
Ethereum Smart contracts
development
With Javascript (2020)

Andrea Lisi, andrealisi.12lj@gmail.com

mailto:andrealisi.12lj@gmail.com

Part 3
Truffle framework
A framework for the development of smart contracts

Walkthrough

1. Introduce the Truffle framework
2. Init a new Truffle project

a. Project structure
b. Configuration file

3. Development
a. Coding
b. Compiling
c. Testing
d. Migrating

3

1. The Truffle Framework

Truffle is a CLI framework providing developers sweet tools for
Ethereum smart contracts development. In particular:
● The Solidity compiler;
● A migration tool to deploy contracts to an Ethereum network;
● A testing environment;

● A NodeJs console to interact with the migrated contracts;
● An execution tool to automate commands inserted in the console

4

1. Installing Truffle

Truffle can be installed with npm

Requirements: NodeJs (v8.9.4 or later) and npm

Truffle, global installation:
$ (sudo) npm install -g truffle

5

2. Truffle: create a project

$ truffle init

Initialize an empty Ethereum project in the current folder structured as:
- contracts/
- migrations/
- test/
- truffle-config.js

6

2.a. Truffle: contracts/

This folder contains the Solidity smart contracts

By default, it includes a Migration.sol contract used by Truffle.
Don’t delete it. I did it once and nothing was working anymore

7

2.a. Truffle: migrations/

This folder contains Javascript sources that Truffle executes during the
migration phase, i.e. when the contracts are deployed to the blockchain

8

2.a. Truffle: test/

This folder contains Javascript sources to test the smart contracts

Truffle uses the Mocha testing framework, and the Chai assertion library
● Extra assertion commands are provided by truffle-assertions npm

package
○ Test events and require() statements
○ https://www.npmjs.com/package/truffle-assertions

9

https://mochajs.org/
https://www.chaijs.com/api/assert/
https://www.npmjs.com/package/truffle-assertions

2.b. Truffle: truffle-config.js

This is Truffle configuration file, it tells Truffle which network to target,
the Solidity compiler, and other settings

10

2.b. Truffle: truffle-config.js

This is Truffle configuration file, it tells Truffle which network to target,
the Solidity compiler, and other settings

Example of a local network:

11

 networks: {
 development: { // Network name
 host: "127.0.0.1", // Localhost (default: none)
 port: 7545, // Standard Ethereum port (default: none)
 network_id: "*", // Any network for local (default: none)
 },
}

3. Development with Truffle

A typical workflow to develop smart contracts includes coding, testing
and, when the contract is complete, migrate (deploy) it to a target
network

Truffle simplifies the steps mentioned above, but we need to tell Truffle
how to accomplish them

But first, we need a smart contract to work with

12

3.a. Example contract
// ./contracts/MyContract.sol
contract MyContract {
 uint public value;

 constructor() public {
 value = 1;
 }
 function increase(uint _v) public {
 value = value + _v;
 }
 function get_square() public view returns (uint) {
 return value * value;
 }
}

13

3.b. Truffle: compilation

We store our contract in the contracts/ folder

We can compile the smart contract(s) in the contracts/ folder with the
following command:
$ truffle compile

It creates the build/ folder with the results of the compilation in .json
format, including the ABI (Abstract Binary Interface) and the bytecode

14

3.c. Truffle: testing

How can we execute a smart contract?
Well, smart contracts are executed by the nodes of the Ethereum
network

We can instead use a local network (blockchain)
● Create one on the fly while running the tests

○ Solution adopted now (no configs are needed)
● Have one running in the background

○ More on that on the “Migration” slides
15

3.c. Truffle: testing

A testing file requires to:
● Create a file test_mycontract.js inside the test/ folder
● Import the compiled smart contract from the build/ folder
● Create test environments
● Code testing scripts

○ Web3 calls to smart contract functions are asynchronous,
which are implemented by Promise objects in Javascript

16

// ./test/test_mycontract.js
// Import the contracts to test in Truffle from build/
 // MyContract is a template, not an instance (e.g. the Class, not the object)
const MyContract = artifacts.require("MyContract"); // ./build/MyContract.json
// Create a testing environment
// accounts are Ethereum accounts, injected by Truffle. More on that later
contract("Testing MyContract", accounts => {
 // Create a test
 it("Should test the constructor", function() {
 // 1 Create a known state
 // 2 Execute the operation to test
 // 3 Test the conditions
 }); });

3.c. Truffle: testing

17

3.c. Javascript promises

When you call a smart contract function with Web3 you get as result a
Javascript Promise object:
● const promise = contract.function_name(params);

When a Promise is completed, we can use its result within the then
statement:
● promise.then((result) => {// use your result here})

More on Javscript Promises
18

https://javascript.info/async

3.c. Truffle: testing
// ./test/test_mycontract.js
 it("Should test the constructor", function() {
 // 1 Create a known state: not here, we test the constructor
 // 2 Execute the operation to test, i.e. the constructor
 return MyContract.new() // Create a new contract
 .then(instance => {
 // “instance” is a constructed instance of MyContract
 // 3 Test the condition: i.e. if value is 1
 return instance.value().then(v => {
 // “v” is the result of value(): solidity uint256 are BigNumber objets
 assert.equal(v.toNumber(), 1, "Value should be initialized at 1");
 });
 }); // end return MyContract.new }); // end it()

19

3.c. Truffle: testing with async/await

 it("Should test the constructor with async/await", async function() {
 // 1 Create a known state: not here, we test the constructor
 // 2 Execute the operation to test, i.e. the constructor
 const instance = await MyContract.new();
 // 3 Test the condition: i.e. if value is 1
 const v = await instance.value();
 assert.equal(v.toNumber(), 1, "Value should be initialized at 1");
 }); 20

To lighten the code it is possible to use the async / await syntax. This
results to a complete synchronous code, but it is enough for our goals
that do not require heavy asynchronous programming

After a test has been written:

● Execute all the test files inside test/ folder with:
$ truffle test

● Execute a single test file inside test/
$ truffle test test/test_mycontract.js

3.c. Truffle: testing

21

3.c. Smart contract return values

When executed with Web3, functions which are labeled as view / pure
return the value of the Solidity return statement. Such functions won’t be
put in a block (mined) and they do not cost a fee to the caller

However, the other functions are so called transactions, meaning that
they will be mined, put in a block and they do cost a fee. When executed
their return value IS NOT the value expressed by the Solidity return
statement, but a transaction

22

3.c. Our contract (modified)
contract MyContract {

 uint public value;

 constructor() public {
 value = 1;
 }
 function increase(uint _v) public returns (uint) {
 value = value + _v;

 return value; // new
 }
 function get_square() public view returns (uint) {
 return value * value;
 } }

23

3.c. Truffle: testing transactions

 it("Should increase the value by 41", async function() {
 // 1 Create a known state
 const instance = await MyContract.new();
 // 2 Execute the operation to test
 const result = await instance.increase(41);
 // 3 Test the condition
 assert.equal(result.toNumber(), 42, "The result should be 42");
 }); 24

The assert.equal() condition should fail because result is not the integer as
expected by the Solidity code, but it is an object, i.e. the transaction with
information like block number, gas used etc...

3.c. A transaction receipt

25

3.c. Smart contract return values

How can I get the return value of a transaction?

Ideas:

● Emit an event, with the result the argument of the event

○ Events and their data are contained in the logs field of the

transaction object

● Call a view function right after the transaction (free of gas)

More information on
https://truffleframework.com/docs/truffle/getting-started/interacting-with-your-contracts

26

https://truffleframework.com/docs/truffle/getting-started/interacting-with-your-contracts

3.c. Smart contract return values

Warning

This holds when using the Web3 wrapper

If another smart contract calls the increase() function gets the return

value as expected

27

3.c. Truffle: testing, conclusions

28

Testing smart contracts with Truffle can be tricky at the beginning , but it
is very straightforward once understood how it works

Visit the Mocha and Chai pages for documentations

So far we have seen how to test smart contracts without providing any
network (blockchain)

3.d. Truffle: migrating

29

As soon we feel confident of our contracts we can migrate (deploy) them
to a target network

To migrate our contracts we need to:
● Write in our truffle_config.js file the target network settings
● Write our migration script

○ In this script we decide which contracts we migrate
● Execute the migration script with the command provided by Truffle

3.d. Truffle: migrating

30

We can start with a local (simulated) network for the development

The Truffle suite provides Ganache
● The CLI version: https://github.com/trufflesuite/ganache-cli
● The GUI version: https://www.trufflesuite.com/ganache

https://github.com/trufflesuite/ganache-cli
https://www.trufflesuite.com/ganache

Ganache CLI, how it looks like

31

Ganache GUI, how it looks like

32

3.d. Truffle: migrating, config

33

We need to tell Truffle to target our Ganache network

In our configuration file truffle_config.js:
● We create an identifier for our network called “development”
● Ganache host is local host, i.e. “127.0.0.1”
● Ganache port can be set, assuming “8545”
● In this case network_id can be anything, represented with “*”

During initialization Truffle creates a pre-compiled config file, all commented. Therefore we need only to un-comment the interested portion

3.d. Truffle: migrating, config

development is a special name for a network. When targeting a network
with a Truffle command “development” can be omitted

The fields in truffle_config.js are shown below:

34

 networks: {
 development: { // Network name
 host: "127.0.0.1", // Localhost (default: none)
 port: 8545, // Ethereum port (default: none)
 network_id: "*", // Any network for local (default: none)
 },
}

3.d. Truffle: migrating, scripts

The migration scripts are placed in the migrations/ folder

Truffle executes the scripts in that folder using a lexicographic order.
Typically these scripts are called 1_***.js, 2_+++.js

This folder contains by default the 1_initial_migration.js script, which
migrates the Migration.sol contracts, useful for Truffle

35

3.d. Truffle: migrating, scripts

The default 1_initial_migrations.js file:

// Import the contracts to migrate from build/
const Migrations = artifacts.require("Migrations"); // ./build/Migrations.json

// The function to execute during the migration
module.exports = function(deployer) {
 // Deploy the Migrations contract, i.e. an instance of Migration on the target network
 // This command executes the constructor. If Migration would have had parameters
 // in its constructor, they should have been as following arguments of deploy()
 deployer.deploy(Migrations);
};

36

3.d. Truffle: migrating

After being sure that Ganache is running, we can execute our scripts in
migrations/ with:
$ truffle migrate --reset --network development
● --network net specifies the target network named net

○ development is the default one, therefore the --network
development option can be omitted

● Truffle does not re-migrate up-to-date contracts
○ -- reset forces Truffle to migrate all the contracts

● You should see the balance of the first account decreased by a little
37

3.d. Truffle: migrating, scripts

We can modify 1_initial_migrations.js to migrate also our contract:

const Migrations = artifacts.require("Migrations");
const MyContract = artifacts.require("MyContract");

module.exports = function(deployer) {
 deployer.deploy(Migrations);
 deployer.deploy(MyContract);
};

38

3.d. Truffle: migrating, scripts

We can get the network name, in case we have many, to filter execution:

const Migrations = artifacts.require("Migrations");
const MyContract = artifacts.require("MyContract");

// These inputs are injected by Truffle
module.exports = function(deployer, network) {
 deployer.deploy(Migrations);
 if(network == "development") {
 deployer.deploy(MyContract);
 }
};

39

3.d. Truffle: migrating, scripts

We can get the accounts of our target network:

const Migrations = artifacts.require("Migrations");
const MyContract = artifacts.require("MyContract");

// These inputs are injected by Truffle
module.exports = function(deployer, network, accounts) {
 deployer.deploy(Migrations);
 if(network == "development") {
 deployer.deploy(MyContract, {from: accounts[1]}); // Use your second account to deploy
 }
};

40

3.d. Truffle: migrating, scripts

Do not forget that these functions return Promises:

const Migrations = artifacts.require("Migrations");
const MyContract = artifacts.require("MyContract");

// These inputs are injected by Truffle
module.exports = async (deployer, network, accounts) => {
 await deployer.deploy(Migrations);
 if(network == "development") {
 const instance = await deployer.deploy(Migrations, {from: accounts[2]});
 // Do stuff with instance...
 }};

41

3.d. Truffle: migrating, conclusions

Migrating means deploying a contract to a target network. This network
is specified in the truffle_config.js file

An example of local network is Ganache

42

3.d. Truffle: migrating, conclusions

43

Warning

When exposing the “development” network the “on the fly” blockchain as
explained in 3.c. Truffle: testing does not work anymore, and if the target
network is not running Truffle will complain

This because omitting the --network flag Truffle uses “development” by
default, if exposed

Truffle: conclusions

Truffle eases the workflow to develop, test and migrate smart contracts

The suite provides other tools we didn’t see, like its console and a way to
execute scripts within the Truffle environment
● Type $ truffle help to see the list of available cmds

If the smart contracts are small, and few checks are required, then Remix
is enough

44

Truffle: conclusions

Installing Truffle you install also the Solidity compiler and Web3Js

During the execution of Truffle cmds Web3Js injected by Truffle, and so
there is no need to import the library

But many examples with Truffle use the Web3 wrapper truffle-contract
● It makes calling smart contract functions more intuitive
● All the examples in the Truffle page use this wrapper
● https://github.com/trufflesuite/truffle/tree/master/packages/contract

45

https://github.com/trufflesuite/truffle/tree/master/packages/contract

Truffle: docs

Config file: https://truffleframework.com/docs/truffle/reference/configuration

Compilation: https://truffleframework.com/docs/truffle/getting-started/compiling-contracts

Testing with Js: https://truffleframework.com/docs/truffle/testing/writing-tests-in-javascript

Migration: https://truffleframework.com/docs/truffle/getting-started/running-migrations

And online tutorials...
46

https://truffleframework.com/docs/truffle/reference/configuration
https://truffleframework.com/docs/truffle/getting-started/compiling-contracts
https://truffleframework.com/docs/truffle/testing/writing-tests-in-javascript
https://truffleframework.com/docs/truffle/getting-started/running-migrations

Extra
Other ways to interact with the smart contracts

How to get an instance of a contract:
● .new(), .deployed() and .at()

 it("Should retrieve the instance of a contract", async function() {
 const address = "0x001d3...f1f086ba0f9"; // A contract address
 const _new = await MyContract.new(); // Create a new contract, return the instance
 const last = await MyContract.deployed(); // Get the *last* deployed instance of
MyContract
 const that = await MyContract.at(address); // Get the *deployed* instance of
MyContract of address "address"
 });

Retrieve contract instances

48

In Solidity we get the special constructs msg.value, msg.sender, etc
● msg.sender is the account invoking the function
● When omitted the default account is [0]

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

Transaction parameters

 it("Should send Ether to a payable function", async function() {

 const instance = await MyContract.new();
 const tx = await instance.foo(41); // default account is accounts[0]
 });

49

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

In Solidity we get the special constructs msg.value, msg.sender, etc
● msg.sender is the account invoking the function
● Otherwise it can be specified with a special last-parm object

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

Transaction parameters

 it("Should send Ether to a payable function", async function() {
 const alice = accounts[3];
 const instance = await MyContract.new();
 const tx = await instance.foo(41, {from: alice});
 });

50

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

In Solidity we get the special constructs msg.value, msg.sender, etc
● msg.value must be provided, if required
● It is a field of the special object

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

Transaction parameters

 it("Should send Ether to a payable function", async function() {
 const alice = accounts[3];
 const instance = await MyContract.new();
 const tx = await instance.foo(41, {from: alice, value: 10000000}); // wei
 });

51

https://www.trufflesuite.com/docs/truffle/getting-started/interacting-with-your-contracts#making-a-transaction

Manual interaction

52

Truffle provides two Javascript consoles to manually interact with your
contracts:
● Console: Connects to a network like Ganache (or also the Ethereum

main and test networks) and you interact with it
● Develop: Similar, but it creates a on-the-fly network
● https://www.trufflesuite.com/docs/truffle/getting-started/using-truffle-develop-and-the-console

https://www.trufflesuite.com/docs/truffle/getting-started/using-truffle-develop-and-the-console

Automatic interaction

53

Otherwise is possible to execute automatically the operations we write
in our console:
● Write a script file script.js
● Execute it inside the Truffle environment (and therefore with access

to Web3 etc)
○ truffle exec script.js

● https://www.trufflesuite.com/docs/truffle/getting-started/writing-external-scripts

https://www.trufflesuite.com/docs/truffle/getting-started/writing-external-scripts

Troubleshooting

Typically errors have not a not clear code or message. Here a few hints:
● Be consistent with the compiler version both in the smart contracts

(pragma) and in truffle_config.js. Type truffle compile --list
to see the list of available compilers. Truffle automatically fetches
the version you provide if not installed

● Un-comment the Solc option “evmversion: byzantium” if you still
have problems when migrating contracts also at the very beginning
○ This happens to me when I set a solidity compiler

54

Web3 in Python

55

For those who prefer Python to interact and test smart contracts
web3py is easy to use
● You need to create your virtualenv and install web3
● You need to have a working network (Ganache is fine)
● You need to compile your contracts and get the ABI and Bytecode

(either with Truffle or Remix)
● Write your Python code
● https://www.youtube.com/watch?v=SAi5rYFh7yw&list=PLS5SEs8ZftgVn38FOhXvLc0PoX_0hnJO9

https://www.youtube.com/watch?v=SAi5rYFh7yw&list=PLS5SEs8ZftgVn38FOhXvLc0PoX_0hnJO9

Web3 in Python

56

import json
from web3 import Web3
Init Web3
ganache_url = 'HTTP://127.0.0.1:8545'
web3 = Web3(Web3.HTTPProvider(ganache_url))
print("Is web3 connected: ", web3.isConnected())

Get the data needed to create a contract
bytecode = "60806040...”
with open('Greeting.json') as json_abi:
 abi = json.load(json_abi)

Now with the ABI and bytecode we can instantiate the Greetings contract

Web3 in Python

57

Create a Greeting contract template. Greeter is “the Java class”
Greeter = web3.eth.contract(abi=abi, bytecode=bytecode)
Call the contructor (async), you get only the transaction hash so far

A non-view function needs to be invoked with .transact()
tx_hash = Greeter.constructor().transact()
print(web3.toHex(tx_hash))
Wait for the transaction to complete, get the result receipt
tx_receipt = web3.eth.waitForTransactionReceipt(tx_hash)
print(tx_receipt) # receipt

Get the contract instance reference (i.e. the “Java object”)
contract = web3.eth.contract(abi=abi, address=tx_receipt.contractAddress)
new_contract is the contract instance and you can finally call its functions

Web3 in Python

58

Call functions
greet() is a view function, it can be invoked with .call()
print("Contract greet: ", contract.functions.greet().call())

setGreeting(string) is a transaction, it can be invoked with .transact() as the
contructor
tx_hash = contract.functions.setGreeting("Hola").transact()
web3.eth.waitForTransactionReceipt(tx_hash)

calling again greet() should return a different result
print("Contract greet: ", contract.functions.greet().call())

