1. (Why does my QR implementation in Matlab get some entries correct and some wrong —
sometimes only by a sign?)

The QR factorization is not unique. For instance, if D is any diagonal matrix with +£1 on
the diagonal, one can replace @ and R with (QD), (D7'R). So it is possible that your
implementation just returns a different factorization. To check the result, you can verify
that norm(A-Q*R) / norm(A) is small. For instance, a good test is

assert (norm(Q*R-A) /norm(A) < sqrt(eps));
assert(norm(Q*Q’ - eye(size(Q))) < sqrt(eps));
assert(all(all(R == triu(R))));

Many of you wrote your for loop as

n = size(A, 1);

for i = 1:n
(compute HH reflector that maps A(k,k:end) to a multiple of el)
(apply reflector to the last n-i+l rows of the matrix)

end

Note that the last iteration of the loop works on a 1 x 1 matrix, so it can be omitted (a 1 x 1
matrix is already upper triangular!) and the for loop can stop at n — 1. If you check what
your code does for a 1 x 1 matrix, it turns out that H = —1, so this last step does nothing
but changing signs.

2. (Why does M=qr (A) return a different result than [Q,R] = qr(4))

Matlab is a weird language, and functions can have a different behavior according to the
number of return values they are called with.

In particular, for a dense matrix, the one-output version of QR returns a matrix M such that
its upper triangular part triu(M) is R, and its lower triangular part contains a compressed
representation of @ (its jth column contains a compressed representation of the vector u;
that defines H;). All of this is described in the docs (see doc gr).

3. (In conjugate gradient, why do we claim that dy1 is orthogonal to d; for j = 1,2,...,k if
in the algorithm we enforce only orthogonality to d)?

It is a consequence of the symmetry/Hermitianity of A that dy; is always orthogonal also
to dy,ds,...,dk_1, even if we do not enforce it explicitly in the algorithm.

Formally, one proves simultaneously by induction (we did not see the details during the
course).

Lemma 1. Let di, 1 be the sequences of search directions and residuals produced in conju-
gate gradient. Suppose that no breakdown happens in the process. Then,

(a) 7 € Kpy1(A,b), i.e., 11, = apob+ayg Ab+- - -+agy AFb for some choice of the coefficients
oy;. Moreover, ayy, # 0.
(b) 10,71, .., "k—1,Tk are a basis of Ki41(A,b);

(c) di € K41(A,b), i.e., di, = Yrob+yr1 Ab+- - -+ A*b for some choice of the coefficients
Vkj. Moreover, vy # 0.

(d) do,d1,...,dk—1,dr are a basis of Ki1(A,b);
(¢) rirx =0 for each j < k;
(f) d;Ady, =0 for each j < k.

Proof (sketch). Let us focus on the induction step k& — k+ 1, i.e., we assume that the result
holds already for a certain value of k and prove it for k + 1.

Tei1 =k +teAdy = (apob+ api Ab+ - - -+ app A¥D) + 1 A(Yeob + Y1 Ab+ - - -+ A*D),

SO T'p11 is a linear combination of b, Ab, ..., A**1b. The coefficient in front of A¥+1p is
trYrk; te can’t be zero otherwise there would be breakdown, and v;_1 can’t be zero by
induction.

(b) ro,71,...,7k—1,7k are a basis of Kxy1(A,b), and rgy1 is in Kpio(A,b) but not in
Kj+1(A,b), so it is independent from them.

(¢) Analogous to 1.
(d) Analogous to 2.

r;rk;Jrl = T;(Tk — tkAdk). (1)
If j = k, orthogonality is enforced in the algorithm by the choice of t;. If j < k, then
riry = 0 by induction hypothesis, so we only need to prove that r7Ady = 0. We have
r; € Kj11(A,b), sor; = dodo +61d1 + - - - +d;d;, hence if j < k r} Ady = 0 by induction

hypothesis.

(f) Similarly to 5,

d;Adk_H = d;A(Tk+1 + Br+1di)- (2)
If j =k, dyAdg41 = 0 follows by the choice of Sy41. If j < k, we have djAdy = 0 by

induction, so we only need to show that djArgi1 = 0. The vector Ad; is in the Krylov
space Kj(A,b), hence it is a linear combination of ro,r1,..., 7%, so (Ad;)*rr41 = 0.

O

4. (How does one get the formula 3 = TT’:‘#?)
k—1"F—

We choose the value 8j so that dy = rp + Brdr—1 satisfies dj;_; Adp = 0. Substituting and
expanding one gets

* * * * d*f A’T’k
0=dj_yAdp = di_1 A(ry, + Brdi—1) = df_y Ary, + Bi(df_y Adp—1) => B = —— 22—
dy_Ady_4
This gives already an expression for 3;; now we prove that it is also equal to — T;:i -
k—1Tk—

We manipulate the numerator using the other formula that defines the CG iteration, that
is, Tpy1 = 1K — tpAdk. We have

riirerr = (rk — teAdy) rrgn = 0 — B (df Arg)

(here the bar denotes a complex conjugate), so, shifting indices, rjr, = —tr—1(dj_1 Arx).

For the denominator, we have similarly
Th_1Th—1 = (Th+te—1Adg—1)"rp—1 = 0+tp_1dj_ Arp—1 = tpe—1dj_ A(dp—1—Pr—1dip—2) = th—1dj;_1 Adj_1.

Combining these two last formulas one gets the equivalent expression for Sy.

