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Gossip Midterm assignment

• Read the paper: Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based 
aggregation in large dynamic net-works. ACM Transactions on Computer 
Systems 23(3), 219–252 (2005). 

• Write a report that describes: 

• 1) the gossip strategy to perfrom aggregation with the main 
charateristics of the protocol. Provide a short description of the 
functions that is possible to implement with gossip aggregation. 
(Optional bonus question: how would you estimate a distribution of 
values?) 

• 2) the impact of node failures, message losses, and message delay on 
the correctness of aggregation. Describe one way to cope with failures.



Gossip Java Libraries
incubator-gossip (https://github.com/apache/incubator-gossip) 

Seems rather simple, recently updated and improving.  

GossipLib (http://gossiplib.gforge.inria.fr/) 

No documentation apart from Javadoc. Most of the popular 
protocols are already implemented. 

java-gossip (https://github.com/jolira/java-gossip) 

Last update 6 years ago. Some documentation on the old google 
code site (https://code.google.com/archive/p/java-gossip/).



Peer Sampling 
select a sample of peers from the whole population



Peer sampling

A source node wants to choose another 
peer of the network that has certain 

characteristics



Node Selection

• Gossip algorithms (aggregation, dissemination, 
etc..) are based on the following assumption: 

• after a given interval, a node P may select a node 
Q chosen uniformly at random among the set of 
all the nodes participating to the protocol 

• Problem: How can we select a random peer in 
a fully distributed P2P system?



Peer Sampling
• We need a Peer Sampling Service, i.e. a 

mechanism approximating a (random) choice on the 
whole set of nodes by exploiting only local information 

• we don't want a centralised server doing that 

• The peer sampling service is built with gossip as well 

• The basic idea: the nodes gossip with their 
neighbours and the topics of the gossip is.. the 
knowledge of the neighbours!



Two-layer architecture
• We have a two-layer architecture: 

• a gossip application layer (e.g. 
Aggregation) 

• an underlying peer sampling 
service 

• The application layers exploit the 
peer sampling when it needs 
another node to communicate 
with

Peer Sampling

Gossip application 
(Aggregation, etc..)

select_peer()

node’s layered architecture



Ideal Peer Sampling
• In the ideal case nodes keep a full view of the network, 

and can sample from the entire node population 

• This cannot be true in reality (it wouldn't scale!) 

• Too many nodes 

• Churn 

• There is no point in having scalable gossip protocols if   
the peer sampling support does not



Actual Peer Sampling
• Instead of the whole network, each node maintains a  

partial view of fixed size of the network 

• When gossiping, nodes exchange such partial view 
and decide which peers to keep of the other’s view 

• The idea is to build a dynamic unstructured 
overlay through gossiping 

• In other words, the peer sampling service dynamically 
changes the neighbours (hence the overlay) of a node



Peer Sampling
• Random Peer Sampling protocols (Newscast, 

Cyclon) provides an always changing subset of 
the view from where to pick
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Peer Sampling
• Random Peer Sampling protocols (Newscast, 

Cyclon) provides an always changing subset of 
the view from where to pick

ECA B GA F L C G I Mgossip gossip

MLIHGFEDCBA

network

• Nodes keep a minimal (fixed!) subset of the node in the 
view 

• The view adapts to churn 



General Structure
• select_peer: selects a 

peer from the local view 

• select_to_send: selects 
some entries from the 
local view 

• select_to_keep: merges 
the received information 
to the local view, 
eliminates the duplicates 
and selects a subset of the 
resulting view which 
defines the new local view

A peer sampling service is defined by specialising these operations

active behaviour()
p = select_peer() 
sent = select_to_send() 
recv = send(p, sent) 
view = select_to_keep(view, recv)

passive behaviour()

recv = receive(q) 
sent = select_to_send() 
view = select_to_keep(view, recv)



Partial view

• The peer sampling 
service keeps in the 
partial view information 
about the age and the 
contact point 

• Age of the partial view is 
increased/decrease at 
every cycle

Contact point (IP:port) AgeID

192.168.0.44:4403 21

127.0.0.1:3463 52

8.9.0.42:5389 03

partial view of size 3



Random Peer Sampling

• It’s a core peer sampling service for almost any gossip 
applications 

• Two popular protocols 

• Newscast 

• Cyclon

Choose a peer at random from the entire node 
population

Voulgaris, Spyros, Daniela Gavidia, and Maarten Van Steen. "Cyclon: 
Inexpensive membership management for unstructured p2p overlays." 
Journal of Network and Systems Management 13.2 (2005): 197-217.

Tölgyesi, Norbert, and Márk Jelasity. "Adaptive peer sampling with newscast." 
European Conference on Parallel Processing. Springer Berlin Heidelberg, 2009.



Newscast
• SelectPeer: selects a peer at random from the 

local view 

• SelectToSend: selects all the descriptors in the 
local view + the descriptor of the actual peer  

• more recent descriptors have higher time-stamps  

• SelectToKeep: keeps the most c recent 
descriptors
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Newscast
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Resulting graph after the iteration



Newscast
• Robust to node and link failure and dynamism (churn) 

and scalable 

• Newscast approximates small-world networks, with high 
clustering coefficient (CC) and small average path length  

• High Clustering coefficient is bad for: 

• Flooding, due to the amount of redundant messages 

• Robustness, large clusters may be weakly connected to 
the rest of the network

CC of a node = 
quantifies how close 
the neighbours are to 
being a clique 



Cyclon
SelectPeer

SelectToSend

SelectToKeep

Select a random peer p from view

Select L entry of own view + peer 
descriptor

Replace peer’s view with the one 
received from p (discard duplicates)

• Cyclon better approximates a random graph 

• Small clustering coefficient  

• Small average path length 

• Connectivity is always guaranteed



Cyclon Example
200 Voulgaris, Gavidia, and van Steen

Fig. 1. An example of shuffling between nodes 2 and 9. Note that, among other
changes, the link between 2 and 9 reverses direction.

epidemic algorithm. The protocol is extremely simple: each peer knows a small,
continuously changing set of other peers, called its neighbors, and occasionally
contacts a random one to exchange some of their neighbors.

More formally, each peer maintains a neighbor list in a small, fixed-sized
cache of c entries (with typical value 20, 50, or 100). A cache entry contains the
network address (i.e., IP address and port) of another peer in the overlay. Each
peer P repeatedly initiates a neighbor exchange operation, known as shuffle, by
executing the following six steps:

1. Select a random subset of ℓ neighbors (1 ≤ ℓ ≤ c) from P’s own cache,
and a random peer, Q, within this subset, where ℓ is a system parameter,
called shuffle length.

2. Replace Q’s address with P’s address.
3. Send the updated subset to Q.
4. Receive from Q a subset of no more than ℓ of Q’s neighbors.
5. Discard entries pointing to P, and entries that are already in P’s cache.
6. Update P’s cache to include all remaining entries, by firstly using empty

cache slots (if any), and secondly replacing entries among the ones origi-
nally sent to Q.

On reception of a shuffling request, peer Q randomly selects a subset of its
own neighbors, of size no more than t, sends it to the initiating node, and executes
steps 5 and 6 to update its own cache accordingly.

Figure 1 presents a schematic example of the basic shuffling operation.

2.2. Enhanced Shuffling

CYCLON employs an enhanced version of shuffling, that, as we shall show
in subsequent sections, among other things improves the quality of the overlay

2:{0,1,3,6,9}
9:{0,4,6,5,7,}

L=3

2:{0,1,3,5,7}
9:{0,2,4,6,5}



Cyclon Convergence
CYCLON: Inexpensive Membership Management for Unstructured P2P Overlays 203

Fig. 2. (a) Average shortest path length between two nodes for different cache sizes. (b) Average
clustering coefficient taken over all nodes.

We conducted a series of experiments involving networks containing up to
100,000 nodes. To study the emergent behavior of the protocol, we define a cycle to
be the time period during which a number of shuffle operations equal to the number
of nodes have been made. Since nodes initiate shuffle operations periodically, at
the same rate, a cycle coincides with the shuffle period !T. Note that during
a cycle, each node has initiated a shuffling operation exactly once. We studied
the protocol’s emergent behavior by observing its state at times 0, !T, 2!T,
etc.

Note that the selection of the period !T effectively regulates the speed at
which an experiment runs in real time. However, it does not affect the protocol’s
emergent behavior or its convergence speed with respect to the number of cycles
elapsed. Nevertheless, !T should not be comparably short to twice the typical
latencies in the underlying network, as network delays would unpredictably affect
the order in which events are taking place. Typical values of !T = 10 s or higher
are recommended for experiments running over a wide-area network.

Figure 2(a) demonstrates a significant aspect of the emergent behavior of
shuffling. It clearly shows that the average path length converges to a very small
value, which coincides with the average path length of a random graph with the
same number of edges.

The clustering coefficient of a node is defined as the ratio of the existing links
among the node’s neighbors over the total number of possible links among them.
It basically shows to what percentage the neighbors of a node are also neighbors
among themselves. The average clustering coefficient is the clustering coefficient
averaged across all nodes in the network. It is generally undesirable for an overlay
to have a high average clustering coefficient for two reasons. First, it weakens
the connectivity of a cluster to the rest of the network, therefore, increasing the
chances of partitioning. Second, it is not optimal for information dissemination

Starting from a 100k 
nodes chain graph, 
Cyclon converges to the 
average path length of a 
random graph in few 
cycles 



Cyclon Robustness
212 Voulgaris, Gavidia, and van Steen

Fig. 8. Tolerance to node removal, as a function of the cache size.

large cluster. Moreover, shuffling appears to share the same robustness properties
with overlays where each node’s neighbors are a random sample of the nodes in
the network.

Note that the graph for the experiment with cache size 100 is practically a
flat line. That is, for 100,000 nodes and cache size 100, the overlay created is so
robust, that no matter how many nodes are removed, the remaining ones remain
connected in a single cluster.

The effect of the cache size on the overlay’s robustness is shown in Fig. 8. We
carried out 100 experiments, with cache sizes 1, 2, . . . , 100, and for each of them
we determined the percentage of random nodes needed to be removed in order to
partition the overlay. It can be seen that there is a critical value of the cache size
around 11. Overlays with smaller cache sizes exhibit significantly worse behavior
with respect to robustness. On the other hand, overlays with cache size over 85 or
90, are almost impossible to partition, no matter how many nodes are removed.

It is important to point out that the results presented in this and the previous
section, suggest that CYCLON is capable of repairing an overlay after a serious
disaster, a property often referred to as self-healing behavior. This comes as
a consequence of the following two facts. First, the overlay has proven to be
highly resilient to large-scale node failures. Second, once such a massive failure
has occurred, the surviving nodes quickly strengthen the connectivity among
themselves by replacing links to dead nodes with valid links in a timely manner.

7. BANDWIDTH CONSIDERATIONS

Due to the periodic behavior of gossiping, the price of maintaining a robust
overlay may inhibit a high usage of network resources (i.e., bandwidth). In the

with a 100K nodes, 
cache size should be 
larger than 11 for good 
robustness 

11



Topology Management



Overlay Network
• Overlay network: a network built on top of another underlying 

network 

• Nodes in the overlay network are connected by logical links 

• Each overlay connection can corresponds to a path in the 
underlying network.  

• Peer-to-peer networks are overlay networks built on top of the Internet 

• DHT



What is a Topology
• The set of all nodes and their neighbourhood represent a 

network with a given topology 

• The best way to visualise a topology is to think to them as a 
graph 

• if node A has node B in its view, it exits an edge from A to B 
in the graph of the network 

• The topology defines the properties of the network 

• random vs small scale 

• how information percolates in the network



Topology Example
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ID
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F

D’s view

With gossip protocols we can 
manipulate the view of the 
node, therefore the network 

topology



Topology management

A node dynamically organises its local 
connection, thereby affecting the topology 

of the whole overlay network



Fixed and variable topologies

• Dissemination and Aggregation considered fixed 
overlay topology, in which the connections of the 
network never changes 

• In random peer sampling (especially with Cyclon) 
we aimed to a random graph topology

It is possible to modify the topology on demand, 
according to one’s needs?



Pirate Illegal Movie Download 
Gossip Protocol

• Let’s suppose I’m downloading Batman vs Superman and I want 
to connect to the nodes that are downloading the same movie

A

B

C

D

E

G

F

H

L

I

• Node reorganise the topology such that their neighbours 
are downloading the same movie



Pirate Illegal Movie Download 
Gossip Protocol

SelectPeer

SelectToSend

SelectToKeep

192.168.0.44:4403 21 2
let’s add a field to 
the node entry in 
the partial view



Pirate Illegal Movie Download 
Gossip Protocol

SelectPeer

SelectToSend

SelectToKeep

select a peer (Q) with my very same 
movie from the partial view. If none 
available, select random

192.168.0.44:4403 21 2
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the partial view



Pirate Illegal Movie Download 
Gossip Protocol

SelectPeer

SelectToSend

SelectToKeep

select a peer (Q) with my very same 
movie from the partial view. If none 
available, select random

send at least size/2 entries from my 
partial view to Q. Preference to the 
entries having Q’s movies
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Pirate Illegal Movie Download 
Gossip Protocol

SelectPeer

SelectToSend

SelectToKeep

select a peer (Q) with my very same 
movie from the partial view. If none 
available, select random

send at least size/2 entries from my 
partial view to Q. Preference to the 
entries having Q’s movies

keep the freshest entries that match my 
movie. If not enough to fill up my view, 
keep the freshest

192.168.0.44:4403 21 2
let’s add a field to 
the node entry in 
the partial view



Pirate Illegal Movie Download 
Gossip Protocol

A A

A A

A
A

A

A
A

A

• Now I’m happy and I can continue to download the movie..



Pirate Illegal Movie Download 
Gossip Protocol

A A

A A

A
A

A

A
A

A

• Now I’m happy and I can continue to download the movie..
• .. but what if later I want to download Age of Ultron?



Pirate Illegal Movie Download 
Gossip Protocol

A A

A A

A
A

A

A
A

A

• Now I’m happy and I can continue to download the movie..

The network is disconnected and I cannot reach the other 
peers downloading AoU!

• .. but what if later I want to download Age of Ultron?



A Connectivity Problem
• Topology that connects nodes according to a criteria are useful, 

but also is maintaining connectivity 

• The solution is that each node runs two ore more protocols 

• some to connect with nodes according to an “application” 
criteria (in our example, download the right movie) 

• the other to remain connected to the network 

• For its characteristics Cyclon is often the best protocol to keep 
connectivity 

• realises a topology that maintains a random graph



 Layered Gossip
• Multiple protocols run on the same node 
• Each protocol keeps its own view
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Vicinity
• Voulgaris, Spyros, and Maarten Van Steen. "Epidemic-style 

management of semantic overlays for content-based searching." 
Euro-Par 2005 Parallel Processing. Springer Berlin Heidelberg, 
2005. 1143-1152.

Node

VICINITY

CYCLON

• Layered approach 

• Define a topology of semantically 
close neighbours 

• Exploits Cyclon to maintain 
connectivity and for random peer 
sampling



14,54

Vicinity

SelectPeer

SelectToSend

SelectToKeep

192.168.0.44:4403 21
let’s define close 
according to proximity



14,54

Vicinity

SelectPeer

SelectToSend

SelectToKeep

Select a random peer (P) from the 
underlying Cyclon protocol

192.168.0.44:4403 21
let’s define close 
according to proximity
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Vicinity

SelectPeer

SelectToSend

SelectToKeep

Select a random peer (P) from the 
underlying Cyclon protocol

Order your own partial view and the 
cyclon view according to P position. 
Select the closest peers

192.168.0.44:4403 21
let’s define close 
according to proximity
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Vicinity

SelectPeer

SelectToSend

SelectToKeep

Select a random peer (P) from the 
underlying Cyclon protocol

Order your own partial view and the 
cyclon view according to P position. 
Select the closest peers

Order the received peers according to 
your own position. Replace the most 
distant peers in the partial view

192.168.0.44:4403 21
let’s define close 
according to proximity



Vicinity
• Nodes are ordered according to their distance with 

respect to the target

q’s active behaviour()
p = select_peer() 
sent = select_to_send(p, view, q.cyclon) 
recv = send(p, sent) 
view = select_to_keep(view, recv, q.cyclon) orders node according  

to the distance to q 

orders node according  
to the distance to p 

p’s passive behaviour()
recv = receive(q) 
sent = select_to_send(q, view, p.cyclon) 
view = select_to_keep(view, recv, p.cyclon)

orders node according  
to the distance to q 

orders node according  
to the distance to p 



Beyond Vicinity: T-man
• Vicinity exploits distance between items to provide a ranking of 

peers 

• A generalisation of Vicinity would be to allow any function that 
provides a ranking  

• Such generalisation exists and it’s called T-man 

• Let the user define its own ranking systems 

• Vicinity can be seen as a special case of T-man

Jelasity, Márk, Alberto Montresor, and Ozalp Babaoglu. "T-Man: Gossip-based fast overlay topology 
construction." Computer networks 53.13 (2009): 2321-2339.



T-man
• Objective: build an overlay network (or graph) from scratch filling 

the partial views of nodes properly 

• It can be even a structured one, like a DHT (we see an example 
later) 

• Initially the views of the nodes can be whatever (even empty). Only 
requirement is to have an underlying random peer sampling service 

• Exploits Cyclon as underlying random peer sampling service 

• T-man exploits a ranking function that is a generalisation of the 
ordering by distance; can do what a simple  distance cannot do 
(DHT)



T-man
• T-man initial graph evolves to a given overlay, which is defined 

by means of the ranking function and a number K 

• Node[] rank(node [], internal_state)  

• Node exchanges their view and keep the first K peers that 
are ranking higher



T-man
• T-man initial graph evolves to a given overlay, which is defined 

by means of the ranking function and a number K 

• Node[] rank(node [], internal_state)  

• Node exchanges their view and keep the first K peers that 
are ranking higher 7
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Fig. 3: Evolution of Torus Computation at di↵erent Supersteps

Ranking protocols. These protocols are widely exploited in gossip frameworks to
create and manage topology overlays [8] [20]. The overlays are created and main-
tained according to a ranking function which measures the similarities between
two vertices. In Telos we implemented a generic ranking protocol able to take as
input the ranking function. It dynamically keeps in the neighbourhood of each
vertex the more similar vertices according to the user defined ranking function.
As an example, if every vertex is represented as a point in a two dimensional
space and the similarity metrics is the euclidean distance, the ranking protocol
eventually keeps in the neighbourhood of each vertex the k closest vertices.

3 Evaluation

To evaluate the e↵ectiveness of our approach we conducted a set of three ex-
periments. In Section 3.1 we validate the framework, in Section 3.2 we evaluate
the scalability, and finally Section 3.3 presents a multi-layer solution for graph
partitioning.

3.1 Torus overlay

The aim of this experiment is to show that the layered architecture of the Telos
framework can be a suitable tool to port concepts from the massively distributed
systems to large graph processing. As a proof-of-concept we built an experiment
that organises the vertices and the edges of a graph into a torus shaped overlay.
The implementation considers a two layers approach. The bottom layer imple-
ments a random protocol, and the upper layer implements a ranking protocol.
We tested the implementation on a graph made of 20K vertices. The results in
Figure 3 show the evolution of the graph in real time. The topology recalls the
shape of a torus already at super-step 10. At super-step 20 no edges connects
“distant” vertices in the torus. This experiment shows that, if properly instru-
mented, Telos can correctly manage multiple layers and can build the requested
topology in a fewer number of super-steps.

3.2 Scalability

This experiment evaluates how the Telos framework manages larger input graphs
when increasing the number of cores involved in the computation. For this ex-
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T-Man

SelectPeer

SelectToSend

SelectToKeep

Node[] rank(node [], internal_state) 



T-Man

SelectPeer

SelectToSend

SelectToKeep

Select p random among the first Z 
rank(view, my_state)

Node[] rank(node [], internal_state) 



T-Man

SelectPeer

SelectToSend

SelectToKeep

Select p random among the first Z 
rank(view, my_state)

send to p the first m elements of 
rank(view+myself, p.state)

Node[] rank(node [], internal_state) 



T-Man

SelectPeer

SelectToSend

SelectToKeep

Select p random among the first Z 
rank(view, my_state)

send to p the first m elements of 
rank(view+myself, p.state)

Replace local view with 
rank(view+p.view, my_state)

Node[] rank(node [], internal_state) 



T-man performance

Author's personal copy

while that of the random graph is OðlogNÞ with high
probability.

Let us examine the differences between realistic param-
eter settings and the anti-entropy epidemic dissemination
scenario described above. First, assume that the message
size m is a small constant rather than being unlimited. In
this case, the random peer selection algorithm is no longer
appropriate: if a node i contacts peer j that ranks low with i
as the base node, then i cannot expect to learn new useful
links from j because now (due to the small m) node j has a
strong bias in its view towards nodes that rank high with j
as a base node.

On the other hand, if a node i selects peers that rank too
high with i as the base node, then convergence might slow
down as well. The reason for this is that consecutive peers
returned by the peer selection method will more often get
repeated; in part because a node i is more likely to select a
peer to communicate with that selected i shortly before,
and in part because there are simply fewer nodes that
are ‘‘close” to any given node than nodes that are far from
it. This in turn results in increased correlation between the
partial views of communicating partners, so the epidemic
process is not maximally efficient.

Fig. 4 illustrates this tradeoff using two ranking graphs:
the ring and a random graph. The latter is generated by
first constructing a 2-out directed regular random graph
by selecting two random out-edges for each node, and sub-
sequently taking the undirected version of this graph. The
average degree of a node is thus 4, with a small variance.
The basic version in Fig. 4a applies the peer selection algo-
rithm which picks a random peer from the highest ranking
w nodes from the view, as described earlier. The point
w ¼ N and m ¼ N corresponds to an anti-entropy epidemic
dissemination (i.e., peer selection is unbiased and there are
no limits on message size) which is optimal.

As predicted,with no limits on themessage size ðm ¼ NÞ,
we can observe the effect due to the lack of randomness if
the selected peer ranks too high (w is small). Furthermore,
for large w performance again degrades when we place a
limit on the message size since the correlation between
communicating peers’ ranking of the same set of nodes is
reduced. This effect is less pronounced for largerm because

now we might obtain useful information by chance even if
there is little correlation between the rankings.

To verify our explanation as to why performance de-
grades with decreasing w, we apply a tabu list at all nodes
in order to avoid contacting the same peers over and over
again. The tabu list contains a fixed number of peers that a
given node communicated with most recently. The node
then does not initiate connection with any nodes in its
tabu list. We experimented with a tabu list size of 4. This
mechanism does not add any communication overhead
since it simply records the last 4 communications, but it
is rather effective in reducing the negative effects of small
w values as Fig. 4b illustrates.

We can draw several other conclusions from the results
in Fig. 4. First, the tabu list slightly improves even the per-
formance of anti-entropy epidemic dissemination with
completely random peer selection ðm ¼ w ¼ NÞ. This is
due to the fact that initially views contain only few nodes
(to be precise, five, in this case). Without a tabu list, this
significantly increases the chance of contacting the same
peers in the first few cycles, while the views are still small.
Such communications are not effective in advancing dis-
semination due to the correlated views of the communi-
cating peers. Also note that when there is no limit on
message size, the random graph outperforms the ring,
especially when the tabu list is applied. This is due to the
fact that the number of neighbors of a node in the random
graph increases exponentially, so even for a small set of
closest nodes, diversity is very high.

Finally, we note that the exponentially increasing
neighborhood becomes a disadvantage when w is larger,
because the view of peers that are further away from the
base node in the ranking graph will be more uncorrelated
to the view of the original peer. This suggests that for such
graphs, peer selection should be aggressive ðw ¼ 1Þ and
should be combined with the use of tabu lists.

5.3. Notes on asymmetric target graphs

The topological role of nodes in asymmetric target
graphs is not identical. For example, some nodes can be
more central or more connected than others, there can be
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Fig. 4. Time to collect 50% of the neighbors at distance one in the ranking graph. Network size is N ¼ 2000. Node views are initialized to contain five random
links each. Graph (b) was obtained using a tabu list of size 4.
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In this setting, node descriptors have no relation to ac-
tual nodes anymore (that is, the node addresses in the
descriptors are never used), so we can think of the model
as spreading news items that have a natural ranking based
on ‘‘interestingness”.

Let nðjÞ denote the number of nodes in the network that
know about the news item of rank j. The notation nðj; tÞ al-
lows us to express the time dependence of the same value.
We start by showing that nðj; tÞ ¼ Nm=j if j > m for a large
enough t. The main idea is based on the observation that,
due to symmetry, nðj; tÞ grows according to the same curve
for all j, but only until the overall number of items in the
node’s view grows too large and the item with rank j no
longer makes it into the exchanged messages (and there-
fore its replication stops). At that point nðj; tÞ assumes its
final value.

To allow for an approximation of the average storage
cost, we model the representation of each news item as a
single continuous variable, that is, we assume that all
nodes store exactly 0 6 nðj; tÞ=N 6 1 instances of the news
item of rank j. Under this assumption we can say that the
function nðj; tÞ stops growing when higher ranking items
already fill all the available m slots in the messages, since
from that point, the news item of rank j will be excluded
from all communication:

Xj

k¼1

nðk; t$Þ ¼ Nm; ð1Þ

where t$ denotes the point in time when this equation
holds for the first time. Since nðj; tÞ never decreases, we
have nðj; tÞ ¼ nðj; t$Þ for t P t$. We know that the functions
nðk; tÞ grow at exactly the same rate for all k, so we can
simplify the expressions as jnðj; t$Þ ¼ Nm, that is,

nðj; tÞ ¼ Nm
j

; t P t$: ð2Þ

This proves the result. Fig. 7 compares the theoretical pre-
diction and the converged distribution obtained experi-
mentally via simulation.

Eq. (2) allows us to approximate the actual storage space
that is required for the views of the nodes.We focus only on

the items that rank lower than m. The highest ranking m
items represent a small constant factor. The sum of all en-
tries with a rank higher than m stored in the system is

XN

j¼m

Nm
j

%
Z N

m

Nm
j

dj ¼ NmðlnN & lnmÞ ¼ Nm ln
N
m

¼ OðN logNÞ: ð3Þ

Therefore each view stores OðlogNÞ entries on the average.
Note that this result is independent of the number of iter-
ations executed, and it is also independent of the actual
form of the functions nðj; tÞ; recall that the only assump-
tion we made was that these functions are monotonically
increasing.

Finally, we note that Nm=j ¼ Nmj&1 is technically a
power law distribution, as it follows the form j&c. Power
laws are very frequently observed in complex evolving net-
works [26]. The phenomenon is often due to some form of
‘‘the rich get richer” effect. One can link our results to the
study of other complex networks, for example, social
networks. All nodes start with a random constant-size set
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Fig. 6. Time to collect 50% of the neighbors at distance one in the ranking graph. The network size is N ¼ 2000. Node views are initialized by five random
links each. The tabu list size is 4.
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• AOI: the area of the virtual world which is of interest for a 
generic participant 

• Events are delivered to players according to the game architecture
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T-man Case Study:  
Coverage Peer Sampling

• Position dissemination in distributed online games.  

• Players are usually interested in events that happens in their AOI 

• AOI: the area of the virtual world which is of interest for a 
generic participant 

• Events are delivered to players according to the game architecture

SERVER

client/server distributed

gossip  
protocol



The problem

• When there are many players their AOI overlaps, and they can 
communicate each other the events that happens in the 
overlapping area. Two issues: 

• I want to keep connection with a small, fixed amount of other 
player (view) 

• Players are moving, so the view must be updated over time



Ranking function
• Definition of a function that rank the peers 

according to their the overlapping of the AOI

• Two functions 

• score-based 

• greedy-based



The protocol
• Layered architecture 

• CPS on the top 

• Cyclon on the bottom

6

PAM CLIENT

Local State Replica

PAM 
Server

PAM 
Overlay

(a) The modules of a PAM client

PAM OVERLAY

Coverage Peer 
Sampling

Random Peer 
Sampling

List of 
Neighbours

(b) The PAM overlay stack

Figure 2. PAM: Client Architecture

3.1. PAM Server

Logically, the PAM server is composed by two asynchronous computation flows (typical of gossip-
based protocols [13]):

• a passive thread that receives and stores the positions from the clients;
• an active thread that periodically informs clients about the content of their AOI.

These operations generate two different kinds of load on the server. First, they generate a
computational load, as the server must maintain the connections, store the positions and resolve
spatial queries. Second, they generate bandwidth load, as the communications to the clients consume
outgoing bandwidth. This second kind of load, besides saturating the bandwidth capabilities, also
increases the operational cost of the server, especially if the server is hosted by a pay-per-use
platform.

3.2. PAM Overlay

The construction of the PAM overlay has been driven by protocols based on epidemic diffusion of
information. These protocols (also known as as gossip protocols) are an effective building block for
creating overlays in a pure distributed fashion. When exploiting a gossip-based protocol, each node
maintains only a partial view of the network, consisting in a small set of neighbour nodes. Each
node periodically interacts with nodes chosen among its neighbours. This simple, repeated local
data exchange allows each node to achieve specific goals and results regarding the global network.
More precisely, the behaviour of a node is defined by two separate logical flows, called active (see
Figure 3) and passive (see Figure 4) threads.

1 while true do
2 sleep T seconds;
3 q selectPeer();
4 sendBuffer ItemsToSend();
5 send sendBuffer to q;
6 receive receiveBuffer from q;
7 view ItemsToKeep();
8 end

1 foreach Message m Received do
2 extract sender p from m;
3 sendBuffer ItemsToSend();
4 send sendBuffer to p;
5 view ItemsToKeep();
6 end

Figure 3. Active Thread Figure 4. Passive Thread

Copyright c� 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (0000)
Prepared using cpeauth.cls DOI: 10.1002/cpe

• Each peer is identified by a descriptor that contains the position of the 
player in the virtual world 

• SelectToSend 

• Rank peers according to the coverage of the receiver position 

• SelectToKeep 

• Rank peers according to the coverage of my position



Lesson Take Away
• Gossip can be used to emulate the selection of a 

random peer in a completely decentralised network 

• In decentralised gossip protocols connective is a 
huge issue 

• Two-layer gossip architectures are very convenient. 
Bottom layer (i.e. Cyclon) provides connectivity and 
(random) peer sampling, upper layer focuses on the 
application



Lesson Take Away

• Definition of a specific ranking function allows to 
build from scratch complex overlays 

• It is possible to combine overlay construction and 
peer sampling to support complex applications
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