
Ethereum Smart contracts
development
With Javascript (2020)

Andrea Lisi, andrealisi.12lj@gmail.com

mailto:andrealisi.12lj@gmail.com

Smart contracts

A smart contract is a software stored and executed by all the full nodes of
the network

In Bitcoin the smart contracts, implemented in Script, enable the
execution of the transactions, for example verifying the signatures

In Ethereum the smart contracts, implemented in Solidity, may include
additional logic, for example more complex conditions

2

Smart contracts

As well as blocks and transactions, the smart contracts are:
● Immutable: its code cannot be changed
● Transparent: its (byte)code can be visualized and executed

3

Smart contracts

Stack machine

No internal state

Intentionally simple

4

Virtual machine

Internal state

Turing complete

Part 1
Solidity overview
A brief summary of a Solidity smart contract

Smart contracts: structure

A smart contract is similar to a Java
class

It is composed by:
● Declaration
● A State (attributes)
● A list of functions (methods)

6

contract MyContract {
 // State
 uint public value;

 // Functions
 constructor() public {
 value = 1;
 }
 function increase() public {
 value = value+1;
 }
}

Smart contracts: state

State variables determine the state of that smart contract

Solidity supports basic data types:
● Fixed length

○ bool, (u)int, bytes32, address
● Variable length

○ bytes, string
● array, mapping(key => value)

7

Smart contracts: complex types

Arrays
● Typical arrays, they can be either fixed length or dynamic length
● Pushing an element is ok, removing an element can be costly

○ Leave a blank hole, replace with last element (breaks ordering),
shift

Mappings
● Random access, all values has Zero value by default
● It is not possible to iterate over mappings unless you keep a list of all

the keys with significant value
8

Smart contracts: functions

Functions compose the code of the smart contract

Functions can be labeled in case they interact with the state:
● A view function only reads the state;
● A pure function does not read or write the state;
● Otherwise, the function writes (and reads) the state

○ The state modification will be placed in a transaction
○ It will be written on the blockchain
○ Therefore, it costs a fee to the user

9

Fees and gas

Each writing function (and sending Ether) costs a fee
to the user
● The fee is proportional to the required amount

of computation (EVM OPCODES)
● Each OPCODE has a costs named gas

10

Fees and gas

Each writing function (and sending Ether) costs a fee
to the user
● Before each transaction a user can set in their

wallet:
○ The gas price: i.e. how much Ether they are

willing to pay for each unit of gas
○ The gas limit: i.e. how many units of gas

they are willing to consume for that
transaction

11

Smart contracts: visibility

State variables and functions can have different visibilities
● Private

○ A private state variable or function is exposed only to the
contract itself

● Public
○ A public function is exposed to other contracts; a public state is

a shortcut creating a getter function with the name of the
variable

12

State variables and functions can have different visibilities
● Internal

○ An internal state variable or function is exposed to child
contracts and the contract itself

● External
○ (Only functions) An external function is exposed only to other

contracts. They are more efficient with large array data
■ Warning: foo() does not work; this.foo() does
■ https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Smart contracts: visibility

13

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

In Ethereum any entity (account) has associated an address and a
balance (in Ether)

The two types of accounts are:
● Contract Accounts: are controlled by code, and each received

message activates its code
● Externally Owned Accounts (EOA): are controlled by private keys

and send messages signing transactions

Accounts

14

A smart contract function can be labelled as payable if it *expects* to
receive Ether
● Once received the Ether the contract’s balance is automatically

increased
● msg.value stores the received Ether (uint)

Smart contracts: receive Ether

15

 function foo() public payable {
 uint payer = msg.sender; // Who sent the Ether
 uint received = msg.value; // How much
 uint current = address(this).balance; // The current balance of the contract
 }

If the contract has positive balance, then it can send Ether as well
● Solutions with a gas limit fixed to be 2300 for the caller

○ address.send(amount) Send amount to address, returns True if
everything goes well, False Otherwise

○ address.transfer(amount) Throws exception if it fails
● Solution with settable gas limit (not very secure)

○ address.call.value(amount)() Returns True or False
○ Set the gas limit: address.call.value(msg.value).gas(20317)()

Smart contracts: send Ether

16

If a smart contract receives plain Ether without the means of a function,
there are three possible outcomes:
● Trigger the receive function (>= Solidity 0.6.*)

○ Dedicated to receive plain Ether with a transaction without
calldata (the data parameter of a transaction)

● Trigger the fallback function
○ This function is executed when no other function is matched

● Throws exception if none of them is provided

Smart contracts: receive Ether

17

Smart contracts: receive Ether
contract Example {
 address payable known_receiver;
 function forward() public payable {
 known_receiver.transfer(msg.value);
 }

 // All of them have in their body at most 2300 units of gas of computation if called by
send() or transfer()
 receive() external payable {} // strict syntax
 fallback() external payable {} // fallback f Solidity >= 0.6.*
 function() public payable {} // fallback f Solidity < 0.6.*
}

18

Smart contracts: events

contract Example {
 event click();
 event executed(address sender);

 function press_click() public {
 emit click();
 emit executed(msg.sender);
 } }

19

It is possible to declare an event in Solidity similarly to a function, and it
can be fired with the emit keyword
● Events are placed in the transaction log, useful for Ethereum clients

References

Solidity documentation V 0.6.6: https://solidity.readthedocs.io/en/v0.6.6/contracts.html

Accounts: https://github.com/ethereum/wiki/wiki/White-Paper#ethereum-accounts

Sending Ether:

https://medium.com/daox/three-methods-to-transfer-funds-in-ethereum-by-means-of-solidity-5719944ed6e9

Best practices: https://consensys.github.io/smart-contract-best-practices/

Data management: https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/

20

https://solidity.readthedocs.io/en/v0.6.6/contracts.html
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum-accounts
https://medium.com/daox/three-methods-to-transfer-funds-in-ethereum-by-means-of-solidity-5719944ed6e9
https://consensys.github.io/smart-contract-best-practices/
https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/

Smart contracts: development

It is possible to implement Ethereum smart contracts with the Solidity
programming language

Smart contracts can be developed and executed within:
● The browser IDE Remix, https://remix.ethereum.org/
● The CLI tool Truffle, https://www.trufflesuite.com/truffle

21

https://remix.ethereum.org/

Part 2
The Web3 library
An interface to interact with smart contracts

Web3

Web3 is an interface to the Ethereum network

It interacts with the Ethereum nodes by means via RPC protocol, Remote
Procedure Call
● Communications are asynchronous

Software importing Web3 are able to communicate with smart contracts

23

Web3

Src: http://www.dappuniversity.com/articles/web3-js-intro
24

http://www.dappuniversity.com/articles/web3-js-intro

Web3

25

x = f();
contract.foo(x); RPC

contract.foo(x);

Process function

Wait for it to be
mined

return
receiptreturn

receipt

User Software
with Web3

EVM Node
Async

Web3 implementations

web3Js: JavaScript [W1]

web3J: Java [W2]

web3py: Python [W3]

web3.php: Php [W4]

hs-web3: Haskell [W5]

26

NodeJs and Npm

In this tutorial we are going to use an environment based on Javascript
We need NodeJs and Npm (Node Package Manager)

27

Requirements: NodeJs

NodeJs is an environment to execute Javascript code on your machine
instead on the browser:
● Write server-side Javascript code
● Modern frameworks for web development (ReactJs, AngularJs etc…)
● And Javascript desktop applications (ElectronJs)
● Install NodeJs

○ https://nodejs.org/en/docs/

28

https://nodejs.org/en/docs/

Requirements: Npm

Npm (Node Package Manager) is the tool to install NodeJs packages
● Local packages are installed in the ./node_modules/ directory

○ Libraries and utilities for a single project
● Global packages are all installed in a single folder in your system

○ CLI tools to be reused among many projects
● It is installed with NodeJs

○ https://www.npmjs.com/get-npm

○ https://docs.npmjs.com/

29

https://www.npmjs.com/get-npm
https://docs.npmjs.com/

References, Web3

[W1] Web3Js: https://github.com/ethereum/web3.js

[W2] Web3J: https://github.com/web3j/web3j

[W3] Web3Py: https://github.com/ethereum/web3.py

[W4] Web3.php: https://github.com/sc0Vu/web3.php

[W5] hs-Web3: https://github.com/airalab/hs-web3

30

https://github.com/ethereum/web3.js
https://github.com/web3j/web3j
https://github.com/ethereum/web3.py
https://github.com/sc0Vu/web3.php
https://github.com/airalab/hs-web3

