proposte

Attenzione: Le soluzioni che seguono sono considerate corrette dai docenti. Per ogni esercizio possono esistere altre soluzioni corrette, anche molto diverse da quelle proposte.

ESERCIZIO 1

Si dimostri che la seguente proposizione è una tautologia, senza usare tabelle di verità:

$$(C \Rightarrow A \land \neg B) \lor B \Rightarrow A \lor B \equiv (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$$

SOLUZIONE ESERCIZIO 1

Per dimostrare la formula, riduciamo il membri sinistro e destro dell'equivalenza alla stessa formula.

$$(\underline{C} \Rightarrow \underline{A} \land \neg \underline{B}) \lor \underline{B} \Rightarrow \underline{A} \lor \underline{B}$$

$$\equiv \{(\text{Elim-}\Rightarrow)\}$$

$$\neg \underline{C} \lor (\underline{A} \land \neg \underline{B}) \lor \underline{B} \Rightarrow \underline{A} \lor \underline{B}$$

$$\equiv \{(\text{Complemento})\}$$

$$\neg \underline{C} \lor \underline{A} \lor \underline{B} \Rightarrow \underline{A} \lor \underline{B}$$

$$\equiv \{(\text{Elim-}\Rightarrow)\}$$

$$\neg (\neg \underline{C} \lor \underline{A} \lor \underline{B}) \lor \underline{A} \lor \underline{B}$$

$$\equiv \{(\text{De Morgan})\}$$

$$\underline{(\underline{C} \land \neg \underline{A} \land \neg \underline{B}) \lor \underline{A} \lor \underline{B}}$$

$$\equiv \{(\text{Complemento})\}$$

$$\underline{(\underline{C} \land \neg \underline{B}) \lor \underline{A} \lor \underline{B}}$$

$$\equiv \{(\text{Complemento})\}$$

$$\underline{C} \lor \underline{A} \lor \underline{B}$$

$$\frac{((A \Rightarrow C) \land (B \Rightarrow C)) \Rightarrow C}{\{(\text{Elim-}\Rightarrow)\}}$$

$$\frac{\neg((A \Rightarrow C) \land (B \Rightarrow C)) \lor C}{\{(\text{De Morgan})\}}$$

$$\frac{(\neg(A \Rightarrow C) \lor \neg(B \Rightarrow C)) \lor C}{\{(\neg-\Rightarrow), \text{ due volte}\}}$$

$$\frac{(A \land \neg C) \lor (B \land \neg C) \lor C}{\{(\text{Complemento})\}}$$

$$\frac{(A \land \neg C) \lor B \lor C}{\{(\text{Complemento})\}}$$

$$\frac{(A \land \neg C) \lor B \lor C}{\{(\text{Complemento})\}}$$

ESERCIZIO 2

Per ognuna delle seguenti formule si dica se si tratta di una tautologia oppure no. Se è una tautologia si fornisca una dimostrazione altrimenti si fornisca un controesempio.

1.
$$(D \Rightarrow B) \land (\neg D \lor B \Rightarrow \neg C) \Rightarrow (A \land \neg B \Rightarrow A \land \neg C)$$

2.
$$(D \Rightarrow B) \land (\neg D \lor A \Rightarrow C) \Rightarrow (A \lor \neg B \Rightarrow A \lor \neg C)$$

SOLUZIONE ESERCIZIO 2

- 1. La formula è una tautologia. Mostriamo tre dimostrazioni alternative.
 - Sviluppiamo una dimostrazione partendo da tutta la formula e riducendola a T:

$$(D \Rightarrow B) \land (\neg D \lor B \Rightarrow \neg C) \Rightarrow (A \land \neg B \Rightarrow A \land \neg C)$$

```
\{(Elim-\Rightarrow), due volte\}
       (\neg D \lor B) \land (\neg (\neg D \lor B) \lor \neg C) \Rightarrow (A \land \neg B \Rightarrow A \land \neg C)
           {(Complemento)}
\equiv
        (\neg D \lor B) \land \neg C \Rightarrow (A \land \neg B \Rightarrow A \land \neg C)
            \{(\text{Elim-}\Rightarrow)\}
\equiv
       (\neg D \lor B) \land \neg C \Rightarrow \neg (A \land \neg B) \lor (A \land \neg C)
            \{(\text{Elim-}\Rightarrow)\}
\equiv
       \neg((\neg D \lor B) \land \neg C) \lor \neg(A \land \neg B) \lor (A \land \neg C)
            {(De Morgan)}
\equiv
        (D \land \neg B) \lor C \lor \neg A \lor B \lor (A \land \neg C)
\equiv
            {(Complemento)}
        (D \land \neg B) \lor C \lor \neg A \lor B \lor \neg C
            {(Terzo escluso)}
        (D \land \neg B) \lor \neg A \lor B \lor \mathbf{T}
            \{(Zero)\}
=
        \mathbf{T}
```

• Sviluppiamo una dimostrazione con le *ipotesi non tautologiche*. In particolare dimostriamo la formula $A \land \neg B \Rightarrow A \land \neg C$ usando le formule $D \Rightarrow B \in \neg D \lor B \Rightarrow \neg C$ come *ipotesi non tautologiche*. Sviluppiamo la prova partendo dalla premessa dell'implicazione per arrivare alla conseguenza:

$$A \wedge \neg B$$
 $\Rightarrow \qquad \{ \mathbf{Ip} \colon D \Rightarrow B, \text{ occ. neg. nella seguente} \}$
 $A \wedge \neg D$
 $\Rightarrow \qquad \{ (\text{Intro-}\lor), \text{ occ. pos.} \}$
 $A \wedge (\neg D \vee B)$
 $\Rightarrow \qquad \{ \mathbf{Ip} \colon \neg D \vee B \Rightarrow \neg C, \text{ occ. pos.} \}$
 $A \wedge \neg C$

• Sviluppiamo una dimostrazione partendo dalla premessa dell'implicazione per arrivare ad una formula equivalente alla conseguenza. Per prima cosa semplifichiamo la conseguenza.

$$\frac{A \wedge \neg B \Rightarrow A \wedge \neg C}{\{(\text{Elim-}\Rightarrow)\}}$$

$$\frac{\neg (A \wedge \neg B) \vee (A \wedge \neg C)}{\{(\text{De Morgan})\}}$$

$$\frac{\neg A \vee B \vee (A \wedge \neg C)}{\{(A \wedge \neg C)\}}$$

$$\equiv \{(\text{Complemento})\}$$

$$\neg A \lor B \lor \neg C \qquad (\dagger)$$
Ora mostriamo che la premessa implica la formula (\(\frac{t}{t}\)):
$$(\underline{D \Rightarrow B}) \land (\neg D \lor B \Rightarrow \neg C)$$

$$\equiv \{(\text{Elim-}\Rightarrow)\}$$

$$(\neg D \lor B) \land (\neg D \lor B \Rightarrow \neg C)$$

$$\Rightarrow \{(\text{Modus Ponens})\}$$

$$\neg C$$

$$\Rightarrow \{(Intro-\vee)\}$$

$$\neg A \vee B \vee \neg C$$

2. La formula non è una tautologia. Per mostrarlo basta trovare una interpretazione che renda falsa la formula (un *controesempio*). Per esempio: $A = \mathbf{F}$, $B = \mathbf{F}$, $C = \mathbf{T}$ and $D = \mathbf{F}$.

ESERCIZIO 3

Si consideri l'alfabeto del primo ordine con $C = \emptyset$, $\mathcal{F} = \emptyset$, $\mathcal{P} = \{F, C, =\}$, dove il simbolo di predicato F è unario, mentre C e = sono binari. Si consideri l'interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$, dove \mathcal{D} è l'insieme di tutti gli studenti di Pisa e α è definita come segue:

- $\alpha(F)(d) = \mathbf{T}$ se e solo se lo studente d frequenta LPP,
- $\alpha(C)(d, d') = \mathbf{T}$ se e solo se lo studente d conosce lo studente d'.
- $\alpha(=)(d,d') = \mathbf{T}$ se e solo se d e d' sono lo stesso studente.

Si formalizzi il seguente enunciato:

Nessuno studente conosce tutti gli studenti, ma ogni studente che frequenta LPP conosce almeno un altro studente

SOLUZIONE ESERCIZIO 3

L'enunciato può essere formalizzato nel seguente modo:

$$\neg \big(\exists x \, . \, (\forall y \, . \, C(x,y))\big) \land \big(\forall y \, . \, F(y) \Rightarrow (\exists z \, . \, \neg (y=z) \land C(y,z))\big)$$

ESERCIZIO 4

Si calcoli, motivando la risposta, il valore di verità della seguente formula sull'alfabeto del primo ordine con $\mathcal{C} = \emptyset$, $\mathcal{F} = \{f\}$ e $\mathcal{P} = \{P, Q\}$:

$$\phi = (\exists x \, . \, P(x) \Rightarrow (\forall y \, . \, Q(x, f(y))))$$

nell'interpretazione $\mathcal{I} = (\mathcal{D}, \alpha)$, dove $\mathcal{D} = \{a, b, c\}$ ed α è definita come segue

$$\alpha(f)(d) = b \text{ for all } d \in \mathcal{D}$$

$$\alpha(P)(d) = \left\{ \begin{array}{ll} \mathbf{T} & \text{se } d \in \{a,b,c\} \\ \mathbf{F} & \text{altrimenti} \end{array} \right. \quad \alpha(Q)(d,e) = \left\{ \begin{array}{ll} \mathbf{T} & \text{se } (d,e) \in \{(a,b),(b,c)\} \\ \mathbf{F} & \text{altrimenti} \end{array} \right.$$

Si calcoli cioè $\mathcal{I}_{\rho}(\phi)$ usando le regole della semantica del primo ordine, dove ρ è un assegnamento arbitrario.

SOLUZIONE ESERCIZIO 4

Mostriamo che la formula ϕ è *vera* nell'interpretazione data.

La formula ϕ è una **quantificazione esistenziale**, quindi per la regola (S9) è vera se e solo se esiste un valore d del dominio \mathcal{D} tale per cui, assegnando ad x il valore d, la formula nella portata è vera. Formalmente abbiamo che $\mathcal{I}_{\rho}(\phi) = \mathbf{T}$ se, esiste almeno un d tale che $d \in \mathcal{D}$, $\mathcal{I}_{\rho[d/x]}(\phi_1) = \mathbf{T}$, con

$$\phi_1 = P(x) \Rightarrow (\forall y. Q(x, f(y))).$$

Scegliamo come testimone d=a. La formula ϕ_1 è l'implicazione di due sottoformule, quindi se la premessa e la conseguenza sono entrambe vere, per la regola (S6) è vera. Formalmente abbiamo che se $\mathcal{I}_{\rho[a/x]}(\phi_2) = \mathbf{T}$ e $\mathcal{I}_{\rho[a/x]}(\phi_3) = \mathbf{T}$, allora $\mathcal{I}_{\rho[a/x]}(\phi_1) = \mathbf{T}$ dove

$$\phi_2 = P(x)$$
 e $\phi_3 = (\forall y. Q(x, f(y))).$

Procediamo prima con ϕ_2 . Visto che ϕ_2 è una formula atomica, per la regola (S1), si ha che $\mathcal{I}_{\rho[a/x]}(\phi_2) = \mathbf{T}$ se $\alpha(P)(\alpha_{\rho[a/x]}(x)) = \mathbf{T}$ cioè se $\alpha(P)(a) = \mathbf{T}$. Per la definizione di α , $\alpha(P)(a) = \mathbf{T}$ e quindi $\mathcal{I}_{\rho[a/x]}(\phi_2) = \mathbf{T}$.

Concentriamoci adesso su ϕ_3 . La formula ϕ_3 è una **quantificazione universale**, quindi per la regola (S8) è vera se e solo se per ogni valore d del dominio \mathcal{D} , assegnando ad y il valore d, la formula nella portata è vera. Formalmente abbiamo che $\mathcal{I}_{\rho[a/x]}(\phi) = \mathbf{T}$ se, per ogni e vale che $e \in \mathcal{D}$, $\mathcal{I}_{\rho[a/x][e/y]}(\phi_4) = \mathbf{T}$, con

$$\phi_4 = Q(x, f(y)).$$

Visto che ϕ_4 è una formula atomica, per la regola (S1), si ha che $\mathcal{I}_{\rho[a/x][e/y]}(\phi_4) = \mathbf{T}$ se

$$\alpha(Q)(\alpha_{\rho[a/x][e/y]}(x), \ \alpha_{\rho[a/x][e/y]}(f(y))) = \mathbf{T}.$$

Calcoliamo i due argomenti di $\alpha(Q)$: per la regola (R0), $\alpha_{\rho[a/x][e/y]}(x) = \rho[a/x][e/y](x) = a$; per la regola (R2) $\alpha_{\rho[a/x][e/y]}(f(y)) = \alpha(f)(\alpha_{\rho[a/x][e/y]}) = \alpha(f)(e)$. Per definizione di $\alpha(f)$, per ogni $e \in \mathcal{D}$, $\alpha(f)(e) = b$. Abbiamo quindi $\alpha(Q)(a,b)$ indipendentemente dal valore di e. Per definizione di $\alpha(Q)$, $\alpha(Q)(a,b) = \mathbf{T}$. Abbiamo quindi che $\mathcal{I}_{\rho[a/x][e/y]}(\phi_4) = \mathbf{T}$ per ogni $e \in \mathcal{D}$.

Visto che $\mathcal{I}_{\rho[a/x]}(\phi_2) = \mathcal{I}_{\rho[a/x]}(\phi_3) = \mathbf{T}$, si ha che $\mathcal{I}_{\rho[a/x]}(\phi_1) = \mathbf{T}$ e quindi anche $\mathcal{I}_{\rho}(\phi) = \mathbf{T}$.