Lesson 5

A DISTRIBUTED HASH TABLE: CHORD FINGER TABLES AND ROUTING

Laura Ricci
6/3/2017
A Distributed Hash Table: Chord
Laura Ricci

Dipartimento di Informatica
Università degli Studi di Pisa

LESSON OUTLINE

- DHT: recap
- Chord: general features
- The overlay topology
- Routing
 - Modelling routing through Markov chains
- Self organization
 - node join
 - voluntary leave
 - faults
- Analysis of the Chord topology through complex networks analysis tools
CHORD: INTRODUCTION

Paper reference

developed in 2001 from a research group formed by researcher from MIT, University of California
CHORD: INTRODUCTION

- Based on a few, simple but powerful concepts:
 - easily to define and to implement
 - elegance
 - possibility of defining optimizations
- Main characteristics:
 - Routing (to implement \texttt{FindPeer}, to find a peer managing a bucket)
 - a flat logical address space: peer addresses are \textit{m-bits identifiers}, instead of IP addresses
 - efficient routing: \textit{log(N) hops with high probability}, where \(N\) is the total number of peers in the system
 - routing table size: \textit{log(N) with high probability}
 - self-organization
 - self-adaptation in presence of new nodes joins and voluntary/abrupt nodes leave.
CHORD: GENERAL CONCEPTS

- Each node (host) is paired with an identifier id, obtained by SHA-1

 \[id_{node} = SHA-1 (IP \text{ address, port}) \]

- Each data is paired with a unique identifier k (or key), obtained by SHA-1

 \[k = SHA-1 (data) \]

- Keys and nodes are mapped onto the same logical address space

- Hash-table interface
 - put (key, value) to insert data
 - value = get (key) to look up data
CHORD: THE OVERLAY TOPOLOGY

- Hypothesis: consider identifiers (returned by SHA) of m bits, $[0, 2^m-1]$.

- Define an ordering between the identifiers, based on their numerical value such that successor of 2^m-1 is 0 (modulo operations).

- The ordering may be represented by a ring (Chord Ring).

- Mapping Algorithm

 An identifier K is assigned to the first node n of the ring whose identifier is greater or equal (modulo the size of the ring) to K.

 $$n(K) = \text{successor}(K)$$

- n is the first node detected starting from K and following the Chord ring clockwise.
THE CHORD RING

- the ring includes identifiers, the arithmetic is mod 2^{160} (in the example mod 2^3)
- the key and the corresponding value are managed by the successor of the key in the **clockwise ordering**
THE CHORD RING

- the ring includes identifiers, the arithmetic is mod 2^{160} (in the example mod 2^3)
- the key and the corresponding value are managed by the successor of the key in the clockwise ordering
• the ring includes identifiers, the arithmetic is mod 2^{160} (in the example mod 2^3)
• the key and the corresponding value are managed by the successor of the key in the clockwise ordering
- The ring includes identifiers, the arithmetic is mod 2^{160} (in the example mod 2^{3}).
- The key and the corresponding value are managed by the successor of the key in the clockwise ordering.
THE CHORD RING

- the ring includes identifiers, i.e., the arithmetic is mod \(2^{160}\) (in the example mod \(2^3\))
- the key and the corresponding value are managed by the successor of the key in the clockwise ordering

The Chord Ring includes:
- identifiers
- key

For example:
- successor(1) = 1
- successor(2) = 3
- successor(6) = 0

In the diagram:
- Node 6 is predecessor of node 0
- Node 2 is predecessor of node 3
- Node X represents the key managed by its successor.
• How routing is implemented?

• It depends from the information stored in the routing table

• **Minimal Routing Table** of a node:
 - stores only the successor link
 - this is the only knowledge of a node about other nodes of the ring
A simple routing algorithm:
- the routing table of each node has a unique link towards the clockwise successor on the ring
- send the query with key=x to the successor until n =successor(x) is detected
- n returns the query results

Advantages:
- simple
- routing tables $O(1)$

Disadvantages:
- routing $O(\frac{1}{2} \times n)$, linear
- a single node crash breaks the ring
A simple routing algorithm, each node:
- has a single link towards its successor
- sends the key=x to its successor until it finds it does not find
 \(n = \text{successor}(x) \)
- \(n \) returns the query results

Advantages:
- simple
- routing table \(O(1) \)

Disadvantages:
- Routing \(O(\frac{1}{2} \times n) \), linear
- a single node crash breaks the ring
A simple routing algorithm, each node:

- has a single link towards its successor
- sends the key=x to its successor until it finds it does not find \(n = \text{successor}(x) \)
- \(n \) returns the query results

Advantages:

- simple
- routing table \(O(1) \)

Disadvantages:

- routing \(O(\frac{1}{2} * n) \), linear
- a single node crash breaks the ring
A simple routing algorithm, each node:
- has a single link towards its successor
- sends the key=x to its successor until it finds it does not find
 \(n = \text{successor}(x) \)
- \(n \) returns the query results

Advantages:
- simple
- routing table \(O(1) \)

Disadvantages:
- Routing \(O\left(\frac{1}{2} \times n\right) \), linear
- a single node crash breaks the ring
A distributed algorithm: use Remote Procedure Calls (RPC) to code it

- \((a, b] \) the segment of the ring moving clockwise from but not including \(a \) until and including \(b \).
- \(n.\text{foo}(\) \) denotes an RPC of \(\text{foo}(\) \)@node \(n \).
- \(n.\text{bar} \) denotes and RPC to fetch the value of the variable bar in node \(n \).
PUT and GET are nothing but lookups!
CHORD ROUTING: REDUCING NUMBER OF STEPS

- Each node has links towards z neighbours.

- If $z = n$, the overlay is a complete mesh.
 - Routing hops: $O(1)$
 - Size of the routing tables: $O(n)$, limited scalability.

- A compromise: Each node stores several links towards some close neighbours (on the ring) and a few links towards far neighbours.
 - A limited number of links for each node.
 - Routing is more accurate in the neighbourhood of a node, more approximate towards far neighbours.
 - Routing algorithm:
 - Send a query for the key k to the farthest known predecessor of k.
CHORD ROUTING: REDUCING THE COMPLEXITY

Let us define the distance between two identifier I_1 and I_2 of the Chord ring as the number of identifier between I_1 and I_2

Basic idea for building the routing table (finger table)

- the node n with identifier x in the ring knows a set of at most m nodes (for a ring of m bits) and the distance from these nodes exponentially increases
 - Chord considers nodes at distance approximately 2^i from x, with $0 \leq i \leq m-1$
 - the number of nodes known by a node n generally is less than m

- furthermore, each node knows its successor and its predecessor on the ring
FINGER TABLES

A Distributed Hash Table: Chord
Laura Ricci
Each node owns a **finger table** (routing table)

- if m is the number of bits exploited for the identifiers, the table includes at most m links to Chord nodes
- at node n: the entry $\text{finger}[i]$ is a pointer to $\text{successor}(n + 2^{i-1})$, $1 \leq i \leq m$

Data structure of Node 0

<table>
<thead>
<tr>
<th>i</th>
<th>target</th>
<th>link.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Each node owns a finger table (routing table)
- if m is the number of bits exploited for the identifiers, the table includes at most m links to Chord nodes
- at node n: the entry $\text{finger}[i]$ is a pointer to $\text{successor}(n + 2^{i-1})$, $1 \leq i \leq m$

Data Structure of Node 0

<table>
<thead>
<tr>
<th>finger table</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Data Structure of Node 1

<table>
<thead>
<tr>
<th>finger table</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Each node owns a **finger table** (routing table)

- if m is the number of bits exploited for the identifiers, the table includes at most m links to **Chord** nodes
- at node n: the entry $\text{finger}[i]$ is a pointer to $\text{successor}(n + 2^{i-1})$, $1 \leq i \leq m$

Data Structure of Node 0

<table>
<thead>
<tr>
<th>finger table</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Data Structure of Node 1

<table>
<thead>
<tr>
<th>finger table</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Data Structure of Node 3

<table>
<thead>
<tr>
<th>finger table</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>target</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
DATA STRUCTURES OF A NODE

- Each node maintains some data structures supporting routing

1) the finger table:
 - has at most m entries (for instance m=160)
 - but....the same value is often present in more than one entry
 - actually, the finger table has, on the average, a logarithmic number of entries with respect to the number of nodes of the overlay

2) a link to the successor and to the predecessor on the ring

3) the keys mapped to that node

4) a set of pointers to some successor nodes of the ring to guarantee the network consistency for dynamic nodes join/leave.

Chord Overlay:

a logarithmic mesh of the nodes of the ring
Routing Protocol: each node n propagates a query with key k to the farthest finger preceding k, by considering the clockwise ordering.

The propagation of the key goes on until the node n such that:

$$n < k \text{ and } \text{successor}(n) \geq k \text{ (arithmetic modulo } 2^m)$$

in this case the successor(n) owns the key.

<table>
<thead>
<tr>
<th>i</th>
<th>2^i-1</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>
• Routing Protocol: each node n propagates the query with key k to the farthest finger preceding k, by considering the clockwise ordering.
• The propagation of the key goes on until the node n such that:
 $n < k$ and $\text{successor}(n) \geq k$ (arithmetic modulo 2^m)

in this case the successor(n) owns the key.

Lookup (44)

<table>
<thead>
<tr>
<th>i</th>
<th>$2^i - 1$</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>20</td>
<td>23</td>
</tr>
</tbody>
</table>
DHT LOOK UP

- **Routing Protocol**: each node \(n \) propagates the query with key \(k \) to the farthest finger preceding \(k \), by considering the clockwise ordering.
- The propagation of the key goes on until the node \(n \) such that:
 \[
 n < k \text{ and } \text{successor}(n) \geq k \text{ (arithmetic modulo } 2^m)\]
 in this case the successor\((n) \) owns the key.

Table: DHT Look Up

<table>
<thead>
<tr>
<th>i</th>
<th>(2^{i-1})</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>55</td>
<td>56</td>
</tr>
</tbody>
</table>

lookup (44)
- **Routing Protocol**: each node n propagates the query with key k to the farthest finger preceding k, by considering the clockwise ordering.
- The propagation of the key goes on until the node n such that:
 $$n < k \text{ and } \text{successor}(n) \geq k \text{ (arithmetic modulo } 2^m)$$
in this case the successor(n) owns the key.

Table: Lookup (44)

<table>
<thead>
<tr>
<th>i</th>
<th>$2^i - 1$</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>55</td>
<td>56</td>
</tr>
</tbody>
</table>
• **Routing Protocol**: each node n propagates the query with key k to the farthest finger preceding k, by considering the clockwise ordering.
• The propagation of the key goes on until the node n such that:

 $n < k$ and $\text{successor}(n) \geq k$ (arithmetic modulo 2^m)

 in this case the $\text{successor}(n)$ owns the key.

<table>
<thead>
<tr>
<th>$2^i - 1$</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>43</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>7</td>
</tr>
</tbody>
</table>
DHT LOOK UP

- **Routing Protocol**: each node \(n \) propagates the query with key \(k \) to the farthest finger preceding \(k \), by considering the clockwise ordering.

- The propagation of the key goes on until the node \(n \) such that:
 \[
 n < k \text{ and } \text{successor}(n) \geq k \text{ (arithmetic modulo } 2^m)\]

in this case the successor\((n)\) owns the key.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(2^{i-1})</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>47</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

lookup (44)
• **Routing Protocol**: each node n propagates the query with key k to the farthest finger preceding k, by considering the clockwise ordering.

• The propagation of the key goes on until the node n such that:

 $$n < k \text{ and } \text{successor}(n) \geq k \text{ (arithmetic modulo } 2^m)$$

in this case the successor(n) owns the key.

Lookup (44)

<table>
<thead>
<tr>
<th>i</th>
<th>2^{i-1}</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>
DHT LOOK UP

- **Routing Protocol**: each node \(n \) propagates the query with key \(k \) to the farthest finger preceding \(k \), by considering the clockwise ordering.
- The propagation of the key goes on until the node \(n \) such that:
 \[
 n < k \text{ and } \text{successor}(n) \geq k \] (arithmetic modulo \(2^m \))
 in this case the successor\((n)\) owns the key

<table>
<thead>
<tr>
<th>(i)</th>
<th>(2^{i-1})</th>
<th>Target</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>43</td>
<td>45</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>46</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>50</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

\[\text{lookup (44)} = 45\]
// ask node n to find the successor of id
procedure n.findSuccessor(id) {
 if (predecessor ≠ nil and id ∈ (predecessor, n]) then return n
 else if (id ∈ (n, successor]) then
 return successor
 else // forward the query around the circle
 return successor.findSuccessor(id)
}
// ask node n to find the successor of id

procedure n.findSuccessor(id) {
 if (predecessor \neq \text{nil} \text{ and } id \in (\text{predecessor}, n)) \text{ then return } n
 else if (id \in (n, \text{successor})) \text{ then}
 return successor
 else { // forward the query around the circle
 m := closestPrecedingNode(id)
 return m.findSuccessor(id)
 }
}

// search locally for the highest predecessor of id

procedure closestPrecedingNode(id) {
 for i = m downto 1 do {
 if (finger[i] \in (n, id)) \text{ then}
 return finger[i]
 }
 return n
}