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Abstract

Both in terms of number of participating users and in traffic volume, KaZaA is
one of the most important applications in the Internet today. Nevertheless, because
KaZaA is proprietary and uses encryption, little is understood about KaZaA’s
overlay structure and dynamics, its messaging protocol, and its index manage-
ment. We have built two measurement apparatus - the KaZaA Sniffing Platform
and the KaZaA Probing Tool - to unravel many of the mysteries behind KaZaA.
We deploy the apparatus to study KaZaA’s overlay structure and dynamics, its
neighbor selection, its use of dynamic port numbers to circumvent firewalls, and
its index management. Although this study does not fully solve the KaZaA puzzle,
it nevertheless leads to a coherent description of KaZaA and its overlay. Further-
more, we leverage the measurement results to set forth a number of key principles
for the design of a successful unstructured P2P overlay. The measurement results
and resulting design principles in this paper should be useful for future architects

of P2P overlay networks as well as for engineers managing ISPs.



1 Introduction

On a typical day, KaZaA has more than 3 million active users sharing over 5,000
terabytes of content. On the University of Washington campus network in June 2002,
KaZaA consumed approximately 37% of all TCP traffic, which was more than twice
the Web traffic on the same campus at the same time [8]. With over 3 million satisfied
users, KaZaA is significantly more popular than Napster or Gnutella ever was. Sandvine
estimates that in the US 76% of P2P file sharing traffic is KaZaA /FastTrack traffic and
only 8% is Gnutella traffic [23]. Clearly, both in terms of number of participating users
and in traffic volume, KaZaA is one of the most important applications ever carried
by the Internet. In fact, it can be argued that KaZaA has been so successful that
any new proposal for a P2P file sharing system should be compared with the KaZaA
benchmark. However, largely because KaZaA is a proprietary protocol which encrypts
its signalling messages, little has been known to date about the specifics of KaZaA’s
overlay, the maintenance of the overlay, and the KaZaA signalling protocol.

In this paper we undertake a comprehensive measurement study of KaZaA’s overlay
structure and dynamics, its neighbor selection, its use of dynamic port numbers to
circumvent firewalls, and its index management. Although this study does not fully
solve the KaZaA puzzle, it nevertheless leads to a coherent description of KaZaA and
its overlay, while providing many new insights about the details of KaZaA.

To unravel the mysteries of the KaZaA overlay, we developed two measurement
apparatus: the KaZaA Sniffing Platform and the KaZaA Probing Tool. The KaZaA
Sniffing Platform is a set of KaZaA nodes that are forced to interconnect in a con-
trolled manner with one another, while one node is also connected to hundreds of
platform-external KaZaA nodes. The KaZaA Sniffing Platform collects KaZaA sig-
nalling traffic, from which we can draw conclusions about the structure and dynamics
of the KaZaA overlay. The KaZaA Probing Tool establishes a TCP connection with
any supplied KaZaA node, handshakes with that node, and sends and receives arbitrary
encrypted KaZaA messages with the node. It is used for analyzing node availabilities
and KaZaA neighbor selection. Both of these apparatus consume limited resources.
One of the contributions of this paper is to show how it is possible to obtain extensive
overlay information of a large-scale overlay application with a low-cost measurement
infrastructure.

We use these tools to obtain insight into the following questions:

e It is well-known that the KaZaA overlay is organized in a two-tier hierarchy
consisting of Super Nodes (SNs) in the upper tier and Ordinary Nodes (ONs) in
the lower tier. But how many children ONs does a typical SN support? What
fraction of the peers in KaZaA are SNs? Are the SNs densely interconnected or

sparsely interconnected?



e How long are ON-to-SN connections in the overlay? How long are SN-to-SN
connections in the overlay? What is the typical lifetime of a SN?

e How does an ON discover candidate SNs for parenting? Once it has a set of
candidate SNs, how does it choose a particular parent among them? In choosing

the parent, does it take locality or SN workload into account?

e By allowing peers (ONs and SNs) to select their own server port numbers, KaZaA
is more difficult to block with firewalls and NATs. How does KaZaA manage the
server port numbers? What fraction of KaZaA nodes are behind NATs?

e What are the characteristics of the protocol that peers use to establish overlay

links among themselves?

e How is the file index (relating each file copy to an IP address and port number)

organized among the SNs?

In addition to providing novel insights into a remarkably successful P2P system, we
leverage our measurement results to set forth a number of key principles for the design
of an unstructured P2P overlay. As we’ll discuss in Section 5 these principles, includ-
ing distributed design, exploiting heterogeneity, load balancing, locality, connection
shuffling, and firewall/NAT circumvention.

This paper should not only be of interest to P2P designers, but also to engineers at
upper- and lower-tier ISPs, who are interested in acquiring a thorough understanding of
P2P overlays and traffic. Because P2P file sharing systems can generate vast quantities
of traffic, networking engineers, who dimension the network and introduce content
distribution devices such as caches, need a basic understanding of how major P2P file
sharing systems operate. Although there has been recent work in analyzing the file-
sharing workload in KaZaA [8] and [18], to our knowledge we are the first to undertake
a comprehensive study of a hierarchical unstructured overlay for a P2P system.

The paper focuses on the KaZaA overlay network and index management. It ad-
dresses neither KaZaA’s downloading protocol (for example, KaZaA’s parallel down-
loading and request queuing) nor its incentive scheme for encouraging uploading. The
paper is complementary to [8] and [18], which focus on KaZaA file-sharing traffic. It
is also complementary to a recent measurement study on pollution in P2P file sharing
systems [19].

This paper is organized as follows. Section 2 provides an overview of KaZaA.
Section 3 describes are measurement apparatus. Section 4 presents our measurement
results. Section 5 sets forth basic design principles for unstructured P2P file sharing
applications. Section 6 surveys related work. Finally, Section 7 summarizes our findings

and concludes.



2 Overview of the KaZaA

KaZaA Web site [14] provides a rudimentary description of how KaZaA works. More-
over, various (and often obscure) articles, Web sites, and message boards provide addi-
tional scraps of information. In this section we collect and unify this publicly available
information. The goal of this section is to (i) organize this obscure information in a di-
gestable form for the P2P research community and (i7) present a broad-brush picture of
KaZaA and its overlay. In the subsequent sections we’ll describe our own measurement
contributions.

KaZaA peers differ in availability, bandwidth connectivity, CPU power, and NATed
access. KaZaA was one of the first P2P systems to exploit this heterogeneity by orga-
nizing the peers into two classes, Super Nodes (SNs) and Ordinary Nodes (ONs). SNs
are generally more powerful in terms of connectivity, bandwidth, processing, and non-
NATed accessibility. As we’ll shortly describe, SNs also have greater responsibilities.
As shown in Figure 1, each ON has a parent SN. When an ON launches the KaZaA
application, the ON chooses a parent SN, maintains a semi-permanent TCP connection
with its parent SN, and uploads to this SN the metadata for the files it is sharing.

As with most other P2P file sharing systems, KaZaA maintains a file index that
maps file identifiers to the IP addresses. This file index is distributed across the SNs.
In particular, each SN maintains a local index for all of its children ONs, so that each
SN is similar to a (mini) Napster hub. But in contrast with Napster, a SN is not a
dedicated server; instead, it is typically a peer belonging to an individual user.

We know from [16] that for each file an ON is sharing, the metadata that the ON
uploads to its parent SN includes: the file name, the file size, the ContentHash,
and the file descriptors (for example, artist name, album name, and text entered
by users). The file descriptors are used for keyword matches during querying. The
ContentHash plays an important role in the KaZaA architecture. KaZaA hashes every
file to a hash signature, which becomes the ContentHash of the file. The ContentHash
is the only identifier used to identify a file in an HT'TP download request. If a download
from a specific peer fails, the ContentHash enables the KaZaA client to automatically
search for the specific file, without issuing a new keyword query.

When a user wants to locate files, the user’s ON sends a query with keywords over
the TCP connection to its parent SN. For each match in its database, the SN returns
the IP address, server port number, and metadata corresponding to the match. As
shown in Figure 1, each SN also maintains long-lived TCP connections with other SNs,
creating an overlay network among the SNs. When a SN receives a query, it may
forward the query to one or more of the SNs to which it is connected. A given query
will in general visit a small subset of the SNs, and hence will obtain the metadata

information of a small subset of all the ONs.



Figure 1: KaZaA'’s two-tier overlay network.

The FastTrack File Format project [16] has determined the syntax and semantics of

KaZaA system files. From this project, we know that a KaZaA peer has the following

software components:

1.

2.

The KaZaA Media Desktop (KMD).

Software environment information stored in the Windows Registry. Included in
this environment information is a list of up to 200 SNs, which we refer to as the
SN list cache. For each the 200 SNs in cache, the list includes a number of
attributes including the SN IP address and port number.

. DBB files, with each DBB file containing metadata for the files that the peer is

willing to share. An active KaZaA process permanently monitors the local folders
that are shared; file add, delete, is reflected in the DBB file.

DAT files, with each file containing a partially downloaded file. A DAT file grows
in size as more data is retrieved. Once all the file data is retrieved, the DAT file

is renamed to the original file which was intended to be downloaded.

Each KaZaA peer exchanges four different types of TCP traffic with other peers in

the network:

1.

3.

Signaling traffic, which includes handshaking traffic for connection establishment
between peers; metadata extracted from the DBB files, uploaded from ONs to

SNs; supernode lists; and queries and replies. All signaling traffic is encrypted.

. File transfer traffic (e.g., MP3s, videos, etc.) transferred directly among the peers

without passing through intermediate SNs. File transfers are not encrypted and

are sent within HTTP messages.

Commercial advertisements, sent over HT'TP.



4. Instant messaging traffic, encoded as Base64.

The KaZaA ON-SN and SN-SN signalling messages are encrypted. The impressive
giF'T project [1] has reverse-engineered KaZaA’s encryption algorithms, so that users of
giFT-FastTrack can search and download files form the KaZaA network. Some of our
own measurement tools incorporate the encryption/decryption code provided through
the giF T project. The Sig2dat tool project [29] makes available a tool for obtaining the
KaZaA ContentHash of any file. This tool is increasingly being used by KaZaA users,
who post file names and corresponding ContentHash values on Web sites and message
boards. This helps in countering pollution attacks, wherein bogus files are intentionally
placed in the network by competing interests [22] [19].

Many users today use KaZaA-Lite [15], an unofficial copy of KMD, rather than
the KaZaA client(KMD) distributed by Sharman. Each KaZaA-Lite client emulates
Sharman’s KMD and participates in the KaZaA network. During the search process, a
KaZaA-Lite ON first sends its query to the SN to which it is connected. We have learned
from our own measurement work that after receiving all the replies from its parent SN,
the ON disconnects and connects with a new SN, and re-sends the query to the new
SN. During a specific search, the ON may connect to many SNs. The ordinary node
typically maintains the TCP connection with the last SN in the sequence of connections,
until another search is performed. Our measurement work has determined that during
each hop, the ON re-sends its meta-data to the new SN, and the previous SN removes
the ONs meta-data.

The use of the terms “KaZaA protocol” and “KaZaA overlay” is convenient but
somewhat incorrect. More precisely, KaZaA is just one of several clients that use the
FastTrack protocol and participate in the FastTrack overlay. In addition to KaZaA,
Grokster and iMesh are two other clients that currently participate in the FastTrack
overlay network. All three clients use the same protocol as KaZaA. Each KaZaA-
Lite client also emulates FastTrack protocol and participates in the FastTrack network.
When we say “KaZaA” in this paper, we are actually referring to the FastTrack network

and all of its clients.

3 Measurement Apparatus

This section describes the measuring apparatus we use to conduct our measurements

on the KaZaA’s overlay.

3.1 The KaZaA Sniffing Platform

As shown in Figure 2, we built a sniffing platform consisting of three workstations, each

with a KMD version 2.0 client installed. We patiently waited until KaZaA promoted
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Figure 2: The KaZaA Sniffing Platform. The SN typically has hundreds of connections

to external peers.

one of the three nodes to a SN. At startup all three workstations functioned as ONs
in the KaZaA network. These workstations enjoyed high bandwidth connectivity with
sufficient hardware resources. When one of the workstations was promoted to a SN,
we manipulated the Windows Registries in the other two Platform ONs in a manner
that forced them to adopt the Platform SN as their parent. (How we did this will soon
become clear.)

As shown in Figure 2, the Platform SN also connects to platform-external KaZaA
ONs and SNs. We deploy software traffic monitors around the Platform SN to capture
all of the inbound and outbound signalling traffic. We then do an offline traffic analysis
based on our understanding of the KaZaA signalling protocol.

The KaZaA Sniffing Platform was installed in two different subnets: one connected
to Polytechnic University campus network; the other connected to a residential cable
access network. In this manner we can take snapshots of the KaZaA network from two
entirely different types of network access. These locations were chosen because they are
representative of type of subnets that the majority of KaZaA peers connect through,
i.e., campus networks and residential access.

By deploying the KaZaA Sniffing Platform in conjunction with the encryption/decryption
tools from the giFT project [1], we have been able to determine that KaZaA nodes fre-
quently exchange with each other lists of SNs. In particular, when an ON connects
with a parent SN, the SN immediately pushes to the ON a SN refresh list, which
consists of the IP addresses, port numbers and workload values of up to 200 SNs. The
first entry in the SN refresh list is the parent SN that is sending the list. When an ON
receives a SN refresh list from its parent SN, the ON will typically purge some of the
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Figure 3: Connection establishment protocol between peers in the KaZaA overlay.

entries from its SN list cache and add entries sent by the parent SN. Neighboring SNs
in the overlay also exchange SN refresh lists. By frequently exchanging SN refresh lists,

nodes maintain up-to-date lists of active SNs.

3.2 Overlay Probing Tool

By deploying the KaZaA Sniffing Platform in conjunction with the encryption/decryption
tools from the giFT project [1], we have been able to determine the sequence and se-
mantics of many of the KaZaA messages, as well as the sequence of events that ensue
during overlay link establishment between ON and SN and between SN and SN.

When a peer launches the KaZaA client, the first task of the client is to choose a
parent SN and establish an overlay link (i.e., TCP connection) with it. To this end, we

have discovered that the following steps are taken:

e As described in Section 2, the ON has a SN list cache. The ON chooses several
(typically 5) candidate SNs from the list and probes the candidates by sending
one UDP packet to each candidate. The ON then receives UDP responses from

a subset of these candidates.

e To each SN from which it receives a UDP response, the ON attempts to establish
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Figure 4: KaZaA’s signalling message format. 5 bytes of header with variable length
payload.

a TCP connection. For each such connection, the SN and ON will exchange
encryption key material, the ON will send peer information, and the SN will send
a SN refresh list. Included in the peer information is the local IP address, service
port number and username. The ON may be behind a NAT in which case the
local IP address is a private address and different from the NAT’s address.

e The ON will then select one of the SNs and disconnect from the other SNs. The

one remaining SN becomes the ON’s parent SN.
e The ON can then send query messages to its chosen SN.

The timing diagram for both the ON-SN and SN-SN overlay connection establishment
is shown in Figure 3. Note that the procedure for establishing a SN-SN overlay link
differs from that of establishing ON-SN overlay link.

We also determined the structure of signalling messages exchanged between KaZaA
peers. This structure is presented in Figure 4. Each message begins with the identifier
“K”, which is then followed by a message-type field (two bytes), a payload-length field
(two bytes), and the payload itself.

Based on our understanding of the KaZaA signaling protocol and message structure,
we have developed the KaZaA Overlay Probing Tool. This tool can fully emulate the
behavior of the KMD client for initiating new connections and exchanging signalling
messages with other KaZaA nodes. We use this tool to (1) probe whether any arbitrarily
specified SN in the overlay is alive and (2) to retrieve the SN refresh list sent from probed
SN, and (3) obtain the workload of the probed SN. As discussed in Section 4, we use
this list to test our hypothesis of locality awareness as a selection criterion in forming
new SN-ON overlay links in KaZaA.
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Figure 5: Evolution of SN-SN and ON-SN connections with time.

4 Measurement Results

4.1 Overlay Structure and Dynamics
4.1.1 Structural Properties of the Overlay

We first explored the degree of connectivity of a typical SN. Specifically, from the SN
in the KaZaA Sniffing Platform, we study the number of simultaneous connections to
platform-external ONs and SNs. The Platform SN does not offer any files for sharing.
From the moment when a Platform node is promoted to a SN, we monitor the number
TCP connections emanating from the SN. We did this experiment in the two environ-
ments — Polytechnic campus and broadband residential access network — over different
time periods. Figure 5 shows that in every case, the number of connections begins at
one and climbs to a threshold, around which it subsequently vacillates. For the number

of simultaneous SN-SN connections, this threshold is almost always in the 40-50 range.
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duration which show the distribution more clearly for connections of lower lifetimes.

For the number of simultaneous SN-ON connections, depending on the day, this thresh-
old is in the 100-160 connection range for the Platform SN on the Polytechnic campus
and in the 55-70 range for the Platform SN in the residential access network. Since on
a typical day there are roughly 3 million peers, we therefore speculate that there are on
the order of 25,000-40,000 SNs in the KaZaA overlay, with the number varying with the
time of day. This claim has also been corroborated by a complimentary measurement
study reported in [19]. Combining these estimates, we conclude that the SN-SN overlay
network is very sparsely connected, with each SN connected to about 0.1% of other SNs

in the overlay.

4.1.2 Overlay Dynamics

Our measurement study has determined the KaZaA overlay is highly dynamic. Al-
though the number of simultaneous connections vacillates around a threshold, as ob-
served in Figure 5, the individual connections change frequently.

Using the KaZaA Sniffing Platform we performed measurements on the duration
of ON-SN TCP connections and SN-SN TCP connections spread over seven days. We
show one such representative measurement done on Oct. 24, 2003 in Figure 6 at
Polytechnic University. Here we monitored over a period of 12 hours a total of 5,206 ON
connections and 3,850 SN with our Platform SN. We plot the distribution of connection
lifetime for these two types of TCP connections in Figure 6. The average durations of
ON-SN connections and SN-SN connections are 34 mins and 11 mins, respectively. We
also observe that a remarkable 32% of the SN-SN connections and 38% of the ON-SN

connections lasted for less than 30 seconds . Among connections that last for at least

11



30 seconds, the average durations of ON-SN connections and SN-SN connections are
57 mins and 23 mins, respectively.

We attribute the large number of short lifetime ON-SN connections to two factors.
First, as discussed in Section 3, at startup an ON probes candidate SNs listed in its
SN refresh list with UDP packets for possible connections. The ON then initiates
simultaneous TCP connections with the available SNs in its SN refresh list. Out of
these successful connections, the ON selects one SN as the final choice and it disconnects
from other SNs. Hence the ON-SN connection establishment process generates many
short-lived ON-SN connections. A second reason for short-lived ON-SN connections is
that many ONs are KaZaA-Lite clients. As described in the Introduction, KaZaA-Lite
clients hop supernodes during the query process. Each such hop generates a short-lived
connection.

We conjecture the short lifetime of SN-SN connections is due to (1) SNs searching
for other SNs with currently small workloads, (2) long-term connection shuffling, to
allow users to query a large set of SNs over long time scales and (3) at times, SNs
in the overlay connect to each other just for the purpose of exchanging SN lists. The
shuffling of neighbor SN-SN connections allows a larger range of the network to be
explored, for example, when searching takes place over hours or days for download lists

and fragments of large files (such as movies).

4.2 Parent Selection

One crucial characteristic of a two-tier overlay is the criteria that an ON employs
to select a parent SN. In this section we describe results from our experiments on
determining the prominent factors influencing the choice of a parent SN.

As discussed in Section 3, when an ON establishes an overlay link with a parent SN,
the ON receives a list of 200 SNs from the parent SN. As already discussed, this list is
a subset of all the SNs that the parent maintains in a cache. The specific SNs included
in this list restricts the ON’s future choices about which SNs to connect to; this in turn
affects the overlay topology. Based on our measurements, we hypothesize that KaZaA
peers mainly use two criteria for ON-to-SN and SN-to-SN neighbor selection, namely,

workload and Locality.

4.2.1 Workload

Recall that each ON maintains a SN list Cache in the Windows Registry. For each
SN in the list, this list includes four attributes: SN IP address, SN port number, SN
workload, and timestamp. We now investigate the how the SN workload values in the
list influence parent selection. The exact definition of SN workload is unknown, but

as shown in Figure 7 their is a clear correlation between the workload and number

12
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Figure 7: Correlation between the workload value for SN and the number of TCP con-

nections to the SN in consideration.

of connections that the SN is supporting. For our Platform SN, Figure 7 plots the
evolution of the number of on-going TCP connections as well as the evolution of the
Platform SN workload. The similarity of these evolution plots is remarkable.

Recall that during startup, the ON chooses a subset of SNs (usually five SNs) from
the SN cache list as candidates for a parent SN. We hypothesize that an ON takes
SN workload into account when choosing the candidates. To test this hypothesis, we
force an ON in the Platform to connect to and then disconnect from the overlay. Every
time the ON attempts to connect, it chooses a subset of SNs from its SN list cache in
the Windows Registry and attempts connections as discussed in Section 3. We sniff
this signalling traffic and determine this SN subset; we also extract the 200 SNs in the
SN cache list in the ON from the Windows Registry. We then calculate the average
workload of the chosen subset of SNs and the average workload of the SNs in the SN
cache list. We repeat this measurement every half hour. Figure 10 presents the results.

Clearly, the KaZaA client displays a marked preference for SNs with low values for the

13



workload.

4.2.2 Locality

We hypothesize that an ON takes locality into account when selecting a parent SN, and
that SNs take locality into account when selecting neighboring SNs in the overlay. We
have performed two experiments to investigate locality. The first experiment uses Ping
to measure the round-trip time (RTT) from the Platform SN to the platform-external
ONs and SNs to which it connects. Figure 9 shows the distribution of these RT'Ts. We
observe that about 60% of the SN-SN connections have RTTs less than 50 msec. It
is instructive to compare these values with some typical RTT values for IP datagrams
in the Internet. Transatlantic traffic between U.S East Coast and Europe experiences
a RTT of about 100 ms, while the RTT for traffic between North America and Asia
is approximately 180 ms [7]. Also it can be observed that almost 40% of the ON-SN
connections have RTTs less than 5 msec, with the the other 60% having RTTs more
or less uniformly distributed over hundreds of milliseconds.

The second locality experiment is based on IP prefixes. This measurement is made
possible with the use of the KaZaA Probing Tool, discussed in Section 3, which can
connect to a pre-specified SN and retrieve its SN refresh list. In this experiment we
install the KaZaA probing tool in two nodes in the US, one with a 128/8 prefix and
the other with a 24/8 prefix. From each of these nodes we connect to five SNs with
prefix 128/8, to another five SNs with prefix 24/8 and again to another five SNs with
prefix 213/8. The first two groups of these SNs are in the US and the third group is in
Sweden.

We can see from Figure 4.2.2 that a high percentage of SNs in the SN lists have
similar IP prefixes as the child ON. Thus, when a SN prepares a SN list for an ON,
it appears that the SN includes in the list SNs that topologically close to the ON.
The percentage is slightly less in Figure 8(c). This is likely because the SNs based in
European countries tend to have less knowledge of SNs based in the U.S. and thus are
not able to include as many SNs matching the IP prefix of the connecting child ON. We
have also discovered from other experiments that 24/8 prefix has a very high density
of SNs. This is the reason we see even the Swedish SN supplying a high percentage of
SNs matching the IP prefix connecting ON.

Thus, from our two locality experiments, involving RTT and prefix matching, it
appears that KaZaA takes locality into account as it dynamically constructs the over-
lay network. However, it is not clear whether KaZaA uses RTTs, prefixes, or some
combination of the two. Although locality helps to confine the KaZaA traffic within

nearby ASes, it also means that the search results tend to be localized.
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Figure 11: CDF as percentage of lifetime of supernodes. 965 supernodes were monitored
over 65hrs for their lifetime. The average lifetime was found to be around 149 mins
(2.5 hrs)

4.3 Supernode Lifetime

Figure 11 shows distribution of lifetime for 965 unique SNs, monitored over a period
of 65 hours. The data for this figure was obtained with the KaZaA Probing Tool
(at Polytechnic University), which repeatedly sent probing packets to each of the 965
SNs every five minutes. From our experiment we determined the average lifetime of a

supernode in the KaZaA overlay to be 149 mins (~2.5hours).

4.4 Firewall Evasion and NAT Circumvention

Earlier KMD clients used the default port number 1214. Thus, with the earlier versions,
whenever Peer A wanted to connect with Peer B, it connected to port 1214. With
this fixed port number, administrators of campus and corporate networks could easily
configure their firewalls to prevent internal KaZaA peers from connecting to external
KaZaA peers. Later versions (KMD v2.04+ and KaZaA-lite) employ dynamic port
numbers to evade firewalls. Here, each peer chooses its own random port number and
advertises it to other peers in the overlay. Specifically, when an ON establishes a link
with a parent SN, it informs the parent SN of its port number. Furthermore, the SN
refresh lists sent among the peers also advertise the port numbers of the SNs. Based
on the 19,637 SN addresses we collected, we found only 707 SNs (3.6%) use the default
1214 port. 18,887 SNs (96.3%) use the non-default port numbers from 1024 to 65535.
10 SNs even use the 80 port number. Since the KaZaA port numbers are dynamic,
it is very difficult to block KaZaA connections, unless a very rigid filtering policy is
employed at the firewall.

The reality of today’s Internet is that a large fraction of peers reside behind NATsSs.

In fact our measurements indicate that roughly 30% of the KaZaA peers are behind
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NATSs. This is problematic for P2P networks, where in principle, every peer should be
capable of serving (i.e., uploading) files. In particular, if peer A wants to download
a file from a NATed peer B, peer A cannot initiate a direct TCP connection to peer
B and send a request for a file. KaZaA’s two-tier hierarchy provides a mechanism to
partially solve this problem. In KaZaA, when peer A sees that peer B has a private
NAT address, instead of sending a request directly to peer B, it sends the request to
peer B’s parent SN. The parent SN then sends a message to peer B, indicating that it
should initiate a connection directly back to peer A. With this connection in place, the
file can be sent over the connection from peer B to peer A. This technique of using an
intermediate peer which already has a TCP connection in place to the NATed peer is
called connection reversal [17]. Our measurement studies have shown that KaZaA

implements connection reversal.

4.5 Index Management

As described in Section 2, on joining the KaZaA network, an ON uploads metadata
information contained in the DBB file to its parent SN. We did experiments to measure
the distribution of the amount of this metadata uploaded to the Platform SN (at Poly-
technic University) from the connected ON sessions. The trace combines experimental
data from a total of 894 ON-SN sessions. Figure 12 shows the cumulative distribution
function of the meta-data uploaded to the Platform SN with respect to the percentage
of ON-SN connections responsible for it. It can be observed from the plot that 13% of
the ON peers are responsible for over 80% of the meta-data uploaded. It is interesting
to compare this data with results reported in [25], wherein on University of Washington
campus, 8.6% of KaZaA peers were serving 80% of the requests.

Another important index management strategy KaZaA SNs employ is to purge
meta-data of any child ON as soon as it disconnects from the parent. We verified
this by having a child connect to a SN, upload meta data to the SN, and then later
disconnect from the SN. When querying the SN, from a second ON, for the meta data,
the second ON would get a response as long as the firs ON remained connected to the
SN. As soon as the first ON disconnected, the SN ceased to receive responses for its
query.

Independently, we also attempted to observe whether SN-SN traffic between neigh-
bors in KaZaA involves exchange of meta-data information collected from their respec-
tive child ONs. We then sniffed traffic between our Platform SN and other neighboring

SNs of the KaZaA overlay, and no index information exchange was observed.
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5 Basic Design Principles for Unstructured P2P File Shar-

ing Systems

KaZaA is one of the most successful large-scale P2P applications to date. Its success
is partially due to many of the design decisions that were made for its overlay. We
now leverage our measurement results to set forth a number of key principles for the
design of an unstructured P2P overlay. These principles can serve as broad guidelines

to advance the state of the art in design of P2P systems.

1. Distributed Design: Unlike Napster, KaZaA does not rely on infrastructure
servers; essentially all of its nodes run on user peers. A distributed design has
a number of advantages: no need for infrastructure equipment and maintenance;
resilience to faults; and resilience to legal attacks (that is, KaZaA can not be

brought down as Napster was by simply unplugging a central server).

2. Exploiting Heterogeneity: Peers differ in availability, bandwidth connectivity,
CPU power, and NATed access. KaZaA was one of the first P2P systems to exploit
this heterogeneity by organizing the peers into two classes, Super Nodes (SNs) and
Ordinary Nodes (ONs). SNs are generally more powerful in terms of availability,
bandwidth, processing, and non-NATed accessibility. The powerful peers should
naturally bear more of the workload due to signaling and querying traffic. KaZaA
assigns more responsibilities to the SNs. In particular, the SNs process, distribute,
and respond to query traffic; and the SNs process index-maintenance traffic and

overlay maintenance traffic.

3. Load Balancing: In the a two-layer hierarchical design such as KaZaA, the
upper-tier nodes (i.e., the SNs) process the large majority of the signaling traffic

(overlay-maintenance traffic and index-maintenance traffic) as well as the query
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traffic. In order to not overwhelm any subset of SNs, care should be taken to
balance the load of this traffic across all the upper-tier nodes. However, it is
difficult to equally balance this traffic as peer behavior is unpredictable. To
achieve approximate balance, the overlay can be designed so that each SN has
roughly the same degree in the overlay (that is, has roughly the same number
of TCP connections to ON and SN neighbors). From our measurement results
in Section 4 we found that an ON selects a parent SN with a relatively small
value of “workload”. Since we also showed there is a strong correlation between
workload and the degree of the SN, KaZaA attempts to distribute the signaling
and querying load across the SNs.

. Locality in Neighbor Selection: Ideally, the neighbors in an overlay network
should be close in terms of latency and network topology [4]. Constructing over-
lay links with short RTTs helps to reduce query/response delays. Constructing
overlays so that neighboring peers (e.g., a SN and its children) are topological
close helps to confine query and download traffic within an AS (or within nearby
ASes) We saw in section 4.2.2 that locality in the form of a common IP prefix
and short RTTs play in determining an ON’s parent SN as well as in the selec-
tion of SN-SN links. Although locality considerations help to confine query and
download traffic to regions, we also note it may have an adverse impact on the
content availability in the file-sharing system; for example, if a query from the
US only reaches US SNs, which in turn only have US peers for children, then the
query may not be able to locate obscure African content. Thus the advantages

of locality has to be weighed against to the need for high content availability.

. Connection Shuffling: In a P2P file sharing system, a user may repeatedly
query for an obscure file over a period of days. By shuffling the links in the overlay,
a larger set of SNs can be visited for an extended search period. Similarly, during
a download, a peer server providing the download may disconnect in the middle
of the download. Many P2P file sharing systems, including KaZaA, automatically
and repeatedly search for a new copy of the file. Shuffling the links in the overlay
helps the P2P system to find a replacement copy to complete the download. We
discussed in section 4.1.2 that SNs engage in shuffling of neighbor connections.
Thus, a design principle in building unstructured P2P file sharing systems with
limited scope queries (such as KaZaA) is that of overlay shuffling, which broadens

the scope of a query when repeatedly querying over long time periods.

. Efficient gossiping algorithms: In a two-tier distributed P2P system, it is
critical that the SNs learn about the other SNs in the network, so that they
can shuffle connections as well as find new SNs when existing connections leave.
Thus the SNs need to gossip SN lists to each other. On one hand, it is desirable
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that the SNs frequently exchange gossiping information, so that the SNs have
reasonably accurate knowledge about the SNs that are currently operating. On
the other hand, it is desirable to minimize the amount of overlay maintenance
traffic, as this traffic can be a burden on the SNs. Our experiments have enabled
us to determine that KaZaA’s signalling protocol makes explicit provisions to
this end. Specifically, one of the fields in the SN refresh list is the “freshness”
field. This value enables the peers ONs and SNs) to estimate the freshness of
the SN availability information. We have observed that a newly connecting ON
completely ignores SNs that have a low value of “freshness” regardless of the

proximity or workload values of the SN.

7. Firewall avoidance and NAT circumvention: Although not typically ad-
dressed in the P2P research literature, a P2P file sharing will not thrive unless
it takes explicit measures to deal with firewalls and NATSs, which are prevalent
throughout the Internet. As discussed in Section 4, KaZaA uses dynamic port
numbers along with its hierarchical design to avoid firewall blocking. Further-

more, it uses connection reversal to allow NATed peers to share files.

6 Related Work

Recently there have been a number of P2P measurement studies, although to our
knowledge none has carefully examined KaZaA. The identification of P2P specific traffic
is considered in [27] and [12]. The accurate signature based techniques discussed in [27]
could be deployed by an ISP to identify and filter illicit P2P traffic. An analysis of P2P
traffic by measuring flow-level information collected at multiple border routers across
a large ISP-network is done in [28] . By measuring KaZaA traffic in the University of
Washington campus, the paper [8] studies file-sharing workloads and develops models
for multimedia workload. A recent paper that characterizes P2P traffic is [11]. This
last measurement of P2P traffic was done at the link level by reverse engineering the
protocols of P2P applications and identifying characteristic strings in the payload.

A crawling system was previously developed for the Gnutella P2P network [24]. See
also [10] for some additional work on crawling Gnutella and Napster. In [19], a KaZaA
overlay crawler is developed, which is used to study the extent of polluted content in
KaZaA.

There has also been some recent measurement work on the spread of spyware in
P2P systems. In [26] the authors develop signatures for popular spyware and obtain
traces of network activity within the University of Washington campus to quantify the
spreading of spyware.

Scalability issues in the Gnutella network are studied in [21] and [2]. The latter

presents a detailed analysis of how scalability is improved with flow control, dynamic
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topology adaptation, one-hop replication, and node heterogeneity. The paper [20] stud-
ies the general problem of search and replication strategies in unstructured P2P net-
works. It proposes a query algorithm based on multiple random walks which is shown
to be as fast as the Gnutella’s query flooding method but reduces the network traffic
by up-to two orders of magnitude. The paper [3] evaluates and compares different
replication strategies in unstructured P2P networks. It identifies that uniform and
proportional replication strategies yield sub-optimal performance and then propose an
optimal replication strategy based on square root replication.

The recent paper [31] studies the advantages of design of unstructured P2P systems
based on super-peers (SNs in KaZaA). The paper explores a number of important
questions such as the potential drawbacks of super-peers, ways of improving reliability
of super-peers, and the maximum number of children a super-peer should entertain to
optimize efficiency. The paper [30] argues for a hybrid architecture for P2P systems,
whereby structured search techniques are used to index and locate rare items, and

flooding based techniques are used for locating highly replicated content.

7 Summary

To conclude this paper with a short summary of our findings. The supernodes form
the backbone of the KaZaA network. There are roughly 30,000 supernodes; the aver-
age supernode lifetime is about 2.5 hours, although these lifetimes greatly vary across
supernodes. Each supernode maintains a list of SNs it believes to be up. The SNs
frequently exchange subsets of these lists with each other. Thus, the KaZaA backbone
is self-organizing and is managed with a distributed, but proprietary, gossip algorithm.
SNs establish both short-lived and long-lived TCP connections with each other. The
SNs shuffle the long-lived connections (with average duration of 23 minutes), which
improves search performance when search is carried out over long periods (hours) as it
is often done in P2P file sharing. Each SN has about 40-60 connections to other SNs
at any given time. Each SN has about 60-150 children ONs at any given time. Each
SN maintains an index, storing the metadata of the files its children are sharing. SNs
do not exchange metadata with each other.

When a user first acquires a KaZaA client, the client comes pre-installed with a list
of candidate SNs. When the client is executed, the client connects with one or more
the SNs in this list and obtains refresh lists. It appears that the entries in these refresh
lists are biased with locality; the provided SNs are close to the ON with respect to
various locality metrics. When an ON obtains a new list of SNs, it modifies its own
cached list. Thus the ON-to-SN connections are formed in a decentralized, distributed
manner and appear to take locality into account.

KaZaA has a life of its own, without requiring any intervention from a centralized
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authority. Unlike Napster, KaZaA cannot be shut down by simply pulling the plug on
a centralized server farm. Thus, KaZaA will likely persist for the foreseeable future.
Many design decisions taken by the creators of KaZaA (and KaZaA-lite) seem to be
have been done without careful consideration. We conjecture that there is significant
room for improving the search performance in two-tier unstructured P2P file sharing

systems.
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