Definite matrices

$A = A^* \in G$	$\mathbb{C}^{n \times n}$, quad	ratic form $f(x)$	$) := x^*Ax.$	A is called
-----------------	----------------------------------	-------------------	---------------	-------------

Name	Definition
Positive definite	$x^*Ax > 0$ for all $x \neq 0$
Positive semidefinite	$x^*Ax \ge 0$ for all x
Indefinite	x^*Ax can be > 0 or < 0
Negative semidefinite	$x^*Ax \leq 0$ for all x
Negative definite	$x^*Ax < 0$ for all $x \neq 0$

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Definiteness and eigenvalues

Conditions on eigenvalues for definiteness:

Name	Definition	Eigenvalues
Positive definite	$x^*Ax > 0$ for all $x \neq 0$	$\lambda > 0$ for all eigvls
Positive semidefinite	$x^*Ax \ge 0$ for all x	$\lambda \geq 0$ for all eigvls
Indefinite	x^*Ax can be > 0 or < 0	Some > 0 , some < 0
Negative semidefinite	$x^*Ax \leq 0$ for all x	$\lambda \leq 0$ for all eigvls
Negative definite	$x^*Ax < 0$ for all $x \neq 0$	$\lambda < 0$ for all eigvls

< □ > < 同 > < 回 > < 回 >