Exercises

(1) Write a function expmac (x, n) that computes e^{x} using its MacLaurin series truncated to $n+1$ terms:

$$
\exp (x) \approx 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots+\frac{x^{n}}{n!}
$$

Test with several values of x, n (including $x<0$) and compare with Matlab's exact exp(x).
Can you do it with linear complexity? Can you do it using vectorized instructions only (no for/while cycles)?
Hint: use the function cumprod (products of prefixes).
(2) (*) Write a function linsolve (A, b) that solves a linear system $A x=b$ with a $n \times n$ matrix using Gaussian elimination. You may assume that A is nonsingular. Work on vectors when you need to "subtract one line from another".

