Definite matrices

$A=A^{*} \in \mathbb{C}^{n \times n}$, quadratic form $f(x):=x^{*} A x . A$ is called...

Name Definition

Positive definite $\quad x^{*} A x>0$ for all $x \neq 0$
Positive semidefinite $\quad x^{*} A x \geq 0$ for all x

$$
\text { Indefinite } \quad x^{*} A x \text { can be }>0 \text { or }<0
$$

Negative semidefinite $\quad x^{*} A x \leq 0$ for all x
Negative definite $\quad x^{*} A x<0$ for all $x \neq 0$

Definiteness and eigenvalues

Conditions on eigenvalues for definiteness:

Name Definition

Eigenvalues
Positive definite $x^{*} A x>0$ for all $x \neq 0 \quad \lambda>0$ for all eigvls
Positive semidefinite $x^{*} A x \geq 0$ for all $x \quad \lambda \geq 0$ for all eigvls
Indefinite $\quad x^{*} A x$ can be >0 or <0 Some >0, some <0
Negative semidefinite $\quad x^{*} A x \leq 0$ for all $x \quad \lambda \leq 0$ for all eigvls
Negative definite $\quad x^{*} A x<0$ for all $x \neq 0 \quad \lambda<0$ for all eigvls

