
Semester Thesis

Reverse Engineering of eMule

An Analysis of the Implementation of Kademlia in eMule

David Mysicka
dmysicka@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Stefan Schmid and Thomas Locher

Dept. of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich

Summer 2006

Abstract

eMule is a popular peer-to-peer (p2p) client which builds upon the sever-
based eDonkey2000 (ed2k) platform. In newer versions of eMule, lookups
can also be performed over the serverless Kad-network, an implementation of
a distributed hash table (DHT) called Kademlia. Since only little is known
about the techniques and algorithms used by eMule, this thesis presents an
analysis of the implementation of Kademlia in eMule. This includes the
structure of the routing table, the connection phase with bootstrapping,
searching and publishing in Kademlia, the behavior of the client if network
address translation (NAT) or a firewall is used and an analysis of all mes-
sage types used in Kademlia. The algorithms found are compared to the
version described in the Kademlia paper. Additionally, a successful attack is
presented, that removes an arbitrary keyword from the Kademlia network,
using a modified version of the client.

1

Contents

1 Introduction 4

2 eMule’s Kademlia Reverse Engineered 4
2.1 Client IDs & File Hashing . 5
2.2 Sources and Keywords . 5
2.3 Notes . 6
2.4 The Routing Table . 7

2.4.1 Binary Tree with Zones and Bins 8
2.4.2 Adding a new Contact 9
2.4.3 Keeping Bins up-to-date 10
2.4.4 Where do new Contacts come from? 13
2.4.5 Comparison with Paper & Discussion 14

2.5 Connecting & Bootstrapping 15
2.5.1 Storing Contacts . 15
2.5.2 Connection Phase . 15
2.5.3 Bootstrapping . 16
2.5.4 Comparison with Paper & Discussion 17

2.6 Searching . 18
2.6.1 Types of Searches . 18
2.6.2 Detailed Search Procedure 20
2.6.3 Automatic Search for Sources 23
2.6.4 Comparison with Paper & Discussion 24

2.7 Publishing . 25
2.7.1 Procedure of a Publish 25
2.7.2 The Three Publish Types 26
2.7.3 Protection of Hot Nodes 27
2.7.4 Behavior at Startup 28
2.7.5 Comparison with Paper & Discussion 29

2.8 NAT and Firewall . 29
2.8.1 Obtaining the Public IP 29
2.8.2 The Buddy System . 30

2.9 Estimating the Number of Users in Kademlia 32

3 Attacking the Kademlia Network 33
3.1 Attacks that do not work . 33
3.2 Network Poisoning Attack . 33

3.2.1 Implementation . 34
3.2.2 Results . 35
3.2.3 Protection . 36

4 GUI 36

2

5 Outlook 40

6 Conclusions 41

A Kademlia Message Types 42
A.1 Hello . 42
A.2 Bootstrap . 42
A.3 Search . 43
A.4 Publish . 44
A.5 NAT and Firewall . 46

B User Guide for the modified eMule Version 48

3

1 Introduction

The eDonkey2000 (ed2k) network[1] is a popular server-based file sharing
platform. As its original client has limited functionality and is not open
source, some anonymous developers founded the eMule project[2]. They
have started implementing an alternative client for the eDonkey2000 net-
work, which is fully compatible with the original client. Many additional
functionality was added to the client, like a credit system for fair download-
ing or the use of compression. But the most important feature compared
to the original client, is the ability of using a second network to exchange
information between clients, that does not need any server. This serverless,
peer-to-peer (p2p) network is an implementation of a distributed hash table
(DHT) called Kademlia[3]. It features fast lookup times, because of a paral-
lel and asynchronous search algorithm. It uses XOR as metric for measuring
distances between nodes.
Since only little is known about the techniques and algorithms used by
eMule, this thesis presents an analysis of the implementation of Kademlia
in eMule. This report begins in Section 2 with the results of the analysis of
Kademlia’s implementation. It is followed by the presentation of a possible
attack of Kademlia, which was found during the analysis. It was successfully
implemented and tested by modifying the eMule client. Then, in Section 4,
the graphical user interface of eMule is explained using the results of the
source code analysis. Appendix A contains a reference of all message types
that are used to communicate in the Kademlia network. Appendix B pro-
vides a user guide of the modified eMule client that performs the attack
presented.

2 eMule’s Kademlia Reverse Engineered

This section of the report describes how Kademlia is implemented and used
in eMule. It is based on a thorough analysis of the source code (eMule
version 0.47a) and the results are confirmed by various tests monitoring the
network traffic of eMule. This was done with Ethereal[4], a popular network
protocol analyzer, whereas the source code which is written in C++ was
examined with Microsofts Visual Studio 2005[5]. It is important to keep
in mind that all the Kademlia messages that are sent between two eMule
clients use the UDP protocol, whereas the rest of eMule’s communication
(e.g. with servers) is accomplished with TCP messages.
The section is organized in the following way: After explaining the basic
elements in Kademlia in the first three subsections, the routing table is
studied. Then, in Subsection 2.5, the connection procedure is examined,
followed by a subsection about searching in the Kademlia network. After
that, the publishing of information is explained. Then, the behavior of

4

eMule is analyzed, when it is behind a firewall or when network address
translation is used. The section ends with an examination of the built-
in estimation function for the number of users in the Kademlia network.
Every time a part of the implementation is analyzed in eMule, a comparison
is given to the theoretical version of Kademlia.

2.1 Client IDs & File Hashing

Like every other distributed hash table, Kademlia requires a well defined ID
space. Given such an ID space, every client can pick some ID and every file
can be hashed to a specific ID from that ID space.
eMule uses 128-bit IDs, instead of 160-bit as proposed in the original Kadem-
lia paper. The main reason for this deviation was very likely the existing
eDonkey 2000 protocol, which also uses 128-bit IDs to hash the shared files
within its network. The idea was to use exactly the same file hashing algo-
rithm in Kademlia as in eDonkey 2000 since eMule uses both networks at
the same time. Therefore, the file hashing algorithm used for Kademlia is
basically MD4 with some minor modifications.1

Prior to the integration of Kademlia into eMule, there already was a system
to identify clients. It is used by the eMule credit system, which tries to give
download priorities to those clients that had uploaded the largest amounts
of data in the past. Therefore, every client randomly generates a 128-bit ID
called the client hash in the very first session und reuses it in the following
sessions to be able to collect credits at other clients, so that it will get a
better position in their download queues. To distinguish the eMule client
from different clients (e.g. MLDonkey or eDonkey) its 128-bit ID contains
two 8-bit areas which have always the same value (byte 5 is always set to
0Eh and byte 14 to 6Fh). As a consequence, the client hash cannot be used
as the Kademlia client ID, because then the IDs would not be distributed
evenly in the 128-bit ID domain anymore. For that reason an additional ID
was added. It is called the Kad ID and it is used as the ID of a client in
Kademlia. The generation process is entirely random. Like the client hash,
this ID is generated only in the first session and from then on reused in
every following session, so that other clients can find a specific client even
after a disconnect.
There exist even more IDs in eMule, but they are of minor importance for the
Kademlia system. They all can be examined in the graphical user interface
of eMule (see Section 4 for more details).

2.2 Sources and Keywords

In a peer-to-peer system every node is responsible for storing a certain
amount of data, so that all nodes together hold the sum of all informa-

1Tests showed that the checksums differ from the standard implementation of MD4.

5

tion. The distributed hash table variant stores only those entries on a node
that have the same ID as the node itself or that are near its ID.2 In Kadem-
lia there are several types of information to be stored at each node. To
download an arbitrary file eMule needs to have sources for it. Sources are
clients that share this specific file. eMule can then contact all the sources it
has and request them to upload the file. For this purpose, each node has a
map of sources which has the hash-ID of a file as key and a list of sources
that share this file as value. This map contains all the files that have an
ID near the nodes ID and for every file there are all its sources. It is called
mapSources in the source code.
But no user can know the hash-ID of the file he or she wants to download,
unless he uses a link from a web page.3 That is why a second type of
information needs to be stored, so that user can search for files given their
filename or parts of it. Since Kademlia is a distributed hash table, the
filename search must also be performed using IDs. One possible solution
would be to hash the filename with MD4 and use the result as ID, like it
is done with the file hashing. But this would require the user to know the
exact filename. Already a change of only one character or a permutation of
two words in the filename would lead to a totally different hash result and
the user would not find the file. For that reason the file name is split into
consecutive words and every word is hashed separately with MD4 to obtain
an ID which can be stored at the corresponding node. As a consequence
every node has a second map which takes the ID of a word as key and a
list of related filenames as value. This means that this map contains all the
words that hash to an ID near the nodes ID which is storing it and for every
word there are all the filenames that include this word. As these words
can be considered as keywords this map is named mapKeyword in the source
code.
eMule allows to store a maximum of 60,000 filename entries in the keyword
map. In addition there must not be more than 50,000 entries per keyword
ID. The sources map allows to save at most 1,000 sources per file ID. The
number of ID entries is not limited.

2.3 Notes

The eDonkey file-sharing network is neither controlled nor organized by any
authority. Consequently there is no guarantee about the files shared within
this network. They can have misleading file names or can be corrupt. Such
files are often called fakes. One way to prevent users from downloading a fake
file, is to use appropriate web pages that have links to valid files, since the
author validated or even shares these files. In addition eMule implemented

2This is necessary because the ID space is much larger than the number of nodes. So
every node must be responsible for a whole range of IDs near it.

3The eDonkey protocol supports linking to shared files via URL.

6

a notes system, which allows every user to rate and comment his shared
files. These notes are spread via Kademlia, so that every user can review
them before he downloads a file.

Figure 1: The notes dialog box

A note is bound to a specific file (or more precisely to a file hash ID) which
it rates. It holds a comment field that allows the user to enter an arbitrary
text and a rating box with the possibility to rate the file with one of six
options (no rating, corrupt / fake, poor, fair, good, excellent). Figure 1
shows an example of a rated file in the eMule GUI with several comments,
each from a different user. The notes system also helps to reveal misleading
file names, because every comment entry also shows the filename that a user
has given to this specific file. If the file names completely differ from each
other, than this is a good indicator for a misleading file name.
To be able to spread the comments there is a third map on every client,
called mapNotes, which stores the comments that belong to files whose IDs
are close to the nodes ID. This map takes the file ID as key and a list of
notes as value. A note consists of the filename, the rating number, the
comment text and the name of the user who wrote the note. mapNotes has
a limitation of 150 notes per file ID, but the number of file IDs and therefore
the total number of notes is not limited.

2.4 The Routing Table

This subsection describes the routing table that is used in eMule’s imple-
mentation of Kademlia for storing information about other nodes in the
Kademlia system. It is essential to have a well organized and fast routing
table, since every operation uses it to retrieve those nodes that it is going

7

to contact. Nodes that are stored in the routing table of a specific user are
called the contacts of this user.
The subsection is divided into several parts. The first explains the structure
of the routing table, the second shows how a new contact is added into
the structure, followed by an analysis of how the contacts are kept up-to-
date. After that, the forth part describes where new contacts come from and
finally, the routing table is compared to the one described in the Kademlia
paper.

2.4.1 Binary Tree with Zones and Bins

The routing table is implemented as a binary tree, which means that there
is a root node on the top of the tree and that every node has two child nodes
below it, unless it is a leaf node. The nodes are called routing zones. The
actual data (namely the contacts) is only stored in the leaf nodes. Therefore,
they have a structure named routing bin, which can hold up to ten contacts.
They are kept in a list, using a least recently used strategy (LRU), which
means that contacts are retrieved from the front of the list and inserted at
the end. All other nodes of the binary tree (the inner ones) only have a
reference to their two sub zones. An example of such a tree is shown in
Figure 2.

ALevel 0

BLevel 1 C

DLevel 2 E

FLevel 3 G

A

1

Routing Zone
 Routing Bin
0110101… Contact ID with prefix

1010111…
1101101…
1110001…

0100101…
0111010…

0000000…
0000010…
0001011…

0010101…
0011100…
0011110…

0

0

0

1

1

1

Figure 2: An example of eMule’s routing tree with 7 zones and 4 bins.

Furthermore, every routing zone contains a reference to its parent zone, an

8

integer that states on which Level this zone resides (level 0 is the root of the
tree, level 1 its two children, etc.) and an integer named ZoneIndex which
will be explained in the following subsection. Contacts that are stored in
routing bins consist of the 128-bit ID, the IP address, the UDP and TCP
port and of a type and expire time (the last two are needed to keep the
contacts up-to-date and are discussed in Section 2.4.3 later on).
In which bin a specific contact is placed in, depends on his distance to
the client, which is defined as the XOR between the contact’s ID and the
client’s ID. Now, every bit in the distance corresponds to a level in the tree,
beginning with bit number 0 which corresponds to level 0. In other words
the most significant bit corresponds to the root zone. If this bit is 0 the
contact belongs to the left sub tree and if it is 1 it belongs to the right sub
tree. The second bit (bit number 1) decides in which sub tree the contact
belongs to in level 1, and so forth. With this scheme every contact can
only be placed in exactly one bin. Remember that the bins are only at the
leaves of the tree, so this scheme will give every contact a unique path to its
bin. The other way around, a bin contains only contacts from a specific ID
space, which is limited by a prefix of the length of the path from the root to
that bin. Figure 2 illustrates several contacts and shows in which bin they
belong. Also, the prefix of the IDs is highlighted.
Since the routing tree uses relative IDs, the distance to the client would be 0
and therefore it would be placed in the leftmost bin available. Of course, the
node with the client’s ID is not inserted into its own routing tree, because it
is never going to contact itself. As a consequence, the further away a specific
bin is from the leftmost bin, the larger is the distance of the contacts in it
(regarding their IDs to the client’s ID).

2.4.2 Adding a new Contact

If a new contact is going to be inserted into the routing tree, first the ap-
propriate bin has to be selected according to the procedure described above.
If the contact already exists in this bin, then the procedure is aborted. If
not, then the contact is inserted at the end of the list. But every bin can
only hold up to ten contacts. In case of a full bin it is split into two, by
creating two new bins, which become the children of the current leaf node
in the tree. Then all the contacts from the old bin are moved to the two
new bins and the new contact that is being added to the routing tree, can
now be inserted into the appropriate bin. The old bin is no longer located
on a leaf node and is therefore removed.
But the tree cannot be expanded continuously without a limitation. The
two integer values Level and ZoneIndex are present in every bin for exactly
that reason. While the level was explained in the previous subsection, the
zone index will be clarified now. It represents the horizontal distance in
number of routing zones from the leftmost one on the same level. In the

9

example tree in Figure 2 nodes A, B, D and F have an index of 0 and nodes
C, E and G have an index of 1. Now, the limitation for splitting a bin is
defined by the following 3 rules:

• Up to level 3 splitting is always permitted. So, it is possible to have a
complete binary tree of depth 4 with 16 bins, all on level 4.

• If the level is greater than 3, the limiting element is the zone index,
which allows splitting only if the value is smaller than 5. Thus, in
deeper levels only the first five bins on the left side can be split. That
implies that there can be a maximum of 10 zones per level, from which
the first 5 can be split further and the other 5 cannot be split anymore
and are therefore bins.

• If the tree has reached level 127 splitting is not allowed any more.

The result from this limitations is a highly unbalanced tree that can only
grow down on the left side. This can be seen in Figure 3, which shows the
fully populated tree. But this of course is on purpose because it produces
a logarithmic distribution of contacts regarding their IDs. The smaller the
distance in the tree to ourself is, the more contacts there are. According to
the Kademlia paper, only such a routing tree results in logarithmic searches.
The routing tree is empty when eMule starts connecting to the Kademlia
network. It is populated during the session, starting with only one bin in
the root zone of the tree. Then, new contacts are added (they come from
different sources, see Section 2.4.4 later on) and the bins are split according
to the rules described earlier, until the limitations are reached. From the
splitting rules follows that there could be a maximum of 6’310 contacts (0
bins on levels 0 to 3, 11 bins on level 4, 5 bins on levels 5 to 126 and 10
bins on level 127 ; totals up to 631 bins and therefore 6’310 contacts). But
in practice such a large number is never reached. Most of the time the total
amount of contacts varies between 300 and 800.

2.4.3 Keeping Bins up-to-date

To be useful, the contacts in the routing tree have to be up-to-date. Since
the nodes in Kademlia have a high rate of leaving and joining the system, the
routing tree has to consider this. For that reason, there is a process which
searches for new contacts to populate the tree and one that periodically tests
if the existing contacts are still alive and deletes dead ones.
The first mentioned process checks once an hour for every bin if it needs
new contacts. This is the case if the bin has less than 3 contacts in it or
if splitting the bin is allowed. To find new contacts a random ID from the
bins ID space is chosen and a search for this ID is started (searching will be
explained in Section 2.6). It will find some new contacts that have an ID

10

L
ev

el
0

L
ev

el
1

L
ev

el
2

L
ev

el
3

L
ev

el
4

L
ev

el
5

L
ev

el
6

L
ev

el
7

5
6
7
8
9

5

6

7

8

9

5

6

7

8

9

5

6

7

8

9

10

11

12

13

14

15

L
ev

el
12

5

L
ev

el
12

6

L
ev

el
12

7

0
1
2
3
4
5
6
7
8
9

5

6

7

8

9

5

6

7

8

9

1

Figure 3: Sketch of a fully populated routing tree (only the top and the
bottom of the tree are shown)

11

near the searched one and they will be inserted into the bin. If a new bin is
created this process is immediately started for this bin.
The other process is responsible for deleting dead contacts. For that reason
every contact has an expire time variable, which holds the time when a
specific contact has to be checked again if it is still alive. It also has a
variable type that indicates in 5 levels how long a contact is already online,
where older contacts get a lower value. These older contacts are regarded as
better ones because of the fact that the longer a contact has been online, the
more likely it is to remain online, as stated in the Kademlia paper. Since the
bins apply a least recently used strategy as described in Section 2.4.1, they
implement this preference for old contacts. The following list illustrates the
5 different levels of the type variable including their icons, which can be seen
in the graphical user interface of eMule (see Section 4 for more details):

Type 0: These contacts are known for more then two hours and are
rated as the most reliable ones.

Type 1: This level is used for contacts that were added between one
and two hours ago.

Type 2: Contacts with this level are known for less than an hour.
They are not rated very reliable, but they have responded at least
one time.

Type 3: A newly inserted contact obtains this level, until it has
responded for the first time. After that it is rated type 2.

Type 4: Represents all contacts that failed to respond for at least
one time. They can be considered unreachable and will be deleted
from the routing tree.

Every bin is scanned by the process once a minute by retrieving the first
contact and checking it. If its expire time is ok, the contact is re-inserted
into the bin. But if the time has expired, it needs to be tested if it is
still alive. This is done by sending a HELLO_REQ4 message to that contact.
Moreover its type is increased by one level and its time is set to expire in
2 minutes. This forces the process to check this contact again in 2 min-
utes unless it has answered by then. Additionally, the type increase leads
to a devaluation of its rating. In the case that the contact is alive, it will
send back a HELLO_RES message, indicating that it is still reachable in the
Kademlia system. Receiving this message will place the contact at the end

4A list of all message types and their format can be found in Appendix A.

12

of the list and invoke a procedure that re-adjusts the type of this contact
and sets a new expire time. This is done using the following table that lists
three different cases that may occur, depending on the duration the contact
is known for (uptime):

Uptime New type level New expire time
0-1 h Type 2 1 h
1-2 h Type 1 1,5 h
> 2 h Type 0 2 h

This shows that the longer a contact is known, the less it is contacted and
checked. However, a newly inserted contact obtains type 3 and is checked
immediately, since it might be already dead when it is inserted. As the expire
time is set to 2 minutes when a contact is checked and the type is increased,
a dead contact will end up in 2 to 8 minutes as type 4. The process will then
delete such a contact as soon as its bin is re-checked. As the process is run
on every bin every minute, the set of all contacts is processed in 10 minutes
(but they are only contacted if their timer has expired). This is because of
the fact that there are a maximum of 10 contacts per bin and every time
only one contact is processed.
Finally there is a third process, that consolidates almost empty bins. This
is only done with two adjacent bins that have the same parent routing zone,
which means that they both were created because their parent zones bin was
full and had to be split. The consolidation is done if they both together have
less than 5 contacts. It is the reverse procedure of splitting a bin: A new
bin is created in their parents routing zone, the contacts are moved there
and the two adjacent bins are deleted. This consolidation process runs only
every 45 minutes, but it checks the whole routing tree.

2.4.4 Where do new Contacts come from?

An interesting question is to analyze where do the contacts come from or, in
other words, what has to happen so that a contact is added to the routing
tree.
One part is the startup of eMule. Since Kademlia cannot work without any
contacts and does not work well with only a few of them, they have to be
present from the beginning. Therefore, they are permanently saved to a file,
when eMule is closed and re-loaded from that file at startup. More details on
that procedure and especially which contacts are chosen to be stored to disk
will be explained in Section 2.5, later on. It will also discuss a bootstrapping
procedure, which is used at the beginning, if there are only a few contacts.
This procedure is also a source for contacts as it explicitly orders some new
ones from a known contact and inserts them into the routing tree.

13

There are only two cases where contacts are inserted into the routing tree,
without eMule having ordered them explicitly. The first one occurs when
another node needs to check whether the client is still alive, so that it can
decide if it keeps this client in its routing tree. As explained before the
node will send the client a HELLO_REQ message, which will then reply with
a HELLO_RES answer. But the client will also insert that node as a new
contact into its routing tree. The second case arises if some other node
is bootstrapping and asks the client for some contacts. It does this with
a BOOTSTRAP_REQ message and the client answers with a BOOTSTRAP_RES
message that includes several contacts it knows. But also in this case the
client will insert that node as a new contact into its routing tree. Apart
from this two cases, no other type of message such as a search request or a
publish request (will be explained later) from another node will induce the
client to insert that node into its routing tree. That implies, that attacks
aiming to force an insertion of contacts into nodes have to use this two cases.

2.4.5 Comparison with Paper & Discussion

There are some minor differences when comparing eMule’s implementation
of the routing tree with the theoretical one described in the Kademlia paper.
The latter has a limitation of only 160 bins (which they call buckets) and
uses a tighter splitting rule, where it is only allowed to split a bin if its
ID space includes the user’s ID (which would be 0 in eMule since it uses a
relative representation). Although they present an optimized version that
allows more bins to be split (namely the two neighbors of the bin with the
user’s ID space), eMule’s version allows even more bins to be split, which
results in more possible contacts.
The theoretical algorithm is specified such that it will add the sender from
every received message to the routing tree. eMule does this only with mes-
sages that check if a node is alive and that are for bootstrapping purposes.
The reason for adding contacts from every message (especially the search
messages) lies in the symmetric structure of Kademlia as stated in the paper.
Besides, eMule does not implement a replacement cache which would hold
new contacts that could not be inserted because of a full and unsplittable
bin and would later on replace dead contacts in that bin. Instead, there are
more bins, so new contacts can be inserted over a longer time. This solution
is a little worse, because a replacement cache would lead to less contacts but
there would be a bigger preference to older and therefore better contacts.
Both systems, the theoretical and the implemented one use almost the same
algorithms for keeping the bins up-to-date. There are only differences in
detecting dead contacts. The paper does not propose a timer which indicates
when a contact should be re-checked as eMule does. They check for dead
contacts only when inserting into full and unsplittable bins. Therefore,
the probability of having useless contacts in the tree is lower in eMule’s

14

implementation, since it re-checks every contact at least every 2 hours.

2.5 Connecting & Bootstrapping

As mentioned before, it is very important to have at least a few working
contacts to be able to interact with the Kademlia network. Consequently
they are also needed at the beginning of each session. eMule stores some
of them to disk when it is closed to be able to provide them at the next
startup. This subsection explains which contacts are stored to disk, how the
startup procedure works and how eMule performs bootstrapping when no
contacts are available. At last, the results are compared with the theoretical
Kademlia version.

2.5.1 Storing Contacts

When eMule is closed a maximum of 200 contacts is saved to the file called
notes.dat. The objective is to select 200 from all contacts, so that they are
distributed over the whole ID space. This will help to quickly populate the
routing tree at the next startup. The algorithm therefore works as follows:
Starting in the root zone of the tree, it recursively first visits the left child
zone and then the right one. If at any time a bin is reached in a zone
(which means that a leaf is reached in the tree), the containing contacts
are appended to the file, until the maximum of 200 is reached. But from
level 5 on, the algorithm does not visit both child zones anymore, instead it
randomly chooses either the left or the right one. This is done to achieve the
distribution over the whole ID space, since without that only the contacts
from the 20 leftmost bins would be stored.
As explained in Section 2.4.1, the right part of the routing tree is limited to
level 4. This part can contain up to 10 bins. In the other part the algorithm
chooses from level 5 on only one child zone, which stops the recursive mul-
tiplication there. So, it would be the same thing as if this part of the tree
ended on level 5 and there were up to 11 bins on that side. This sums up to
21 bins, that are visited at the most. If they are all full, only the leftmost
20 will be visited, because of the recursive behavior which first goes down
to the left child zone and then to the right one. Remember that the tree is a
highly unbalanced one that only grows down on the left side, and therefore
many of the contacts that are in those deep levels on the left side near our
ID will not be saved.

2.5.2 Connection Phase

As soon as the Connect button is pressed in eMule, all contacts that were
saved when it was closed last time, will be loaded into the routing tree.
This will create the same 20 bins that the algorithm visited while storing
the contacts at the end of the last session. Then, they will be checked by the

15

two processes which keep the bins up-to-date as described in Section 2.4.3.
The process that searches for new contacts will generate a random lookup in
all bins that are splittable. This applies only to the 10 bins on the right part
of the tree, whereas the other process which deletes dead contacts will check
all contacts in every bin. Thus, every minute a contact will be checked in
every bin, so that after 10 minutes all contacts have been tested and either
deleted if they did not respond or kept if they did respond. Actually it is
somewhat more complicated, because if a contact does not respond, it will
not be deleted until the next time the process scans its bin. Consequently,
this will prolong the whole process of checking the contacts in a bin for one
minute and if all contacts were dead, then it would take 20 minutes to check
them.
Depending on how much time passed since eMule was last used, more or less
contacts will be still alive. Many users do not use eMule regularly and the
majority of all users does not have a fixed IP address either. Therefore, many
of them will most likely not be reachable if we reconnect and try to contact
them, as their addresses have changed. That is why so many contacts are
stored for the next session, so that with high probability there will be some
of them that are still alive and did not change their address. The case that
all of them are unreachable will be discussed in the next subsection.
The range near our ID, or in other words, the bins in deep levels on the left
side of the routing tree will be very weakly populated after the insertion of
the saved contacts, as could be seen before when looking at the appropriate
algorithm. But this range should also be populated from the beginning,
because contacts near our ID are needed when other clients search for them
and request us to send them these contacts. This is part of the searching
procedure and will be clarified in Section 2.6. To populate that range a self
lookup is initiated right after three minutes of being connected. It is a search
for the own ID, which will look for contacts that have an ID near ours. The
self lookup is then repeated every four hours.
Through the self lookup and mainly through the process that searches for
new contacts in every bin, the routing tree will be filled more and more, until
a balance is reached. This has to do with the fact that contacts leave the
system and are removed from the tree and, on the other hand, new contacts
join it and are added to the tree.

2.5.3 Bootstrapping

There are two cases were eMule does not have any usable contact and con-
necting to the Kademlia network is a little more difficult: Either the last
session was a long time ago and all saved contacts are useless, because none
of them is alive or if eMule is installed und started for the first time. In
both cases a bootstrapping procedure has to be performed. It is sufficient to
obtain one working contact, which will provide several contacts from its own

16

routing tree. These can then provide their contacts and so on. This is done
by sending a BOOTSTRAP_REQ message to that first contact, which requests
it to send 20 contacts from its routing tree. It retrieves those contacts with
the same procedure that is used when saving them to disk at the end of a
session (which was described in Section 2.5.1). After that it replies with a
BOOTSTRAP_RES message which contains these contacts. We add them to our
routing tree and the connection phase continues as if it would be a regular
one where we have loaded the contacts from disk.
But it has to be noted that if only 20 instead of 200 contacts are retrieved,
the algorithm does not deliver a set of contacts whose IDs are well distributed
regarding the ID space. On the contrary, they come from only two bins and
there IDs are therefore very close together. Moreover, they have IDs that
are near to the contact that was used to start the bootstrapping procedure.
Now the question arises where to find such a working contact so that the
bootstrapping procedure can start. In eMule there are two possibilities
for that. If the user knows another client that is currently connected to
the system, he can enter his IP Address and port number in the graphical
user interface and push the Bootstrap button. But in the most cases the
user does not know any IP addresses of other clients. Then he can use the
second possibility, which makes use of the fact that almost every eMule client
is connected to the Kademlia system and to a server via the eDonkey2000
protocol at the same time. eMule then can use the sources that the server
provides for those files that are currently being downloaded by the client. It
will contact them and request them to send some Kademlia contacts. For
that, the client has to be connected to a server and has to have at least
one file in the download queue, otherwise no sources will be needed from
the server. Once eMule has received a source for a file, it will contact that
source through its client-to-client protocol to obtain important information,
like which parts of the file it offers to download. If that source answers and
there are no contacts in the routing tree, eMule will send a BOOTSTRAP_REQ
message to it and proceed as described above. Since the servers do have
fixed IP addresses and there are lists of popular servers, it is possible to
connect to Kademlia without having any contacts, by using the procedure
described here.

2.5.4 Comparison with Paper & Discussion

The connection phase of eMule resembles to the one described in the Kadem-
lia paper. The only difference is that eMule uses a lot more contacts to begin
with, which gives a high probability that one will be still alive. Also, the
theoretical version does not contain a bootstrapping procedure, where one
contact sends its own contacts to the client which is running the bootstrap-
ping. But an interesting idea was not implemented in eMule. If a new client
joins the system, his nearest neighbors (regarding the ID) will notice this,

17

because the joining client will do a search for nodes with its own ID and
find them. The paper recommends the nearest neighbor to transmit all the
information he is storing (sources, keywords and notes) to the new client. If
this is not done, only the original publishers of that information can send it
to the new client, when they republish their information. As we will see in
Section 2.7 the republish period is set to several hours, which could cause
information to be lost in the system during this time if all the clients that
store it leave the system.
There is one flaw that can be pointed out in eMule’s implementation con-
cerning the bootstrapping procedure. If a client is requested to reply with
some of his contacts, the same algorithm is used as for storing contacts to
disk at shutdown, but with a smaller number of them. It seems that the
algorithm was not optimized for such a small number of contacts, as it only
collects contacts with IDs that are close to each other and near by the client
that runs the algorithm. But it would be much wiser to send contacts whose
IDs are distributed over the whole ID space to a client that is joining the
network and is trying to populate his routing tree.

2.6 Searching

Kademlia’s main functionality is to provide information that other clients
in the network hold. This is realized through searches. This subsection will
discuss their implementations in eMule. First it is necessary to differentiate
between several types of searches, which will do the following part. Then the
search procedure is analyzed and explained in detail. After that, the type
of search that looks for new sources is evaluated in detail in its own part.
At the end a comparison to the search procedure in the paper is presented
and discussed.

2.6.1 Types of Searches

There are many types of searches, as one can search for contacts, sources,
keywords, notes and so on. But no matter which type of search, they all
have a target ID that determines the point in the ID space where the search
will find its results. In Section 2.7 we will see that every information is
stored redundantly on several clients whose IDs are located around the ID
of the information (which is obtained through hashing it). Therefore, when
searching for a specific information the target ID of the search will be set
to the ID of that information, unless when searching for a contact. Then of
course the target ID will be the contact’s ID itself.
To get an overview of the different types of searches, the following list
presents them. Their icons and names can be seen in the graphical user
interface of eMule (which will be discussed in Section 4).

18

Node Lookup: This type of search is used to find new contacts, so
that the routing tree is populated or refreshed. It is only used by the
self lookup and the random lookup procedure that were explained in
Section 2.5.2.

Search Sources: If there are any files in the download queue, this
type of search will find sources that can deliver parts of them.

Search Keywords: This type of search is activated when a user
starts a search in the graphical user interface. It will find files whose
file names match the keywords entered.

Search Notes: If the user is interested in notes for a specific file, he
will use this type of search to find comments and ratings from other
users for that file. This can be done for keyword search results, files
in the download queue and files that the user is sharing.

Store File: This type of search is part of the publishing process
that will be explained in Section 2.7 later on. It is used to publish a
file shared by the user. Therefore, the ID of that file and the users
IP address will be published.

Store Keyword: To publish the filename of a file the user is sharing,
this type of search is used. This is done for every keyword in the
filenames of all shared files.

Store Notes: If the user comments or rates a file he is sharing, this
type of search will publish the note to the network.

The last three types in the list are used in the publishing process. The reason
why they are listed here is because the process of publishing information in
Kademlia is the same as when searching for information. The only difference
is the request message that is sent to the nodes, which is either a store request
or a retrieve request. But finding the relevant nodes is always accomplished
the same way.
Another differentiation that can be observed in the list is that there are
types of searches which the user has to activate (search keywords and search
notes) and others which are started automatically through eMule’s internal
processes.

19

2.6.2 Detailed Search Procedure

Whenever a search is initiated, a corresponding object is created and in-
serted into the map called mapSearches, which contains all active searches
at the current time. It has the search target ID as key and the search object
as value. A search manager controls all active searches, by cycling through
them and checking if something has to be done. If necessary he sends mes-
sages or processes responses. An interesting feature of eMule’s graphical
user interface is the visualization of the active searches, because it shows a
lot of information and is very helpful when trying to understand how the
searches work (cf. Section 4).
Every search is executed using two parallel processes. The first one searches
for new nodes that are near the target ID of the search. Although there are
already many contacts in the routing tree, the chance that it will contain
the ones needed is very small, since there is an enormous number of possible
IDs in a 128-bit range. The second process requests these nodes for the
information that the search is looking for. As mentioned before, these two
processes work in parallel, to optimize the search speed. As soon as the first
node is found by the first process, the second process can already ask that
node. The two processes will now be explained in more detail, beginning
with the first one.
To find the nodes that are needed, the first process has to ask already
available contacts for them. For that reason, it will look in the routing tree
for contacts that are as near as possible to the target ID.5 eMule retrieves the
50 nearest contacts from the routing tree and places them into a temporary
map, which has the distance from a specific contact to the target ID as
key, allowing it to retrieve the nearest one at any time. To obtain these
50 contacts, first all of the 10 contacts from the bin that is closest to the
target ID are retrieved. Then, the second nearest bin is visited by going one
level up to the parent routing zone and taking the other path down. This
is repeated recursively until 50 contacts have been found. Contacts with a
type of level 4 will not be considered. Figure 4 demonstrates the procedure
on an example routing tree.
Now, the process begins to ask these 50 contacts, to obtain nodes from
them that are closer to the target. eMule contacts 3 nodes at the time,
which is similar to the implementation in the paper, that uses a “system-
wide concurrency parameter α” and proposes to set it to 3. To contact
a node a KADEMLIA_REQ message is sent containing the target ID and the
number of nodes requested. The latter depends on the type of the search.
For a node lookup 11 nodes are requested, for a source, keywords or notes
search 2 are requested and for a file, keyword or notes store 4 are requested.
If a node receives this message, it will retrieve the requested number of

5Remember that always the nearest ones have to be asked first to obtain a search that
is logarithmic in time.

20

6. 5. 2. 1. 3. 4.

1

Figure 4: Bin visiting sequence of the procedure for retrieving the 50 closest
nodes. The bin whose ID space matches the target ID is highlighted green.

contacts that are closest to the target ID from its routing tree. Thereby
the same method is used as if contacts were retrieved to start a new search,
as described above. Then, the requested node replies with a KADEMLIA_RES
message including these contacts. When eMule receives this response, it
adds all the included nodes as new contacts into the routing tree. They are
also added into the temporary map of the current search so that they can be
asked if needed. Then again, the 3 currently nearest nodes are contacted in
parallel to obtain even closer nodes. But they are only contacted, if they are
closer to the target ID than the node that provided them. This procedure
continues as long as there are new nodes that are closer to the target.
When looking at the first process it becomes obvious that it is a passive one,
since it only then asks nodes when another node from an earlier request has
responded (except at the beginning where the 3 closest nodes are contacted
to initiate the procedure). It can happen that at any time none of the 3
contacted nodes answer. Therefore, another process is needed, which ob-
serves every search and restarts it if necessary. This is done by the second
process that was mentioned at the beginning of this subsection. It continu-
ously loops through the currently active searches and checks those that did
not receive any response for the last three seconds. There are several things
that the process has to examine. First it goes through the temporary map,
beginning with the node that is closest to the target ID. If there is a node
that was not yet requested to send its closest nodes, it will be asked now and
the process switches to the next search. If on the other hand the process
finds a node that did not respond to the KADEMLIA_REQ message, it will be

21

removed and the process retrieves the next node from the map. As a result
all nodes that do not answer within three seconds are removed, because the
process has to wait that amount of time until it can check a stalled search.
The most important task of the second process however, is to send the actual
request of a specific search to nodes that have replied with a KADEMLIA_RES
message. This may be a request for sources or notes, the results for keywords
or one of the three store requests, according to the type of the search. This
is done when going through the temporary map, where again the closest
node is processed first. The following list describes for every type of search
what exactly is sent:

• Node Lookup: Nothing has to be sent, because the actual request is
to find new contacts and that is already done with the KADEMLIA_REQ
message.

• Search Sources: A SEARCH_REQ message is sent containing the file
hash ID, for which sources should be found.

• Search Keywords: Also here a SEARCH_REQ message is sent, but with
the hash ID of the first keyword and a search expression if there are
more than one keywords. To distinguish the keyword search from the
sources search an additional flag is sent, which is either set to 0 or 1.

• Search Notes: A SEARCH_NOTES_REQ packet is sent that holds the
target ID, which is in this case the file hash ID of the file for which
notes are being requested.

• Store File: To publish that the actual client is a source for a specific
file, a PUBLISH_REQ message is sent, containing the file hash ID, the file
name and details of the client such as its IP address and port number.

• Store Keyword: If a keyword is being published, also a PUBLISH_REQ
message is sent, which includes the keyword’s hash ID and a list of the
files that have it in their file names. If there are more than 50 file
entries, the message is split up to 3 packets, each having 50 entries.
Also here a distinction is necessary between a file store and a keyword
store. This is done with a flag, too.

• Store Notes: To publish a note for a file, a PUBLISH_NOTES_REQ
message is sent, containing the file hash ID, the file name, the rating
and the comment.

When some node receives such a request, it has to process it and possibly
send a reply. What has to be done in the case of a store request will be
discussed later on in Section 2.7. If it is one of the three search requests, the
node tries to lookup the requested information in the corresponding map
(sources in mapSources, Keywords in mapKeyword and notes in mapNotes).

22

Then it will reply with a SEARCH_NOTES_RES message for a notes search or
with a SEARCH_RES message for the other two searches, which contains the
retrieved results. If the node does not find any matching results, it will not
send any reply.
While a search is running, it receives more and more results from different
nodes. As soon as there are enough results, the search can be stopped to
prevent the system from wasting network resources. This task is also done
by the second process, while cycling through the active searches. Therefore,
every search object has a counter for the received results, which cumulates
the items that have been received (not the number of responses from different
clients). As the information is stored redundantly in Kademlia, there will
be duplicates among all replies. The counter does not consider them. There
is also a timer in every search object, that holds the time elapsed since
the beginning of the search. It is used to stop searches that where active
for a long time and were not stopped by the results counter, because they
delivered not enough results. To suit the different search types, the values
that stop a search were adapted. The following table shows these values for
every type of search:

Search type Results Expire time (seconds)
Node Lookup 10 45
Search Sources 300 45
Search Keywords 300 45
Search Notes 50 45
Store File 10 140
Store Keyword 10 140
Store Notes 10 100

As soon as one of the two criteria is fulfilled, the search is stopped and
removed from the map that contains all active searches.

2.6.3 Automatic Search for Sources

The type of search that retrieves new sources for the files a user is cur-
rently downloading, works completely in background without its notice. It
is therefore very interesting to analyze this type of search, especially to find
out when and how often it is launched.
As soon as eMule is connected to the Kademlia Network, a search for sources
is started for every file that is in the download queue. If a new file is added
to the queue, an immediate search is started too. But there is a limitation
to 5 parallel searches for sources, so if there are more files in the queue, the
other searches have to wait until one finishes. After a successful first search
for a specific file, the next searches are repeated in increasing intervals,
always waiting 1 hour more, until an interval of 7 hours is reached (i.e.

23

the intervals are 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, . . . hours). But the searching
for sources in Kademlia is omitted from the moment where a file has more
then 50 sources. This is a fixed value, that cannot be changed by the user.
However this does not necessarily imply, that files only have so few sources,
because already the first search can deliver up to 300 sources (as described
in the last subsection). Also, there are many other ways to obtain sources.
Even if eMule is not connected to a server, sources are exchanged on a
client-to-client base.

2.6.4 Comparison with Paper & Discussion

First it has the be mentioned that eMule stores different types of information
in the Kademlia system, so there also have to be several types of searches.
The paper distinguishes only between a node search and a value search. The
procedure of a particular search in eMule uses the same strategy as described
in the paper to obtain the logarithmic lookup speed. Nevertheless, there is a
major difference in eMule’s implementation, since it uses 2 parallel processes
for a search, where the first one searches for closer nodes and the second one
asks for the requested information. This actually almost doubles the message
cost of a search, because every node which is involved is asked twice in
contrast to the version from the paper. There, every node is only asked
once, because of a better message format, that combines the two messages
from eMule’s version into a single one (either the requested information is
returned or a list of closer nodes). Another dissimilarity between eMule and
the paper is that after a successful search the latter proposes to send the
requested information to the node that has the closest ID but does not have
the information stored. A possible reason for this is that the information is
larger than the paper is assuming and that one would have to deal with the
downsides, for example with the described problem of overcaching.
There are some drawbacks with eMule’s implementation of the search proce-
dure. For example, if a node needs more than 3 seconds to reply to a request
for closer nodes, it will not be considered by the second process. This means,
that it will not be asked for the actual request of a specific search, although
its answer to the first process, a list of closer nodes, will be used. Maybe it is
wiser not the ask such nodes, because a delay of more than 3 seconds could
indicate an overload. A bigger weakness is located in the automatic search
for sources, that was explained in the previous subsection. After a file in the
download queue exceeds the amount of 50 sources, there will not be started
any further searches for that file. Since this value cannot be changed by
the user, it conflicts with the fact that the limit of total sources per file can
be changed in the graphical user interface. If a significantly higher value is
chosen there, it will never be reached, when only Kademlia is used. This
problem was confirmed by tests with popular files. Since more sources result
in higher downloading speeds, it would be useful to let the limitation in the

24

search for sources depend on the global one that can be set by the user.
Also a more frequent search could help in a higher amount of sources.

2.7 Publishing

Every node that wants to share one or more files in the Kademlia system,
has to publish them first, so that other nodes can search for it and download
it. Therefore, that node needs to publish that it is a source for every file it
is sharing, in order to allow others to find that node and add it to their list
of sources. Moreover the filenames of every shared file have to be spread.
This is done by publishing the keywords of every file that is shared with the
Network. If a user commented a file he is publishing, this note is published
too, so other users are able to retrieve this comment before downloading
the file. Thus, there are three different types of publishes. Every node is
responsible for publishing his own files and on the other hand every node will
receive publishes from others that it has to store in the three corresponding
maps, to be able to respond to the search requests it receives.
The next part will explain how the general procedure of a publish is im-
plemented, followed by a differentiation of the three publish types. Then,
the protection mechanism of so called hot nodes in keyword publishing is
presented. After that, the behavior of the publishing process at startup is
analyzed, to see when which type of publish is initiated for the first time.
Finally, the publish procedure is compared to the one described in the paper.

2.7.1 Procedure of a Publish

Although there are three different types of a publish, the procedure is almost
the same for all of them. As seen in the section about searching, a publish is
done through the search system, using the search manager. In a publish, the
first process is identical to a search, but the second differs, since a publish
request is sent, instead of a search request. As publishing is performed
automatically without the users notice, there is a process that goes through
the shared file list and the list of all keywords and checks whether it is
necessary to publish a file, keyword or a note. If it is the case, a new search
object is created and the first process is initiated as if it was search. Once
a node has answered in the first process, it is contacted by the second one
with a PUBLISH_REQ message (or a PUBLISH_NOTES_REQ in the case of a
notes publish). A node which receives such a message, stores the containing
information into one of its maps according to the type of the publish. But
there is one limitation, which causes the information not to be stored. This
is the case when the ID of the information is differing to much from the nodes
ID, since a node should only hold information whose ID is close to its own
ID, because a search will always only ask a node for such information. The
limitation is implemented through checking the XOR distance between the

25

two IDs. If it is larger than 16’777’216, the information is not stored on that
node. In other words the last 24 bits of the 128-bit IDs may be different. In
case of a successful storage of the information, the node replies the publisher
with a PUBLISH_RES message (or a PUBLISH_NOTES_RES for notes). If the
information could not be stored, nothing is sent.6 To achieve a redundant
storage of information, publishing is not stopped until the information was
replicated to 10 nodes. This fact can also be seen from the table, which
was showed in Section 2.6.2. If for some reason such a replication cannot
be reached by a publish (remember that there is also a time limit for every
publish or search), no special action is taken.

2.7.2 The Three Publish Types

After seeing how the procedure of a publish works in general, this subsection
will describe the differences between a file, keyword and a note publish.

• The file publish uses a list that contains all the shared files. The
process cycles through this list and looks for files whose publish time
has expired. When such a file is found, eMule starts a publish that
contains the hash ID of this file and the owners ID, IP address and
port, to be able to retrieve that user as a source for this file. Then, the
publish time is set to 5 hours, which means that the next republish for
this specific file will fall due in 5 hours. There are only 3 file publishes
allowed at the time. If there are more, the others have to wait.

• For the keyword publish a list of keywords is maintained. It contains
every keyword from all the files that are shared. The process rotates
this list and checks every keyword for its expiration. If it is the case the
keywords hash ID is published, including a list of all files that contain
this keyword in their file name. An entry in this list consists of the
file hash ID, the filename, the size and some tags, which describe the
file (e.g. file type, duration for movies, bitrate for sound files). The
republish time is set to 24 hours. Only 2 keyword publishes can run
simultaneously. When publishing keywords a problem of overloaded
nodes can occur. This will be discussed in the next subsection.

• The note publish uses the same file list as the file publish to identify
those files which were commented by the user and whose publish time
regarding the note has expired. If a note has to be published, a mes-
sage with the corresponding file hash ID, the filename, the rating, the
comment and the ID of the node that shares this file and commented
it, is sent to the 10 closest nodes. A republish is done every 24 hours, as
it is done with keywords. There are no parallel note publishes allowed.

6This does not hold for keyword publishes, as will be explained later.

26

Whenever the user changes a file name or adds a comment, the corresponding
publish is immediately executed for that file. Since receiving publishes will
fill the three maps more and more, there also has to be a process, that cleans
them by removing old information. Therefore, every information stored in
the maps has a timestamp, holding the time when it was stored. Every 30
minutes a cleaning process scans the maps and removes expired information.
The expire time is identical to the republish time (24 hours for keyword and
note entries and 5 hours for source entries).

2.7.3 Protection of Hot Nodes

It can be assumed that the hash IDs of all the shared files in the network are
evenly distributed over the whole ID space. This follows from the fact that
the files are hashed with a complex hash function. As a result every node is
responsible for almost the same amount of files and therefore they all have
a similar number of sources in their maps. Of course, not every shared file
has the same popularity, so the number of sources can vary. But it can be
assumed that there is no such file with a super popularity, meaning that
everyone in the network would share it, as people have different interests.
This cannot be proven, but the web site eMule Top 50 [6] that lists the 50
most shared files, supports this assumption. So there is no node in the
system which receives to many publish messages with sources, because of
the facts mentioned before. The same holds for notes, because there are at
most as many notes as there are sources for a specific file (which would be
the case if everyone that shares a file also commented it).
With keywords it is different, since there exist very popular keywords. There
are two reasons for that. The first one is based on the type of files being
shared in eMule. Own researches have shown that these are mostly audio
or video files. Their filenames very often contain words like “CD1”, “CD2”,
“Radio Version”, “Mix”, a track number between 01 and 10 or the release
year. The second reason for very popular keywords is language based. There
are popular words in every language, for example “a”, “of” and “the” in
English. Such stop words are normally ignored by search engines like Google,
because they appear to often and do not return usable results when searching
for them. Therefore, it is very likely that the node which has an ID close
to a super popular keyword will get overloaded by the publish requests it is
receiving from all the other nodes. eMule calls these nodes hot nodes.
To prevent hot nodes from getting overloaded, a protection mechanism is
implemented, that measures the load of the keyword map of a specific node.
As described in the general procedure of a publish, when some node sends a
publish message to another node, the latter will respond with a PUBLISH_RES
message, indicating that it was able to store the information. This response
also contains a load percentage of its appropriate map. In the case of a
keyword publish, this value is evaluated to check whether the node is a hot

27

node or not. A value of 100 % indicates that all of the 50,000 possible entries
for a specific keyword ID are full, so for example 2 % would correspond
to 1,000 entries. Whenever a keyword publish is executed, the protection
mechanism analyzes all the received results and generates a mean value.
If this value is greater than 20 % (which corresponds to more than 10,000
entries on every node) the published keyword is considered to be super
popular and its closest nodes are considered hot nodes. To protect these
overloaded nodes, the keyword is not published any more for a specific period
of time. It is placed into a list that contains all currently banned keywords
including the time until they are not allowed to be published. This duration
is computed with the following formula:

t[days] = 7 ∗ loadnormalized

where loadnormalized is the average load that has to be normalized to 1. So,
the duration t where this keyword is not allowed to be published varies be-
tween 1.4 and 7 days. To ensure that a publish is not started for this keyword
after eMule was restarted, the list has to be stored permanently on disk (ac-
tually this list is implemented as a map, stored in the file load_index.dat
and called mapLoad in the source code).
The protection mechanism can only work when the publish procedure for
the keyword publish is slightly changed from the one described before (see
Section 2.7.1), where the requested node does not reply if it cannot store
the publish information. While this is acceptable for the file and notes
publish, in a keyword publish the requested node always has to answer.
Especially, this is necessary when it is overloaded, so that the publishing
node receives the high load value and can prevent the specific keyword from
being published again. If the requested node did not answer, the publishing
node would have to try its neighbors to achieve the desired replication of
the information. So, they would also be bothered with the same publish
messages although this keyword already is super popular and publishing it
to more nodes is needless.

2.7.4 Behavior at Startup

At startup the most important thing is to find some contacts that are alive.
Afterwards the files that the user is sharing can be published. The be
sure that the Kademlia network is running, publishing is started after the
self lookup has successfully completed (see Section 2.5.2). The self lookup is
initiated 3 minutes after connection to the network and takes approximately
30 seconds. Hence, the first publish will be started after this amount of time
being connected to Kademlia, which matches the time measurements done
when testing eMule. At this point of time the first three files, two keywords
and the first note will start being published simultaneously.

28

2.7.5 Comparison with Paper & Discussion

When comparing eMule’s implementation of the publishing process with the
one from the Kademlia paper, there is one rather important feature missing.
The paper proposes to republish the information that a node stores every
hour. This means that an additional publish should be done every hour not
by the original owner of a specific file, but by the nodes that were asked
to store the information about that file. This idea seems to be very useful,
since nodes join and leave the network very often and the owner of a file
does not know when the nodes that store information about its file leave the
system. Through a regular republishing, the information would not be lost
when these nodes leave and new nodes that are closer to the ID would also
receive it. Unfortunately, such a mechanism is not implemented in eMule.
As a negative point of eMule’s publish procedure, the implementation of
the tolerance for accepting a publish can be mentioned. Being fixed to the
maximum distance of 24 bits, this seems to be alright for very large networks
with hundred thousands of participants like the Internet, but eMule will with
high probability not work in a small workgroup. There, the tolerance must
be much larger or else the closest node is likely to be outside of it.

2.8 NAT and Firewall

A common problem for internet applications are firewalls and network ad-
dress translation systems. The latter are widely spread, since they are in-
tegrated in almost every DSL internet connection, to share the public IP
address among all connected computers. Firewalls are used in companies
to protect their clients. This subsection addresses these two obstructions
and shows how eMule overcomes them. As the report does not focus on
this problem and the analysis of the corresponding code was difficult, this
section only gives a rough overview.

2.8.1 Obtaining the Public IP

If network address translation is used on the client side, the clients IP ad-
dress will differ from the external one, that must be used to contact it.
Therefore, a mechanism has to detect it, using other clients that send back
the observed address as follows: When sending a FIREWALLED_REQ7 message
to any client that uses eMule, it will answer with the FIREWALLED_RES7 mes-
sage containing the IP address of the initial sender, that wants to find out
its public address. If it receives the same address from two different clients,
it will use this address as its public IP. The mechanism uses a counter that
starts with 0 and is increased every time the clients receives a message with
its address. The FIREWALLED_REQ messages are sent as long as this counter

7The names of these two messages are misleading.

29

is smaller than 4, which gives a reserve of an additional message to the two
needed ones. These messages are sent to such contacts which have sent a
HELLO_REQ, KADEMLIA_REQ or a KADEMLIA_RES message, which means that
they were asking if the client is still alive, asking for new contacts or replying
with new contacts.

2.8.2 The Buddy System

If a client using eMule is located behind a firewall, the problem arises that
it cannot be contacted by other clients. The only exception is when it starts
a new connection, other clients can reply using this connection. With this
handicap a firewalled client is useless for storing information, since it will
not receive any publishes or searches. This would not be that bad, because
only a minority of all clients is behind a firewall. But the main problem is
that such clients will not find out when they can start downloading from
another client, since the latter cannot contact them. Consequently they will
not be able to download anything. To overcome this problem, eMule uses
a so called buddy system, where a firewalled client is helped by a normal
client, his so called buddy. If somebody wants to contact the firewalled
client, he uses its buddy, which can be reached by everyone, to establish a
connection.
But first every client that is joining the Kademlia network has to find out,
whether it is behind a firewall or not. It cannot just ask another client to
reply with a message to test for the presence of a firewall, because the latter
would allow all incoming messages from a client that was contacted just be-
fore (otherwise no communication would be possible). For that reason there
is a mechanism implemented that sends a separate FIREWALLED_ACK_RES
message after a connection to another client was established. This means
that any client will receive such messages when connecting to other clients
(if it is not behind a firewall). When joining the network, eMule assumes
that it is firewalled. This state is changed to not firewalled, when at least 2
such messages were received.
If after 5 minutes the state is still firewalled, eMule decides that the client
is really behind a firewall and starts to search a buddy that will help oth-
ers connecting to this client. The buddy search is based on the normal
Kademlia search described in Section 2.6 except that in the second phase
FINDBUDDY_REQ messages are sent instead of the ones used to retrieve or
store information. The target ID of such a search is the inverted ID of the
client that searches for a buddy, which means that every 0 of the ID be-
comes a 1 and every 1 a 0. This ensures a even distribution of buddies and
that any node will receive at most one request to be a buddy. If some node
receives such a message, it checks whether it already is a buddy of another
node. If this is not the case, the request is accepted and the node replies
with a FINDBUDDY_RES message. Once the client that is looking for a buddy

30

receives such a reply, it will establish a TCP connection with the sender and
set him as its buddy. This permanent connection between the buddy and
the firewalled node allows the buddy to overcome the firewall and contact
the node behind it at any time, where other nodes can contact it only via a
reply (they must have received a message from the node behind the firewall
before they can send anything to it). The firewalled node sends every 10
minutes a BuddyPing message to its buddy to check whether it is still alive.
The buddy then replies with a BuddyPong message. If it fails to reply, the
firewalled node starts to search for a new buddy.

TCP Connection

Internet

Client X

Buddy B

Client FFirewall

1. CALLBACK_REQ 3. Create TCP Connection F↔X

2. OP_CALLBACK

Figure 5: Establishing a connection to a firewalled client

There are two main reasons that a node behind a firewall has to be con-
tacted. Either another node is requesting to download a file from it or
somebody wants to inform this firewalled node that it is on top of its queue
and can start downloading the requested file. Searching and publishing is
not performed with firewalled clients. The connection from a client X to a
firewalled client F with buddy B is established via callback as depicted in
Figure 5. Client X knows that client F is not directly reachable and there-
fore sends a CALLBACK_REQ message to its buddy B (either X knows its IP
address already or has to search for it by inverting the ID of F). B has an
open connection to F, so it forwards the callback through it. The message is
now sent over TCP, so the type of the message changes to OP_CALLBACK. F
receives this message and extracts the IP address and port of client X from
it. Now, F can establish a TCP connection to X and wait for the messages,

31

that X wanted to send to F.

2.9 Estimating the Number of Users in Kademlia

eMule has a function to estimate the size of the Kademlia network. From
this number it also derives the number of currently shared files in the whole
network. At this time, these two values are only computed for the purpose
of informing the user. But it seems like they will be spread to all contacts of
the client in future releases. This could be very useful to adapt the routing
algorithms in Kademlia to the actual size of the network. The number of
users and the number of shared files is visualized in the status bar at the
bottom of eMule’s GUI (see Figure 7 for a screenshot of the GUI). The first
value shows the estimate for the server network and the following value,
which is in parenthesis, shows the estimate for the Kademlia network. The
same holds for the number of shared files, which is displayed next to the
user numbers.
The function that estimates the number of users is a complicated operation
on the routing tree. For every routing zone in the tree a method is called,
that computes the number for this part of the tree. At the end, the maximum
of all values is taken. The method jumps 3 levels up in the tree and then
applies the following formula:

users = 2level−2 ∗ 10 ∗ fmodify ∗ 1.2

where level corresponds to the level of the routing zone in the tree. 10
stands for the maximum number of contacts in one routing bin and 1.2
is a correction factor for firewalled nodes, that are not visible. fmodify is
supposed to be a factor, which reduces the number of users, when there are
bins in that part of the tree, that are not fully occupied with contacts (it is
computed as the total of all contacts in that part of the tree divided by 20).
For routing zones that are located in one of the first 3 levels, the maximum
number of possible contacts on that level is returned instead.
The number of files shared in the network is computed using the number of
users. Therefore, the latter is multiplied with the average number of shared
files per user on all known eDonkey servers. If no server is known, then the
size of the keyword map (see Section 2.2) is used instead.
Both estimates seem to be problematic. eMule’s computation of the number
of users only depends on the size of the routing tree. So, if the frequency
of finding new contacts is changed (which will result in either more or less
contacts), this will also change the number of users. Using numbers from
servers in the case of the computation of the shared files, is not correct
since it is not proven that these numbers are equal in both networks. In
addition Section 2.7.3 shows, that the size of the keyword map strongly varies
depending on which ID a client has chosen. Some parts of the computation

32

are not even comprehensible. Because of all these reasons, it is doubtful
whether the estimates are of any use.

3 Attacking the Kademlia Network

This section examines several attacks on the Kademlia network. First, the
ones that are very difficult to realize are presented. Then an attack is sug-
gested, which was successfully implemented and that is working.

3.1 Attacks that do not work

The eclipse attack tries to surround a client in the network, so that it will
fail to communicate with other clients. This would require to replace all
existing contacts in that clients routing table. But this is not possible in
eMule, as new contacts cannot replace old ones. New ones are only added,
if there is space available in the routing tree. The old ones will still exist
and will only be deleted if they fail to respond.
One can imagine an attack where a client is flooded with publish messages,
with the intention of removing the original information or bringing the client
to crash. But it is not possible to replace the original information with
corrupt data, as entries are only removed from the corresponding maps, if
they are too old. Since other nodes which hold the original data, will also
publish it from time to time, such an attack will fail.

3.2 Network Poisoning Attack

The network poisoning attack tries to corrupt the network by spreading
defective information. There are many conceivable possibilities to poison
the Kademlia network, but only a few are successful. The most effective
attack that was found, restrains user from finding useful entries for a specific
keyword, although they are present in the network. This means, that while
the attack is running, a search for this keyword will not return the original
results. Instead, entries are returned that were arbitrary chosen by the
attacker. This network poisoning attack will now be discussed in detail in
this section.
It is not possible to replace information that is stored on several nodes for
a specific keyword, because these nodes will only add new information to
their maps. So, if one would publish defective information, there would still
be other clients that publish useful information, and the latter could also
be retrieved. To avoid that, all the search requests for this specific keyword
have to be routed to the attacker and not to the nodes that hold the original
information. This is actually very simple, because the ID of every client is
chosen randomly by the client itself. Therefore, the attacker just has to join
the network with an ID that matches the hash ID of the keyword, which

33

is going to be poisoned. Then, he will be the closest node to this ID and
will therefore receive all search requests for that keyword. The nodes that
store the original information for that keyword, will always have a bigger
distance to the keyword hash ID than the attacker8 and will only be asked,
if the latter did not deliver enough results. As a consequence, the attacker
is able to control the information that is bound to the attacked keyword.
He only has to provide enough results to the search requests and these have
to match the keywords that the search requests contain.

3.2.1 Implementation

To prove the success of the network poisoning attack, it was implemented
and tested. The user guide for the modified version is provided in Ap-
pendix B. There are two possibilities to implement this attack. Either a
new application has to be built, which connects to the Kademlia network,
spreads its ID to other clients and replies to search requests with poisoned
data. The other possibility is to modify the original eMule application, so
that it suits the requirements for this attack. As it seemed to be easier and
faster to modify the existing source code, than to create a new application,
the second possibility was chosen.
But first, the original source code of eMule (version 0.47a) had to be com-
piled. This was more problematic than one would expect. An older version
of Microsofts Visual Studio is necessary to compile it without errors (version
.NET 2002). eMule uses several external libraries, that have to be obtained
separately and have to be in the right version. Even then, it was not pos-
sible to complete the compilation (there were errors in the linking part of
the compilation, which indicate problems with the libraries). The solution
to this problem was to obtain the sources of an already modified version of
eMule (a so called MOD). There are a lot of such versions, which offer extra
features, as the source code was developed under the GNU General Public
License (GPL)[7]. The eMule MOD webpage[8] gives an overview of the
most used versions. It was possible to successfully compile the version from
“Sivka”[9] (version 17b1 alpha), because it also contains all needed libraries.
Then the modified source code was replaced by the original version. Now
everything was set, to perform the modification necessary for the attack.
To take over the ID of the attack keyword and set it as the ID of the client,
the search tab in eMule’s GUI was extended (see Figure 8 for a screenshot).
It now contains a field that displays the hash ID of the keyword, that is
being searched. The user can then set this ID as the client ID by pressing
the corresponding button.
The second part of the modification concerns the function that processes the
incoming SEARCH_REQ messages and sends back SEARCH_RES packets. The

8This can be assumed because of the extremely small probability that any client in the
network has chosen exactly the ID of the keyword.

34

modified function does not look up the received keywords in the keyword
map. Instead, it produces 300 result tuples that have the words “FILE
REMOVED FROM KADEMLIA” in their filename. Such a large amount
of results is necessary, to stop the search procedure on the client that was
searching for this keyword (otherwise that client would ask another node and
receive the original information). Additionally the filename must contain all
the keywords to match the search request, so they are appended at the end
of it. Every result tuple also contains a file size and a file hash ID (they
differ in each tuple, to pretend to be different files).

3.2.2 Results

Tests have been made with different keywords. A small problem that arose,
was the fact that the first keyword is not contained in the search request
(see Appendix A for the message format). This is not necessary, because its
hash ID is included in the message. But for the attack it is needed in text
form, so it can be appended to the filename. Therefore, this keyword has to
be stored in eMule. This is done every time, when the own ID is changed
to a new attack ID in the search tab.

Figure 6: Results when searching for the attacked keyword

In addition, a second problem was found during testing. In most of the
cases it happened, that a search request was not only sent to the attacker,

35

but also to other nodes which were further away from the target ID. This
is because of the delay caused when transmitting the 300 search results.
eMule sends another request before all of the results are received from the
attacker, even though there are enough of them. This leads to the problem,
that also original results are shown in the search result. The attack fails. To
prevent this, the attacker also has to own the second, third, etc. closest IDs
to the keyword ID. This means, that he has to run several modified clients,
whereof one has the keyword ID as client ID and the others have IDs, such
that their distance to the keyword ID is as small as possible.
The tests showed, that the modified client first has to spread its ID to other
nodes, before the attack works. It was found that this is the case after
approximately 15 minutes. Figure 6 shows how the search results look like,
if the attack is active.

3.2.3 Protection

It is possible to prevent the network poisoning attack presented in this sec-
tion. Therefore, the ID of a client must not be set randomly, as this way
the attacker can choose the ID he needs to perform the attack. This can be
achieved if the ID of a client is made dependent from its IP address and UDP
port (the port is needed for clients using NAT). Then, the IDs of received
messages could be compared with the senders IP addresses and illegal IDs
could be ignored. One way to make the ID dependent from the IP address
and the UDP port, is to hash these values.
There are two ways to obtain the original information belonging to a key-
word, if a network poisoning attack is active on this specific keyword. Very
often, the search request consists of more than one keyword. Then, exchang-
ing the first keyword with another one in the search phrase will lead to a
totally different target ID of the search, which may be free of any attacks.
The second possibility is to use the server based search within eMule, if the
search in Kademlia was not satisfying.

4 GUI

The graphical user interface of eMule is divided into several tabs, which
visualize important information, like the status of the connected networks,
the files being currently downloaded and many more. In addition, the user
can interact with eMule and is able to search for new files, manage the
downloads or change the settings of eMule. The GUI can be seen in Figure 7.
The tab, that shows information about the Kademlia network is named
“Kad”. It was activated in this figure and is therefore displayed underneath
the tab buttons. The Kademlia tab consists of four sections: A list of
contacts in the upper left area, bootstrap and connect buttons in the upper

36

right corner, a visualization of the contacts beneath and a list of active
searches in the lower area. These sections will now be discussed in detail.
The list of contacts shows all contacts that are currently contained in the
routing tree. Every entry is composed of an icon, the contacts ID, its type
and the distance to our ID. The color of the icon corresponds to the type of
the contact (see Section 2.4.3 for more details). The type field contains two
numbers. The first one is the type of the contact, thus it shows how old and
reliable that contact is. The second number, which is in parenthesis, shows
the version of eMule the contact is running. The following table presents
the possible entries:

Number Version
0 unknown
1 0.46c
2 0.47a
3 0.47b
4 0.47c

It has to be remarked that this version is only sent via the new Kademlia
2.0 protocol, that is used from version 0.47c. Older versions (back to 0.46c)
understand the new protocol, but do not use it except when they receive a
request sent through the new protocol. As a consequence such clients will
only display the version if it is 0.47c, like in the figure. If the number dis-
played is 0, the corresponding client does not support the new protocol. The
distance field in the contact list shows the distance (binary representation)
between the contacts ID and our ID, as it is used in the routing tree.
The Recheck Firewall button is useful when the user changed its firewall set-
tings, so that the traffic is no more blocked and wants eMule to notice this
(apart from that the firewall status is only checked once every hour). When
this button is pressed the entries for the firewall status and the public IP are
cleared. After that, the public IP is determined again and the mechanism
for detecting a firewall, as described in Section 2.8.2, is started. The Con-
nect (respectively Disconnect) button either starts or stops the Kademlia
network. When the Bootstrap button is pushed, eMule first connects to the
Kademlia network (as if the connect button was pushed), but only if it is
not already connected. Then the bootstrapping procedure is initiated with
the IP address and the port of another client, as described in Section 2.5.3.
If instead the radio button “From known clients” is chosen, nothing will
happen when the Bootstrap button is pressed, because this case was not im-
plemented yet. Notice that the second possibility of bootstrapping, namely
the one with the sources from a server, is executed independently of the
Bootstrap button being pressed or not. This is because of the fact that
the bootstrapping from sources is started automatically when there are no
contacts available.

37

Figure 7: The Kademlia tab in the graphical user interface of eMule

38

The visualization box shows how much populated the routing tree is and
how the contacts are distributed in the ID space. The x-axis of the graph
represents the whole ID space, going from the smallest ID on the left side to
the largest one on the right side. A red bar on the y-axis shows how many
contacts are located in a specific region of the ID space. A grey bar indicates
the area with the greatest amount of contacts. This area also contains our
ID, because the greatest amount of contacts stored in the routing tree is
close to our ID.
The list of searches in the bottom half of the tab contains all currently active
searches. In other words, this is a representation of the search managers
list of searches. It can be very helpful to observe this list, when trying
to understand how searches work in eMule, because it visualizes a lot of
interesting information. The list has the following eight fields:

• The Number field contains an icon to quickly see of which type a
specific search is. These icons were presented in Section 2.6. The icon
is followed by the search number, which is used to identify a specific
search. A counter assigns every new search a different value. The
only exception are node lookup searches, that always have the value
-1 there.

• The Key field holds the target ID, thus it shows which ID a search
is looking for.

• The Type field shows the type of the search, to differentiate between
the several types of searches (Node Lookup, Search Keywords, Search
Sources, Search Notes, Store Notes, Store File, Store Keyword).

• The Name field is only used when a file or a keyword is published. It
then contains the file name (in case of a file publish) or the keyword.
For any other type of search this field is empty.

• The Status field informs the user whether a search is still “Active”
or already “Stopping”. The latter means that the search produced
enough results (or the time limit was reached) and will be removed
from the search manager in a few seconds.

• With the Load field it is possible to see the popularity of a keyword
that is being published. As described in Section 2.7.3 super popular
keywords have to be revealed and no more published, in order to avoid
overloading of the corresponding nodes. When a keyword publish is
running, the requested nodes will return their load value. The first
number in the Load field is the mean value (in percent) of all the
returned load values. If this value is greater than 20, the related
keyword is considered super popular and will not be published for a
specific amount of time. In Figure 7 there is such a keyword publish,

39

that has a high load. After the first number in this field, there are two
additional numbers in parenthesis. The first one counts the number of
nodes that responded with a load value and the second one shows the
cumulated load over all these nodes. As a consequence, the mean load
value is obtained when dividing the cumulated load by the number of
nodes.

• The Packets Sent field contains two numbers, because the search
procedure sends two different types of messages to other nodes. The
first number shows the counter for the KADEMLIA_REQ messages. They
are used in the first phase to obtain closer nodes to the target ID of the
search. The second number counts the actual requests (SEARCH_REQ,
SEARCH_NOTES_REQ, PUBLISH_REQ or PUBLISH_NOTES_REQ) that are
sent in the second phase of a search.

• The Responses field shows how successful a search is. If the search
is looking for sources, keywords or notes the value corresponds to the
number of received sources, files (with filenames containing the key-
words) or notes. If it is a publish, then the value is equivalent to the
number of nodes that successfully stored the information (and replied
with a PUBLISH_RES or PUBLISH_NOTES_RES message). If the search
is a node lookup, the value corresponds to the number of received
KADEMLIA_RES messages (which is not equal to the amount of new
nodes received).

5 Outlook

The eMule project is under constant development. A log that lists all
changes for every version can be found here[10]. The version that was ana-
lyzed in this thesis has still not reached the release status, as the number is
under 1.0. The developers plan to improve the Kademlia protocol in future
versions. It will then be called Kad 2.0, but it is not clear what improve-
ments will be made. A part of the new protocol is already implemented in
the source code that was analyzed. The only change visible there, is a better
message format. In particular, more information is sent about a client, when
it joins the network.
From version 0.47b eMule supports protocol obfuscation. Thereby, transmit-
ted data will appear as random data on the first sight. This helps to prevent
recognizing that eMule is used on a specific connection. But, obfuscation is
not supported for Kademlia messages.

40

6 Conclusions

The analysis of eMule’s source code showed the following three flaws: Al-
most all algorithms that are used to process the internal data structure, are
naive versions and therefore CPU intensive (e.g. linear search is used very
often). The second flaw can be found in the implementation of Kadem-
lia’s algorithms. Constant parameters are used, which were set to a fixed
value, instead of allowing them to adapt to the rest of the application. One
example is the automatic search for sources, which does not obtain the
maximum sources per file value from eMule’s global settings, as described
in Section 2.6.4. The third flaw is the ability of attacking the Kademlia
network by poisoning, as described in Section 3.2. This attack could be
prevented, if IDs were used, that depend on the users IP address.
Despite all the flaws that exist in eMule, this file sharing client has proven
to work very well in the last few years, as it is used by an enormous number
of people. A positive aspect is the fact that eMule uses a theoretical basis
(Kademlia) for the implementation of the peer-to-peer part, instead of hav-
ing developed a proprietary version. As a consequence eMule’s peer-to-peer
functionality is solid and efficient. Moreover, eMule uses three redundant
ways of obtaining sources for its downloads (which is the most essential
function in a file sharing network), making downloading files very reliable.

41

A Kademlia Message Types

This section serves as a reference for all message types that are used to
communicate between eMule clients in the context of the Kademlia protocol.
Every message is sent via UDP, except the two last messages listed here
(BuddyPing and BuddyPong), which are sent vie TCP. A message is either
a request or a response. This can be seen from the suffix of the name of a
message (the name ends with either _REQ or _RES).
The format of every message is presented in the following subsections. Fig-
ures are used to illustrate the content of the messages. They show all
the fields that are enclosed in a specific message, starting at the left side.
For each field, its name and size (in Bytes) is shown. The latter is writ-
ten in squared brackets. Every Kademlia message starts with the same
header of 1 Byte length. It contains the value 0xE49, which is referred as
OP_KADEMLIAHEADER in the source code. For reasons of space, this header is
not shown in the following figures. The header is followed by the message
type field. To distinguish it from the other fields, its text is colored green.
Some message types contain a list of contacts, results, files etc. Such a list
consists of several fields that are repeated for a specific amount of times.
These fields are highlighted blue in the figures. The message types from the
Kademlia 2.0 protocol are not presented here.

A.1 Hello

Used to test whether a contact is alive and responding, similar to a “ping”
(see Section 2.4.3). The format of the HELLO_REQ message is:

0x10 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

The fields contain information about the sender. The last field is not used
at the moment.
To answer, a HELLO_RES message is sent:

0x18 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

It contains exactly the same fields as the first message.

A.2 Bootstrap

A BOOTSTRAP_REQ message requests the recipient to reply with 20 contacts
from its routing tree, to speed up the connection process (refer to Sec-
tion 2.5.3). The message has the same format as the hello messages:

9Hexadecimal representation

42

0x00 Kad ID IP Address UDP Port TCP Port 0x00
[1] [16] [4] [2] [2] [1]

The reply is a BOOTSTRAP_RES message that contains several contacts. The
format is:

0x08 NumOfContacts Kad ID IP Address UDP Port TCP Port 0x00
[1] [2] [16] [4] [2] [2] [1]

A contact consists of the five fields that are marked blue. These fields are
repeated as many times as specified in the second field. The last field of the
contact data has no function.

A.3 Search

The KADEMLIA_REQ message is used to obtain closer contacts to the specified
ID. It has the following format:

0x20 NumOfContactsRequested Target ID Receivers ID
[1] [1] [16] [16]

Either 2, 4 or 11 contacts can be requested (more details in Section 2.6.2).
They should be as close as possible to the target ID. The receiver only
answers if his ID is written in the last field.
The reply is a KADEMLIA_RES message with following format:

0x28 Target ID NumOfContacts Kad ID IP UDP TCP Type
[1] [16] [1] [16] [4] [2] [2] [1]

The target ID is the same as in the request. The second field describes
how many contacts are sent. A contact consists of the blue fields (the
contacts Kad ID, its IP address, UDP and TCP ports and its type). They
are repeated for every contact, if more than one is sent. The type was
discussed in Section 2.4.3.

The actual search request for sources or keywords (see Section 2.6.2) is done
by sending a SEARCH_REQ message, having this format:

0x30 Target ID Sources Flag Search Tree {optional}
[1] [16] [1] [arbitrary]

A sources search has the sources flag set to true and has no search tree. The
target ID is the file hash ID of the file, for which sources have to be found.
A keyword search has the sources flag set to false and the target ID is the

43

hash ID of the first keyword. Additional keywords, if present, are contained
in the last field as an expression in the manner of a tree (complicated search
expressions with boolean operators are supported). The first keyword is
never sent in text format.
If a node finds a match in its maps, it will reply with a SEARCH_RES message:

0x38 Target ID NumOfResults Result ID Tag List
[1] [16] [2] [16] [arbitrary]

The target ID is the same as in the request. The results are sent as tuples
of a result ID and a tag list, repeated as many times as specified in the
third field. In case of a sources search, every tuple represents a client that
is a possible source for the requested file. The result ID corresponds to a
client ID and the tag list contains the IP address, the TCP and UDP port
of that client. In case of a keyword search, every tuple represents a file that
contains the keywords in its filename. The result ID then corresponds to
the file hash ID and the tag list contains the filename, file type, file size and
additional file specific tags. The message can be split into several packets,
if they are to big.

If the search is looking for notes, the actual search request is a
SEARCH_NOTES_REQ message, with this format:

0x32 Target ID Senders ID
[1] [16] [16]

The target ID corresponds to the file hash ID for which the notes are being
searched.
The response is a SEARCH_NOTES_RES message, having the following format:

0x3A Target ID NumOfResults Kad ID Tag List
[1] [16] [2] [16] [arbitrary]

The target ID is the same, as in the request. The result is a set of tuples
which consist of the Kademlia ID of the user that created the comment and
the tag list that contains the user name, file name, rating and comment.
The amount of tuples that are sent in the response is defined in the third
field.

A.4 Publish

If a node wants to publish a keyword, it uses the PUBLISH_REQ message, with
this format:

0x40 Keyword Hash ID NumOfTuples File Hash ID Tag List
[1] [16] [2] [16] [arbitrary]

44

It publishes a set of tuples, where every tuple represents a different file that
contains the keyword in its filename. It contains the file hash Id and a tag
list with the filename and the file size.
If the node wants to publish itself as a source for a file it is sharing, it also
uses the PUBLISH_REQ message, but with this format:

0x40 File Hash ID 0x01 Senders Kad ID Tag List
[1] [16] [2] [16] [arbitrary]

It is only possible to publish one source at the time (which is the sender
itself, see Section 2.7.2). Therefore, the third field contains a 1. The tag list
contains the filename, file size, the TCP Port of the sender and a tag which
indicates that this publish request contains a source and not a keyword.
The response is a PUBLISH_RES message with the following format:

0x48 Item Hash ID Load {optional}
[1] [16] [1]

The item hash ID is the file hash ID in source publishes or the keyword hash
ID in keyword publishes. If it is a response to a keyword publish, the load
of the keyword map is also sent (more details in Section 2.7.3).

A note is published using the PUBLISH_NOTES_REQ message:

0x42 File Hash ID Source ID Tag List
[1] [16] [16] [arbitrary]

The file hash ID belongs to the file that is being commented. The source
ID is the Kademlia ID of the user that is publishing the note. The tag list
contains the user name, the filename, the file rating and the comment (see
Section 2.3).
If a node could successfully store the note, it will reply with a
PUBLISH_NOTES_RES message, having this format:

0x4A File Hash ID Load
[1] [16] [1]

The file hash ID is the one from the request. The load value indicates how
full the mapNotes is (from 1 to 100, in percent). In contrast to the keyword
publish, the load value is not processed here.

45

A.5 NAT and Firewall

To obtain the public IP Address (see Section 2.8.1) a FIREWALLED_REQ mes-
sage is sent, having the following format:

0x50 TCP Port
[1] [2]

It contains only the TCP Port of the sender.
The response is a FIREWALLED_RES message:

0x58 IP Address
[1] [4]

It contains the public IP Address of the user that sent the appropriate
request message.

To check whether a user is behind a firewall or not, a FIREWALLED_ACK_RES
message is sent to every new contact (more details in Section 2.8.2). It does
not contain any information (apart from the message type):

0x59
[1]

To find a buddy, a FINDBUDDY_REQ message is sent in the second phase of
the search procedure. The format is:

0x51 Buddy ID Client Hash TCP Port
[1] [16] [16] [2]

The buddy ID is the target of this search. It is the inverted ID of the sender
(see Section 2.8.2). The third field contains the senders client hash, which
is explained in Section 2.1. It is not equal to the Kad ID. The forth field
holds the senders TCP port.
If a node receives such a buddy request and accepts to be the buddy of the
sender, it replies with a FINDBUDDY_RES message:

0x5A Buddy ID Client Hash TCP Port
[1] [16] [16] [2]

It has the same format as the request. The buddy ID is identical, but the
client hash and the TCP port are the ones from the buddy. The buddy’s
client hash is then stored by mistake as the Kad ID. But this is not a
problem, as it is not used to contact the buddy.

46

To contact a node that is firewalled, a CALLBACK_REQ message is sent to its
buddy, having the following format:

0x52 Buddy ID File Hash ID TCP Port
[1] [16] [16] [2]

The buddy ID has to match the Kad ID of the receiver, so that the request
is forwarded to the firewalled node. The third field holds the file hash ID of
the requested file (either a download request from the firewalled node or a
notification that the firewalled node can start downloading a file from the
sender). The senders TCP port in the forth field is necessary, because a
TCP connection has to be established between the firewalled node and the
sender (see Section 2.8.2).

To check whether the buddy is still alive a BuddyPing message is sent:

0x9F
[1]

It is transmitted via TCP. Therefore, the header (which is not shown in the
message figures) is different from the UDP messages. It is called OP_EMULEPROT
and has the code 0xC5.
The buddy answers with a BuddyPong message:

0xA0
[1]

It is also empty (apart from the message type field) and sent through TCP.

47

B User Guide for the modified eMule Version

This user guide provides all information needed to perform an attack to
a specific keyword, as described in Section 3.2. Before the attack can be
started, the modified version of eMule has to be installed on a computer that
uses the Microsoft Windows operating system. In addition, the computer
either must not be behind a firewall or the TCP and UDP ports of eMule
have to be open (this can be tested in the options dialog of eMule). When
clicking on the search tab, one can see the modified user interface, as depicted
in Figure 8. It contains additional fields and buttons, that are needed to
control the attack.

Figure 8: The modified version of the search tab

First, the Kademlia network has to be started. Now, the Current Kad ID
field shows the actual ID of this client and the Attack Keyword field shows
the actual keyword that is being attacked (if no keyword is being attacked,
the field is empty). To initiate the attack, a normal search for the chosen
attack keyword has to be performed, by typing it in the Name field and
pressing the Start button. The hash ID corresponding to the keyword typed
in, will be displayed in the Keyword Hash ID field. In order to attack this
keyword, its hash ID has to be set as the own Kad ID. This can be done
through the Set as own Kad ID button. Now, the field showing the clients
Kad ID should change to the ID of the keyword and the keyword should be
displayed in the Attack Keyword field. At this point, the Kademlia network
should be stopped and restarted, since the ID of the client has changed.
After that, the attack is active, which means that this client will answer all
search requests with poisoned results.
As tests showed that more than one node is asked at the same time, when
searching for a keyword (refer to Section 3.2.2), additional clients have to
be set up to successfully realize the attack. In most cases two or three in-
stances will be enough (the more instances, the greater the probability of
a successful attack). Either each instance of the modified eMule version
can run on a separate computer, or they can all run on the same ma-
chine. In the second case, the instances must use different ports (can be

48

changed in the options dialog) and must be started from different directo-
ries. Furthermore, to allow more than one instance to be run at the same
time, eMule has to be executed with the ignoreinstances argument (e.g.
“C:\emule\emule.exe ignoreinstances”). Then, one instance can be set
to the hash ID of the attack keyword and the others around it. To achieve
this, a search for the attack keyword is started in every instance and the ID
is set as own Kad ID respectively. Then, the + and - buttons are used to
increase or decrease the ID where needed. After a restart of the Kademlia
networks in all instances, the attack is active.
The modified version of eMule additionally features a visualization of every
SEARCH_REQ and SEARCH_RES message, so that the attack can better be
observed. Therefore, verbose logging has to be enabled. It can be switched
on or off in the options dialog (section Extended, Verbose, Enabled checkbox).
With the visualization of the search requests, one can observe what IDs the
nodes have, that are asked during a search. This helps debugging the case
that an attack would not work correctly. Every time a search response
message is displayed in the verbose log, a specific node asked this client for
results on the attack keyword and the poisoned results were sent back.

49

References

[1] The eDonkey2000 Network. http://www.edonkey2000.com.

[2] The eMule project. http://www.emule-project.net.

[3] P. Maymounkov and D. Mazieres. A Peer-to-peer informatic system
based on the XOR metric. In Proceedings of IPTPS, pages 53–65,
March 2002.

[4] Ethereal. http://www.ethereal.com.

[5] Microsoft Visual Studio. http://msdn2.microsoft.com/en-us/vstudio.

[6] eMule Top 50. http://www.emule-top50.com.

[7] GNU General Public License. http://www.gnu.org.

[8] eMule MOD webpage. http://www.emule-mods.de.

[9] Sivka MOD. http://www.emule-web.de/board/10610-emule-0-47a-
sivka-v17b1.html.

[10] Changelog of the eMule client. http://sourceforge.net/projects/emule.

50

http://www.edonkey2000.com
http://www.emule-project.net
http://www.ethereal.com
http://msdn2.microsoft.com/en-us/vstudio
http://www.emule-top50.com
http://www.gnu.org
http://www.emule-mods.de
http://www.emule-web.de/board/10610-emule-0-47a-sivka-v17b1.html
http://www.emule-web.de/board/10610-emule-0-47a-sivka-v17b1.html
http://sourceforge.net/projects/emule

Acknowledgements

This report and the modified eMule client are the results of my semester
thesis in the Distributed Computing Group of Prof. Dr. Roger Wattenhofer
at the Swiss Federal Institute of Technology in Zurich.

I would like to thank my supervisors Thomas Locher and Stefan Schmid for
their help and advice. I appreciate the flexibility I had while working on
this semester thesis.

51

	1 Introduction
	2 eMule's Kademlia Reverse Engineered
	2.1 Client IDs & File Hashing
	2.2 Sources and Keywords
	2.3 Notes
	2.4 The Routing Table
	2.4.1 Binary Tree with Zones and Bins
	2.4.2 Adding a new Contact
	2.4.3 Keeping Bins up-to-date
	2.4.4 Where do new Contacts come from?
	2.4.5 Comparison with Paper & Discussion

	2.5 Connecting & Bootstrapping
	2.5.1 Storing Contacts
	2.5.2 Connection Phase
	2.5.3 Bootstrapping
	2.5.4 Comparison with Paper & Discussion

	2.6 Searching
	2.6.1 Types of Searches
	2.6.2 Detailed Search Procedure
	2.6.3 Automatic Search for Sources
	2.6.4 Comparison with Paper & Discussion

	2.7 Publishing
	2.7.1 Procedure of a Publish
	2.7.2 The Three Publish Types
	2.7.3 Protection of Hot Nodes
	2.7.4 Behavior at Startup
	2.7.5 Comparison with Paper & Discussion

	2.8 NAT and Firewall
	2.8.1 Obtaining the Public IP
	2.8.2 The Buddy System

	2.9 Estimating the Number of Users in Kademlia

	3 Attacking the Kademlia Network
	3.1 Attacks that do not work
	3.2 Network Poisoning Attack
	3.2.1 Implementation
	3.2.2 Results
	3.2.3 Protection

	4 GUI
	5 Outlook
	6 Conclusions
	A Kademlia Message Types
	A.1 Hello
	A.2 Bootstrap
	A.3 Search
	A.4 Publish
	A.5 NAT and Firewall

	B User Guide for the modified eMule Version

