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Reasoning	in	a	changing	world
So	far	we	have	been	doing	uncertain	reasoning	in	a	static	world.
A	changing	world	is	modeled	using	a	variable	for	each	aspect	of	the	world	state	at	each	
point	in	time.	
For	reasoning	in	an	evolving	world	one	needs:
§ A	belief	state:	the	states	of	the	world	that	are	possible
§ A	transition	model:	 to	predict	how	the	world	will	evolve
§ A	sensor	model:	to	update	the	belief	state	from	perceptions
The	transition	and	sensor	model	themselves	may	be	uncertain:	
• the	transition	model	gives	the	probability	distribution	of	the	variables	at	time	t,	given	

the	state	of	the	world	at	past	times;	
• the	sensor	model	describes	the	probability	of	each	percept	at	time	t,	given	the	

current	state	of	the	world.
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Examples
1. Treating	a	diabetic	patient.	The	task	is	to	assess	the	current	state	of	the	patient,	

including	the	actual	blood	sugar	level	and	insulin	level	from	other	observable	
parameters		such	as	recent	insulin	doses,	food	intake,	blood	sugar	measurements,	
and	other	physical	signs.

2. The	umbrella	example.	You	are	the	security	guard	stationed	at	a	secret	underground	
installation.	You	want	to	know	whether	it’s	raining	today,	but	your	only	access	to	the	outside	
world	occurs	each	morning	when	you	see	the	director	coming	in	with,	or	without,	an	
umbrella.
In	both	cases,	and	in	many	real	world	scenarios,	the	dynamic	aspects	of	the	problem	
are	essential	for	a	correct	prediction.	
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States	and	observations
We	view	the	world	as	a	series	of	snapshots,	or	time	slices,	each	of	which	contains	a	set	
of	random	variables,	some	observable	and	some	not.
Xt:	will	denote	the	set	of	state	unobservable	(hidden)	variables	at	time	t
Et	=	et	will	denote	the	set	of	observations	(evidence	variables)	at	time	t;	et	the	values

We	will	assume	that	the	state	sequence	starts	at	t=0.
We	will	use	the	notation	a:b to	denote	the	sequence	of	integers	from	a to	b (inclusive),	
and	the	notation	Xa:b to	denote	the	set	of	variables	from	Xa to	Xb.

Our	umbrella	world	is	represented	by	a	sequence	of	evidence	variables	Et	=	{Ut} (whether	the	
umbrella	appears)	and	state	unobservable	variables	Xt=	{Rt}	(it’s	raining):

state	variables:	R0,	R1,	R2,	…
evidence	variables:	U1,	U2,	…
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Transition	model
The	transition	model	specifies	how	the	world	evolves,	i.e.	the	probability	distribution	over	the	
latest	state	variables,	given	the	previous	values	starting	from	time	0:
P(Xt |X0:t−1)

The	sequence	of	states	can	become	very	large,	unbounded	as	t increases.
Markov	assumptions:	the	transition	model	specifies	the	probability	distribution	over	the	latest	
state	variables,	given	a	finite	fixed	number	of	previous	states:

P(Xt |X0:t−1)	=	P(Xt |Xt−1)	 first orderMarkov	process/chain

P(Xt |X0:t−1)	=	P(Xt |Xt−1,	Xt−2)	 second orderMarkov	process/chain

Additionally,	we assume a	stationary process,	i.e.	change	is	governed	by	laws	that	do	not	
themselves	change	over	time:

P(Xt |Xt−1)	is the same	for	all t P(𝑟t |𝑅t−1)	=	<0.7,	0.3>
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Transition	model	- graphically
Bayes	neworks under different Markov	[independence]	assumptions

a. first orderMarkov	process/chain
b. second orderMarkov	process/chain
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Sensor	model
The sensor/observation model	under Markov	sensor assumption,	postulates that
evidence only depends on	the current state

P(Et | X0:t, E0:t−1)		=	P(Et |	Xt)	

Putting all together,	the complete join distribution over all the variables,	for	any t:

P(X0:t	,	E1:t) = P(X0); P(Xi	|Xi−1)	P(Ei	|Xi)
=

>?@
P(X0) the	initial	state	model	over	set	of	variables	X
P(Xi	|Xt−1) the	transition	model	under	Markov	assumption
P(Ei	|Xi) the	sensor	model	under	Markov	sensor	assumption
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The	Bayesian	net	for	the	Umbrella example
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The	transition	model	is	P(Rt |	Rt−1)	
The	sensor	model	is	P(Ut |	Rt)	

The	probability	of	the	rain	situation	being	
the	same	form	one	day	to	the	next	is	70%	v
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Hidden	Markov	Models
Hidden	Markov	Models	(HMM)	are	temporal	probabilistic	models,	under	the	Markov	
assumptions,	in	which	the	state	of	the	process	is	described	by	a	single	discrete	random	variable.
The	Umbrella	example	is	an	HMM,	since	states	are	described	by	a	single	state	variable.
Releasing	the	assumptions:
Assuming	that	‘Rain’	only	depends	on	rain	the	previous	day	may	be	a	too	strong	
assumption.	There	are	two	ways	to	improve	the	accuracy	of	the	approximation:.
1. Increasing	the	order	of	the	Markov	process	model,	for	example	use	a	second	order	

assumption.
2. Increasing	the	set	of	state	variables:	we	could	add	Season,	Temperature,	Humidity,	

Pressure … as	state	variables.	This	may	imply	adding	new	sensors.
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Inference	in	temporal	models
FILTERING,	PREDICTION,	SMOOTHING,	MOST	LIKELY	EXPLANATION
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Inference	in	temporal	models
Basic	inference	tasks	based	on	the	temporal	model:
§ Filtering,	or	state	estimation:	compute	the	belief	state	(posterior	probability	

distribution)	given	evidence	from	previous	and	current	states.	Related	is	the	
likelihood	of	the	evidence	sequence.

§ Prediction:	computing	the	posterior	distribution	over	a future state,	given	all	
evidence	to	date.

§ Smoothing:	computing	the	posterior	distribution	over	a	past state,	given	all	evidence	up	to	
the	present.	Looking	back	with	the	knowledge	of	today	provides	a	more	accurate	estimate.

§ Most	likely	explanation/sequence:	given	a	sequence	of	observations,	we	might	wish	to	
find	the	sequence	of	states	that	is	most	likely	to	have	generated	those	observations.	Ex.	In	
speech	the	most	likely	sequence	of	words,	given	a	series	of	sounds.

§ Learning:	The	transition	and	sensor	models,	can	be	learned	from	observations.
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Filtering
A	filtering	algorithm	maintains	a	current	state	estimate	and	updates	it,	rather	than	going	
back	over	the	entire	history	of	percepts	for	each	update
The	filtering	function	f	 takes	into	account	the	new	evidence	and	the	state	estimation		
computed	for	the	previous	time.
𝑷 𝑿t+1 𝒆1:t+1) 	= 	𝑓(𝒆t+1, 𝑷 𝑿t 𝒆1:t))

This	process	is	called	recursive	estimation and	can	be	seen	as	made	of	two	parts:
1. Prediction:	the	current	state	distribution	is	projected	forward	from t	to t+1:	
𝑷(𝑿t+1|𝒆1:t)

2. Filtering:	then	it	is	updated	using	the	new	evidence	et+1:	𝑷 𝒆t+1|𝑿t+1
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Computing	filtering
It	can	be	computed	as	follows:
𝑷 𝑿t+1 𝒆1:t+1) 	= 	𝑷 𝑿t+1 𝒆1:t, 𝒆t+1) Dividing	up	the	evidence
= α	𝑷 𝒆t+1|𝑿t+1𝒆1:t 	

𝑷(𝑿t+1|𝒆1:t) Bayes’s rule	to	𝑷(𝑿t+1|𝒆1:t+1)
=	α	𝑷 𝒆t+1|𝑿t+1 	

𝑷(𝑿t+1|𝒆1:t) Markov’s	sensor	assumption
=	α	𝑷 𝒆t+1|𝑿t+1 	

∑ 𝑷 𝑿t+1 𝒙t, 𝒆1:t 	�
𝒙t 𝑷 𝒙t 𝒆1:t Summing	different	values	of	𝑿t

=	α	𝑷 𝒆t+1|𝑿t+1 	
∑ 𝑷(𝑿t+1|𝒙t)	�
𝒙t 𝑷(𝒙t|𝒆1:t) Markov’s	sensor	assumption

Finally:	𝑷 𝑿t+1 𝒆1:t+1) = α	𝑷 𝒆t+1|𝑿t+1 	
∑ 𝑷(𝑿t+1|𝒙t)	�
𝒙t 𝑷(𝒙t|𝒆1:t) (Filtering	)

We	can	think	at	𝑷 𝑿t 𝒆1:t)	as	a	message f1:t+1	that	is	propagated	forward	in	the	
sequence.		This	makes	evident	the	recursive	structure:
f0 =	P(X0)
f1:t+1 =	α	Forward(f1:t, 𝒆t+1 ) where	Forward		implements the filtering update
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Computing	filtering	for	umbrellas
Day	0:	P(R0)	=	⟨0.5,	0.5〉 no	observation,	a	50%	chance	of	rain
Day	1:	

Predict:	P(R1)	= ∑ P(R1	|r0)	P(r0)	�
hi =	P(R1|r0)	× P(r0)	+	P(r1|¬r0)	× P(¬r0)	=

=	⟨0.7,	0.3〉 × 0.5 +	⟨0.3,	0.7〉	× 0.5 =	⟨0.5,	0.5 〉	
Update,	observing	U1 =	true
P(R1|u1)=α	P(u1 |R1)	P(R1)=α	⟨0.9,	0.2〉	⟨0.5,	0.5〉=	α	⟨0.45,	0.1〉 ≈	⟨0.818,	0.182〉

Day	2:	
Predict:	P(R2)	= ∑ P(R2	|	r1)	P(r1)	�

h@ =	⟨0.7,	0.3〉 × 0.818+	⟨0.3,	0.7〉	× 0.182=	⟨0.627,	0.373〉
Update, observing	U2 =	true
P(R2|u1,u2)=α	P(u2|R2)	P(R2|u1)=α	⟨0.9,	0.2〉	⟨0.627,	0.373〉=	α	⟨0.565,	0.075〉 ≈	⟨0.883,	0.117〉

The	probability	of	rain	increases	from	day	1	to	day	2	because	rain	persists.
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Predictions
The	task	of	prediction	can	be	seen	simply	as	filtering	without	the	addition	of	new	evidence.	

The	filtering	process	already	incorporates	a	one-step prediction.

In	general	at	time	t+k+1:

					𝑷 𝑿t+k+1 𝒆1:t) =	∑ 𝑷(𝑿t+k+1|xt+k)	�xt+k 𝑷(xt+k|𝒆1:t)

This	computation	involves	only	the	transition	model	and	not	the	sensor	model.

We	can	show	that	the	predicted	distribution	for	rain	converges	to	a	fixed	point	⟨0.5,	0.5〉,	after	
which	it	remains	constant	for	all	time (the	stationary	distribution	of	the	Markov	process).

The	mixing	time	is	the	time	to	reach	the	stationary	distribution.
The	more	uncertainty	there	is	in	the	transition	model,	the	shorter	will	be	the	mixing	time	and	the	
more	the	future	is	obscured.
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Likelihood	of	evidence	sequence
We	can	use	a	forward	recursion	to	compute	the	likelihood	of	the	evidence	
sequence,	𝑃 𝒆1:t .
Useful	if	we	want	to	compare	two	models	producing	the	same	evidence	
sequence.
For	this	recursion,	we	can	derive	a	recursive	equation	similar	to	filtering	and	use	
a	likelihood	message

l1:t(Xt)=P(Xt,	e1:t)
Once	we	have	l1:t(Xt)	we	can	compute	the	likelihood	of	the	evidence	sequence	
by	summing	out	on	the	values	of	Xt
L1:t	=	P(e1:t)	= ∑ l1:t(xt)�xt
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Smoothing
Smoothing is	the	process	of	computing	the	posterior	distribution	of	the	state	at	some	
past	time	k given	a	complete	sequence	of	observations	up	to	the	present	t
					𝑷 𝑿𝑘|𝒆1:t	 	 for	0	≤	k	<	t.	
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Computing	smoothing
𝑷 𝑿𝑘|𝒆1:t	 =	𝑷 𝑿𝑘|𝒆1:k	, 𝒆k+1:t 	 Splitting	the	evidence

=	α	𝑷 𝑿𝑘|𝒆1:k	)	𝐏(𝒆k+1:t	|𝑿𝑘, 𝒆1:k Bayes’s rule
=	α	𝑷 𝑿𝑘|𝒆1:k	)	𝐏(𝒆k+1:t	|𝑿𝑘 Conditional	independence
=	α	𝑓1:k	×	𝑏k+1:t	 × is	pointwise multiplication

We define anothermessage 𝑏k+1:t =	𝐏(𝒆k+1:t	| 𝑿𝑘)	that can be computed by	a	recursive
process that runs	backward from	t.	
The	forward	message 𝑓1:k is	defined as	before for	filtering
The	terms	in	𝑓1:k	and	𝑏k+1:t	 can	be	implemented	by	two	recursive	calls,	one	running	
forward	from	1 to	k and	using	the	filtering	equation,	the	other	running	backward	from	t
to	k +	1
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Computing	smoothing	going	backwards
𝑷(𝒆k+1:t	| 𝑿𝑘)	=	∑ 𝑷 𝒆k+1:t	|𝑿1:k	, xk+𝟏

�
{|@ 𝑷 xk+1|𝑿k conditioning on	𝑿k+1

=	∑ 𝑷 𝒆k+1:t	|	xk+𝟏
�
{|@ 𝑷 xk+1|𝑿k the	evidence only depends on	xk+𝟏

=	∑ 𝑷 𝒆k+1, 𝒆k+2:t	|	xk+𝟏
�
{|@ 𝑷 xk+1|𝑿k

=	∑ 𝑃 𝒆k+1|	xk+𝟏�
{|@ 𝑃 𝒆k+2:t|	xk+𝟏 	

𝑷 xk+1|𝑿k conditional	independence
𝑏k+1:t = 𝑃 𝒆k+2:t	|	xk+𝟏 	

is	defined	by	the	previous	equation	and	implemented	by	Backword.

The	backward	phase	starts	with	𝐏(𝒆t+1:t	| 𝑿𝒕)	=	𝐏(	| 𝑿𝒕)	1	(a	vector of	1’s),	because (t+1:t)	is	
an	empty sequence with	probability 1	of	observing it.

𝑏t+1:t = 𝐏(	| 𝑿𝒕)	1	
𝑏k+1:t = Backward(𝑏k+2:t	,	𝒆k+1)

where	Backward implements the update	defined before
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Computing	the	smoothed	estimate	for	rain
Let’s	compute	the	smoothed	estimate	at	time	k=1	for	the	probability	of	rain.	Given	the	
observations	at	time	1	and	2.
𝑷(R1 |u1, u2) = α 𝑷(R1 | u1) 𝑷(u2 |R1)
𝑷(R1 | u1) = ⟨0.818, 0.182〉

already computed in the filtering stage.

𝑷(u2 |R1)	=	∑ 𝑃 𝑢2|	r2�
h� 𝑃 |r𝟐 	

𝑷 r2|R1
=	𝑃 𝑢2|	r2 	

𝑃 |r𝟐 	
𝑷 r2|R1 +	𝑃 𝑢2|	¬r2 	

𝑃 |¬r𝟐 	
𝑷 ¬r2|R1

=	(0.9 × 1 × ⟨0.7,	0.3〉)	+	(0.2 × 1 × ⟨0.3,	0.7〉)	=	⟨0.69,	0.41〉

𝑷(R1 |u1,	u2)	=	α	⟨0.818,	0.182〉 × ⟨0.69,	0.41〉 ≈	⟨0.883,	0.117〉

The	smoothed	estimate	for	rain	on	day	1	is	higher	than	the	filtered	estimate.
The complexity for	smoothing at	a	specific time k	with respect to	evidence e1:t is	O(t).	For	
smoothing a	sequence O(t2).

14/11/17 AI	FUNDAMENTALS	- M.	SIMI 21

0 k=1 2

P (r1 |	u1)	=	0.818 P(r2|u1,u2) = 0.883



Improving	efficiency
The	algorithm,	called	forward–backward, uses	dynamic	programming	to	reduce	the	
complexity	over	the	whole	sequence	to	O(t).
The	trick	is	to	record	the	results	computed	during	the	forward	filtering	phase,	over	the	
whole	sequence,	and	reuse	them	during	the	backward	phase.
Note	that	this	is	consistent	with
the	fact	that	the	Bayesian	
network	structure	is	a	polytree.

The	forward–backward algorithm	is	the	basis	for	many	applications	that	deal	with	
sequences	of	noisy	observations.
Improvements	are	required	to	deal	with	(1)	space	complexity	for	long	squences and	(2)	
online	computations,	where	new	observations	continuously	arrive	(fixed-lag	smoothing)
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Forward–backward	algorithm	for	smoothing
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Finding	the	most	likely	sequence
Suppose	we	observe	[true,	true,	false,	true,	true]	for	the	Umbrella variable.
What	is	the	most	likely	sequence	for	Rain?
There	are	25 possible	Rain sequences,	we	want	to	discover	which	is	the	one	maximizing	the	
likelihood,	in	linear	time.
Each	sequence	is	a	path	through	a	graph	whose	nodes	are	the	possible	states	at	each	time	step.

Likelihood	of	a	path:	product	of	the	transition	probabilities	along	the	path	and	the	probabilities	of	
the	given	observations	at	each	state
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Computing	the	most	likely	sequence
We	can	write	a	recursive	equation:
maxx1...xt P(x1,	.	.	.	,	xt,	Xt+1 |	e1:t+1)	=

=	α	P(et+1 |Xt+1)	maxxt [P(Xt+1 |	xt)	maxx1...xt−1	P(x1,	.	.	.	,	xt−1,	xt |	e1:t)]

The forward message in this case is:
m1:t=	max x1… xt−1	P(x1,	… ,	xt−1,	Xt |	e1:t)
the	probabilities	of	the	most	likely	path	to	each	state	xt

The	most	likely	sequence	overall	can	be	computed	in	one	pass.
For	each	state,	the	best	state	that	leads	to	it	is	recorded	(marked	as	black	arrows	in	the	
example)	so	that	the	optimal	sequence	is	identified	by	following	black	arrows	backwards	
from	the	best	final	state.
This	algorithm	is	the	famous	Viterbi	algorithm,	named	after	A.	Viterbi	[1967]
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Viterbi	algorithm	on	the	Umbrella	example
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m1:1	=	α	P(u1 |R1)	P(R1)	=	⟨0.8182,	0.1818〉
m1:2 =	α	P(u2 |R2)	× maxr1[P(R2 |	r1)	× m1:1]	= we need to	consider all possible states at	time	1

=	α	⟨0.9,	0.2〉 × ⟨maxtrue[⟨0.7,	0.3〉	× ⟨0.8182,	0.1818〉],	maxfalse(⟨0.3,	0.7〉	× ⟨0.8182,	0.1818〉]〉	=			
=	α	⟨0.9,	0.2〉 × ⟨maxtrue (0.5155,	0.0545),	max false(0.2454,	0.1273)〉	=	
=	α	⟨0.9,	0.2〉 × ⟨0.5155,	0.2454〉	=	α	⟨0.5155,	0.491〉

m1:3 =	α	P(¬u3 |R3)	× maxr2[P(R3 |	r2)	× m1:2]	=	⟨0.361,	0.1237〉
m1:4		=	α	P(u4 |R4)	× maxr3 [P(R3 |	r2)	× m1:3]	=	⟨0.334,	0.173〉
m1:5			=	α	P(u5 |R5)	× maxr4 [P(R4 |	r3)	× m1:4]	=	⟨0.2010,	0.0024〉

0,05454 0,05454



Applications	of	the	Viterbi	algorithm
§ In	telecommunications	Viterbi	decoders	are	used	for	decoding	a	bitstream

encoded	using	a	technique	called	convolutional	code	or	trellis	code.	(the	
original	application	by	Viterbi).

§ In	natural	language	processing:
§ Different	kinds	of	“sequence	tagger”:	PoS taggers,	NE	taggers	…
§ Dependency	parsing
§ Speech	recognition	(speech-to-text),	speech	synthesis,	speech	diarization
(recognizing	sequences	from	the	same	speaker),	keyword	spotting	…

§ ….
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Hidden	Markov	Model:	reformulation
S:	number	of	states	for	the	[unique]	hidden	variable	Xt
Xt values	are	denoted	by	integers	1,	.	.	.	,	S	
Transition	model:	

P(Xt | Xt -1)	is	the	S	x	S	matrix	T	with	Tij	=	P(Xt = j | Xt -1 = i)
Tij is	the	probability	of	a	transition	from	state i to	state j.

Sensor	model:
Is an	S	x	S		diagonal	matrix	Ot whose ith diagonal
entry	is	P(et | Xt= i) and	whose	other	entries	are	0.

The	forward	equation	becomes:
f1:t+1 =	α	Ot+1TT f1:t

and	the	backward	equation	becomes
bk+1:t =	TOk+1bk+2:t
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Example:
T	=	P(Xt | Xt -1) =	

i.�
i.�	

i.�
i.�

O1 =	
i.�
i 	

i
i.�

O3 =		
i.@
i 	

i
i.�



Conclusions
ü A	dynamic	world	can	be	represented	using	a	set	of	random	variables	to	represent	the	state	at	

each	point	in	time.	A	special	case	of	Bayesian	network.
ü A	temporal	probability	model	can	be	thought	of	as	containing	a	transition	model	describing	

the	state	evolution	and	a	sensor	model	describing	the	observation	process.
ü Assuming	the	Markov	property	and	stationary	processes	greatly	simplifies	the	representation	

and	the	computation.
ü The	principal	inference	tasks	in	temporal	models	are: filtering,	prediction,	and	computing	the	

most	likely	explanation.	Simple,	recursive	algorithms	exist	linear	in	the	length	of	the	
sequence.

ü Algorithms	can	be	further	simplified	assuming	Hidden	Markov	Models,	i.e.	states	are	
represented	by	a	single	discrete	variable.	

ü Hidden	Markov	models,	Kalman filters,	and	dynamic	Bayesian	networks	are	left	out.
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Your	turn
ü Study	and	implement	the	Forward–Backward	algorithm	for	smoothing
ü Study	and	implement	the	Viterbi	algorithm	for	computing	the	most	likely	

sequence.
ü Describe	a	problem	that	can	be	tackled	with	Viterbi.
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